51
|
Zulfiqar F, Hozo I, Rangarajan S, Mariuzza RA, Dziarski R, Gupta D. Genetic Association of Peptidoglycan Recognition Protein Variants with Inflammatory Bowel Disease. PLoS One 2013; 8:e67393. [PMID: 23840689 PMCID: PMC3686734 DOI: 10.1371/journal.pone.0067393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/17/2013] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a common disease, includes Crohn's disease (CD) and ulcerative colitis (UC), and is determined by altered gut bacterial populations and aberrant host immune response. Peptidoglycan recognition proteins (PGLYRP) are innate immunity bactericidal proteins expressed in the intestine. In mice, PGLYRPs modulate bacterial populations in the gut and sensitivity to experimentally induced UC. The role of PGLYRPs in humans with CD and/or UC has not been previously investigated. Here we tested the hypothesis that genetic variants in PGLYRP1, PGLYRP2, PGLYRP3 and PGLYRP4 genes associate with CD and/or UC and with gender and/or age of onset of disease in the patient population. We sequenced all PGLYRP exons in 372 CD patients, 77 UC patients, 265 population controls, 210 familial CD controls, and 24 familial UC controls, identified all polymorphisms in these populations, and analyzed the variants for significant association with CD and UC. We identified 16 polymorphisms in the four PGLYRP genes that significantly associated with CD, UC, and/or subgroups of patient populations. Of the 16, 5 significantly associated with both CD and UC, 6 with CD, and 5 with UC. 12 significant variants result in amino acid substitutions and based on structural modeling several of these missense variants may have structural and/or functional consequences for PGLYRP proteins. Our data demonstrate that genetic variants in PGLYRP genes associate with CD and UC and may provide a novel insight into the mechanism of pathogenesis of IBD.
Collapse
Affiliation(s)
- Fareeha Zulfiqar
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Iztok Hozo
- Department of Mathematics, Indiana University Northwest, Gary, Indiana, United States of America
| | - Sneha Rangarajan
- The Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, United States of America
| | - Roy A. Mariuzza
- The Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, United States of America
| | - Roman Dziarski
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Dipika Gupta
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
- * E-mail:
| |
Collapse
|
52
|
Park SY, Jing X, Gupta D, Dziarski R. Peptidoglycan recognition protein 1 enhances experimental asthma by promoting Th2 and Th17 and limiting regulatory T cell and plasmacytoid dendritic cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:3480-92. [PMID: 23420883 DOI: 10.4049/jimmunol.1202675] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Asthma is a common inflammatory disease involving cross-talk between innate and adaptive immunity. We reveal that antibacterial innate immunity protein, peptidoglycan recognition protein (Pglyrp)1, is involved in the development of allergic asthma. Pglyrp1(-/-) mice developed less severe asthma than wild-type (WT) mice following sensitization with house dust mite (allergen) (HDM). HDM-sensitized Pglyrp1(-/-) mice, compared with WT mice, had diminished bronchial hyperresponsiveness (lung airway resistance); numbers of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid and lungs; inflammatory cell infiltrates in the lungs around bronchi, bronchioles, and pulmonary arteries and veins; lung remodeling (mucin-producing goblet cell hyperplasia and metaplasia and smooth muscle hypertrophy and fibrosis); levels of IgE, eotaxins, IL-4, IL-5, and IL-17 in the lungs; and numbers of Th2 and Th17 cells and expression of their marker genes in the lungs. The mechanism underlying this decreased sensitivity of Pglyrp1(-/-) mice to asthma was increased generation and activation of CD8α(+)β(+) and CD8α(+)β(-) plasmacytoid dendritic cells (pDC) and increased recruitment and activity of regulatory T (Treg) cells in the lungs. In vivo depletion of pDC in HDM-sensitized Pglyrp1(-/-) mice reversed the low responsive asthma phenotype of Pglyrp1(-/-) mice to resemble the more severe WT phenotype. Thus, Pglyrp1(-/-) mice efficiently control allergic asthma by upregulating pDC and Treg cells in the lungs, whereas in WT mice, Pglyrp1 is proinflammatory and decreases pDC and Treg cells and increases proasthmatic Th2 and Th17 responses. Blocking Pglyrp1 or enhancing pDC in the lungs may be beneficial for prevention and treatment of asthma.
Collapse
Affiliation(s)
- Shin Yong Park
- Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | | | | | | |
Collapse
|
53
|
Clowers JS, Allensworth JJ, Lee EJ, Rosenzweig HL. Investigation of the peptidoglycan sensing molecule, PGLYRP-2, in murine inflammatory uveitis. Br J Ophthalmol 2013; 97:504-10. [PMID: 23361435 DOI: 10.1136/bjophthalmol-2012-302650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIM Peptidoglycan (PGN) recognition proteins (PGLYRPs) are innate immune molecules that recognise bacterial cell wall PGN, and participate in several inflammatory diseases such as arthritis. We sought to elucidate the contribution of PGLYRPs in murine uveitis (intraocular inflammatory disease) elicited by PGN, and the extent to which systemically administered PGN alters uveitis compared with arthritis versus locally triggered ocular responses. METHODS Mice deficient for PGLYRP-2, PGLYRP-3 or PGLYRP-4 were administered PGN by an intraperitoneal or intraocular injection. Arthritis was assessed by near-infrared imaging and histopathology, while uveitis was measured by intravital videomicroscopy and histopathology. RESULTS Systemic PGN exposure predisposed to arthritis through a PGLYRP-2 dependent mechanism. By contrast, systemic PGN exposure did not predispose to uveitis, and PGLYRP-2 deficiency had no impact on the development the uveitis. When PGN was administered locally, a robust uveitis ensued, which occurred independently of PGLYRP-2. Regardless of whether PGN was administered systemically or locally, neither PGLYRP-3 nor PGLYRP-4 deficiency significantly altered ocular inflammation compared with wild-type control animals. CONCLUSIONS Our findings highlight the complexity of PGLYRPs and how PGLYRP-2 may use different molecular pathways in the joints versus eyes. Collectively, our results support a non-essential or redundant role for PGLYRPs-2, -3, -4 in uveitis.
Collapse
|
54
|
Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 2013; 12:153-65. [PMID: 22901536 DOI: 10.1016/j.chom.2012.06.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/22/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023]
Abstract
Gut epithelial cells contact both commensal and pathogenic bacteria, and proper responses to these bacteria require a balance of positive and negative regulatory signals. In the Drosophila intestine, peptidoglycan-recognition proteins (PGRPs), including PGRP-LE, play central roles in bacterial recognition and activation of immune responses, including induction of the IMD-NF-κB pathway. We show that bacteria recognition is regionalized in the Drosophila gut with various functional regions requiring different PGRPs. Specifically, peptidoglycan recognition by PGRP-LE in the gut induces NF-κB-dependent responses to infectious bacteria but also immune tolerance to microbiota through upregulation of pirk and PGRP-LB, which negatively regulate IMD pathway activation. Loss of PGRP-LE-mediated detection of bacteria in the gut results in systemic immune activation, which can be rescued by overexpressing PGRP-LB in the gut. Together these data indicate that PGRP-LE functions as a master gut bacterial sensor that induces balanced responses to infectious bacteria and tolerance to microbiota.
Collapse
Affiliation(s)
- Virginie Bosco-Drayon
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR, Aix-Marseille Université, France
| | | | | | | | | | | |
Collapse
|
55
|
Schlatzer DM, Dazard JE, Ewing RM, Ilchenko S, Tomcheko SE, Eid S, Ho V, Yanik G, Chance MR, Cooke KR. Human biomarker discovery and predictive models for disease progression for idiopathic pneumonia syndrome following allogeneic stem cell transplantation. Mol Cell Proteomics 2012; 11:M111.015479. [PMID: 22337588 PMCID: PMC3433920 DOI: 10.1074/mcp.m111.015479] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/10/2012] [Indexed: 11/06/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (SCT) is the only curative therapy for many malignant and nonmalignant conditions. Idiopathic pneumonia syndrome (IPS) is a frequently fatal complication that limits successful outcomes. Preclinical models suggest that IPS represents an immune mediated attack on the lung involving elements of both the adaptive and the innate immune system. However, the etiology of IPS in humans is less well understood. To explore the disease pathway and uncover potential biomarkers of disease, we performed two separate label-free, proteomics experiments defining the plasma protein profiles of allogeneic SCT patients with IPS. Samples obtained from SCT recipients without complications served as controls. The initial discovery study, intended to explore the disease pathway in humans, identified a set of 81 IPS-associated proteins. These data revealed similarities between the known IPS pathways in mice and the condition in humans, in particular in the acute phase response. In addition, pattern recognition pathways were judged to be significant as a function of development of IPS, and from this pathway we chose the lipopolysaccaharide-binding protein (LBP) protein as a candidate molecular diagnostic for IPS, and verified its increase as a function of disease using an ELISA assay. In a separately designed study, we identified protein-based classifiers that could predict, at day 0 of SCT, patients who: 1) progress to IPS and 2) respond to cytokine neutralization therapy. Using cross-validation strategies, we built highly predictive classifier models of both disease progression and therapeutic response. In sum, data generated in this report confirm previous clinical and experimental findings, provide new insights into the pathophysiology of IPS, identify potential molecular classifiers of the condition, and uncover a set of markers potentially of interest for patient stratification as a basis for individualized therapy.
Collapse
Affiliation(s)
| | | | - Rob M. Ewing
- From the ‡Center for Proteomics and Bioinformatics
- §Department of Genetics
| | | | | | - Saada Eid
- ¶Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Vincent Ho
- ‖Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI
| | - Greg Yanik
- **Department of Medical Oncology, Blood and Marrow Transplantation Program, Dana-Farber Cancer Institute, Boston, MA
| | - Mark R. Chance
- From the ‡Center for Proteomics and Bioinformatics
- §Department of Genetics
| | - Kenneth R. Cooke
- ¶Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
56
|
Role of mouse peptidoglycan recognition protein PGLYRP2 in the innate immune response to Salmonella enterica serovar Typhimurium infection in vivo. Infect Immun 2012; 80:2645-54. [PMID: 22615249 DOI: 10.1128/iai.00168-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of innate pattern recognition molecules that bind bacterial peptidoglycan. While the role of PGRPs in Drosophila innate immunity has been extensively studied, how the four mammalian PGRP proteins (PGLYRP1 to PGLYRP4) contribute to host defense against bacterial pathogens in vivo remains poorly understood. PGLYRP1, PGLYRP3, and PGLYRP4 are directly bactericidal in vitro, whereas PGLYRP2 is an N-acetylmuramyl-L-alanine amidase that cleaves peptidoglycan between the sugar backbone and the peptide stem. Because PGLYRP2 cleaves muramyl peptides detected by host peptidoglycan sensors Nod1 and Nod2, we speculated that PGLYRP2 may act as a modifier of Nod1/Nod2-dependent innate immune responses. We investigated the role of PGLYRP2 in Salmonella enterica serovar Typhimurium-induced colitis, which is regulated by Nod1/Nod2 through the induction of an early Th17 response. PGLYRP2 did not contribute to expression of Th17-associated cytokines, interleukin-22 (IL-22)-dependent antimicrobial proteins, or inflammatory cytokines. However, we found that Pglyrp2-deficient mice displayed significantly enhanced inflammation in the cecum at 72 h postinfection, reflected by increased polymorphonuclear leukocyte (PMN) infiltration and goblet cell depletion. Pglyrp2 expression was also induced in the cecum of Salmonella-infected mice, and expression of green fluorescent protein under control of the Pglyrp2 promoter was increased in discrete populations of intraepithelial lymphocytes. Lastly, Nod2(-/-) Pglyrp2(-/-) mice displayed increased susceptibility to infection at 24 h postinfection compared to Pglyrp2(-/-) mice, which correlated with increased PMN infiltration and submucosal edema. Thus, PGLYRP2 plays a protective role in vivo in the control of S. Typhimurium infection through a Nod1/Nod2-independent mechanism.
Collapse
|
57
|
Dziarski R, Kashyap DR, Gupta D. Mammalian peptidoglycan recognition proteins kill bacteria by activating two-component systems and modulate microbiome and inflammation. Microb Drug Resist 2012; 18:280-5. [PMID: 22432705 DOI: 10.1089/mdr.2012.0002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and function in antibacterial immunity. We have revealed a novel mechanism of bacterial killing by innate immune system, in which mammalian PGRPs bind to bacterial cell wall or outer membrane and exploit bacterial stress defense response to kill bacteria. PGRPs enter Gram-positive cell wall at the site of daughter cell separation during cell division. In Bacillus subtilis PGRPs activate the CssR-CssS two-component system that detects and disposes of misfolded proteins exported out of bacterial cells. This activation results in membrane depolarization, production of hydroxyl radicals, and cessation of intracellular peptidoglycan, protein, RNA, and DNA synthesis, which are responsible for bacterial death. PGRPs also bind to the outer membrane in Escherichia coli and activate functionally homologous CpxA-CpxR two-component system, which also results in bacterial death. We excluded other potential bactericidal mechanisms, such as inhibition of extracellular peptidoglycan synthesis, hydrolysis of peptidoglycan, and membrane permeabilization. In vivo, mammalian PGRPs are expressed in polymorphonuclear leukocytes, skin, salivary glands, oral cavity, intestinal tract, eyes, and liver. They control acquisition and maintenance of beneficial normal gut microflora, which protects the host from enhanced inflammation, tissue damage, and colitis.
Collapse
Affiliation(s)
- Roman Dziarski
- School of Medicine, Indiana University, Gary, Indiana 46408, USA.
| | | | | |
Collapse
|
58
|
Intracellular inflammatory sensors for foreign invaders and substances of self-origin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:60-78. [PMID: 22399374 DOI: 10.1007/978-1-4614-1680-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In order to survive, all organisms must recognize and eliminate foreign invaders such as infectious pathogens, chemicals, ultraviolet rays, metabolites and damaged or transformed self-tissues, as well as allogenic organs in cases of transplantation. Recent research in innate immunity has elucidated that there are versatile inflammatory sensors on spatiotemporal 'sentry duty' that recognize substances derived from both 'nonself' and 'self', e.g., Toll-like receptors, retinoic acid-inducible gene-I-like receptors, nucleotide oligomerization domain-like receptors and c-type lectin receptors. Having acquired high-level functions through the development of multiple molecules, higher organisms have established both extracellular and intracellular sensors that can discriminate danger-associated molecular patterns from promiscuous, but biologically similar, molecular patterns. In addition, 'loss-of-function' or 'gain-of-function' mutations in these inflammatory sensors have been linked (at least in part) with the etiology and severity of autoimmune diseases, autoinflammatory diseases and immunocompromised diseases in humans. Further studies focusing on the role of these inflammatory sensors in the development of immune disorders would highlight new avenues for the development of novel diagnostic and therapeutic applications with regard to these diseases.
Collapse
|
59
|
Berencsi G, Takács M. Barriers of the Human Organism and Their Achilles’ Heels. MATERNAL FETAL TRANSMISSION OF HUMAN VIRUSES AND THEIR INFLUENCE ON TUMORIGENESIS 2012. [PMCID: PMC7121758 DOI: 10.1007/978-94-007-4216-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human body is covered by barriers separating it from the external and internal surroundings. The “milieu enterieur” has to be stabilised in spite of the variable external and internal conditions of toxic, osmotic, microbial and climatic environmental circumstances. This first line of barriers is composed of skin and mucous membranes of complicated structures. A second line of barrier system is present in our organisms. Certain organs have to be separated from the immune system and other parts of the body because of evolutionary reasons (eye-bulb and testicles) because of unique proteins “unknown” for the acquired immune system. The blood-brain barrier (BBB) is providing enhanced safety circumstances for the central nervous system. The second line of barriers is represented by the special properties of the capillary endothelial system. The maternal-fetal barrier is the most complex. At the maternal fetal interface two individuals of two different haplotypes has to be live 9 months separated by a very complicated dynamic barrier. The placenta is the organ, which is separating the maternal and fetal tissues. Similar to others the bidirectional transport of gasses, metabolites, cells, proteins, regulatory substances, are transported by active or passive transcellular and intercellular mechanisms. The fetal immune system develops immunotolerance to all maternal cells and antigens transferred transplacentally. The problem is to mitigate the maternal immune system to tolerate the paternal haplotype of the fetus. In the case of normal pregnancy a complex series of physiological modifications can solve the problem without harmful consequences to the mother and fetus. The outermost contact cells of trophoblasts express instead of HLA-class Ia and class II antigens non-variable HLA-C, HLA-E, HLA-F and HLA-G antigens. The first consequence of this is reduction of the activity of maternal natural killer cells and maternal dendritic cells; Progesteron, micro-RNA and mediators influence the development of T effector-cells. The production of soluble HLA-G(5 and 6) and IL-10 supports the differentiation of Th-2 CD4+ helper cells, reducing the ability of maternal cells to kill fetal cells. Series of receptors and costimulators are expressed by the different lines of semi-allogenic trophoblast cells to bind HLA-G and mitigate maternal immune response; The maternal immunotolerance is further facilitated by the activation of CD4+CD25brightFoxp3+ regulatory T (TREG) cells. Infections have to be prevented during pregnancy. The cells of placenta express 10 Toll-like receptors a group of pattern recognition receptors responsible for innate immunity. The interferon level is also higher in the placental tissues than in the somatic fetal or maternal cells. The complement system is also adapted to the requirements of the pregnancy and fetal damage is inhibited by the production of “assymmetric IgG antibodies” under hormonal and placental-regulation. These modifications prevent the activation of complement, cytotoxic activity, opsonising ability, antigen clearance and precipitating activity of the molecules. The Achilles’ heels of the different barriers are regularly found by virus infections. Lamina cribrosa of the blood-brain barrier, optical nerve of the eyes, etc. the risk factors of the maternal-fetal barrier has been summarised in Table 1.1.
Collapse
|
60
|
Sorbara MT, Philpott DJ. Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis. Immunol Rev 2011; 243:40-60. [PMID: 21884166 DOI: 10.1111/j.1600-065x.2011.01047.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptidoglycan is a conserved structural component of the bacterial cell wall with molecular motifs unique to bacteria. The mammalian immune system takes advantage of these properties and has evolved to recognize this microbial associated molecular pattern. Mammals have four secreted peptidoglycan recognition proteins, PGLYRP-1-4, as well as two intracellular sensors of peptidoglycan, Nod1 and Nod2. Recognition of peptidoglycan is important in initiating and shaping the immune response under both homeostatic and infection conditions. During infection, peptidoglycan recognition drives both cell-autonomous and whole-organism defense responses. Here, we examine recent advances in the understanding of how peptidoglycan recognition shapes mammalian immune responses in these diverse contexts.
Collapse
Affiliation(s)
- Matthew T Sorbara
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
61
|
Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol 2011; 11:837-51. [DOI: 10.1038/nri3089] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Park SY, Gupta D, Hurwich R, Kim CH, Dziarski R. Peptidoglycan recognition protein Pglyrp2 protects mice from psoriasis-like skin inflammation by promoting regulatory T cells and limiting Th17 responses. THE JOURNAL OF IMMUNOLOGY 2011; 187:5813-23. [PMID: 22048773 DOI: 10.4049/jimmunol.1101068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Skin protects the body from the environment and is an important component of the innate and adaptive immune systems. Psoriasis is a frequent inflammatory skin disease of unknown cause determined by multigenic predisposition, environmental factors, and aberrant immune response. Peptidoglycan recognition proteins (Pglyrps) are expressed in the skin, and we report in this article that they modulate sensitivity in an experimentally induced mouse model of psoriasis. We demonstrate that Pglyrp2(-/-) mice (but not Pglyrp3(-/-) and Pglyrp4(-/-) mice) are more sensitive to the development of 12-O-tetradecanoylphorbol 13-acetate-induced psoriasis-like inflammation, whereas Pglyrp1(-/-) mice are less sensitive. The mechanism underlying this increased sensitivity of Pglyrp2(-/-) mice to 12-O-tetradecanoylphorbol 13-acetate-induced psoriasis-like inflammation is reduced recruitment of regulatory T cells to the skin and enhanced production and activation of Th17 cells in the skin in Pglyrp2(-/-) mice, which results in more severe inflammation and keratinocyte proliferation. Thus, in wild type mice, Pglyrp2 limits overactivation of Th17 cells by promoting accumulation of regulatory T cells at the site of inflammation, which protects the skin from the exaggerated inflammatory response.
Collapse
Affiliation(s)
- Shin Yong Park
- Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | | | | | | | | |
Collapse
|
63
|
Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells. PLoS One 2011; 6:e24961. [PMID: 21949809 PMCID: PMC3174980 DOI: 10.1371/journal.pone.0024961] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/24/2011] [Indexed: 12/31/2022] Open
Abstract
Skin protects the body from the environment and is an important component of the innate and adaptive immune systems. Atopic dermatitis and contact dermatitis are among the most frequent inflammatory skin diseases and are both determined by multigenic predisposition, environmental factors, and aberrant immune response. Peptidoglycan Recognition Proteins (Pglyrps) are expressed in the skin and we report here that they modulate sensitivity to experimentally-induced atopic dermatitis and contact dermatitis. Pglyrp3(-/-) and Pglyrp4(-/-) mice (but not Pglyrp2(-/-) mice) develop more severe oxazolone-induced atopic dermatitis than wild type (WT) mice. The common mechanism underlying this increased sensitivity of Pglyrp3(-/-) and Pglyrp4(-/-) mice to atopic dermatitis is reduced recruitment of Treg cells to the skin and enhanced production and activation Th17 cells in Pglyrp3(-/-) and Pglyrp4(-/-) mice, which results in more severe inflammation and keratinocyte proliferation. This mechanism is supported by decreased inflammation in Pglyrp3(-/-) mice following in vivo induction of Treg cells by vitamin D or after neutralization of IL-17. By contrast, Pglyrp1(-/-) mice develop less severe oxazolone-induced atopic dermatitis and also oxazolone-induced contact dermatitis than WT mice. Thus, Pglyrp3 and Pglyrp4 limit over-activation of Th17 cells by promoting accumulation of Treg cells at the site of chronic inflammation, which protects the skin from exaggerated inflammatory response to cell activators and allergens, whereas Pglyrp1 has an opposite pro-inflammatory effect in the skin.
Collapse
|
64
|
Low LY, Yang C, Perego M, Osterman A, Liddington R. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. J Biol Chem 2011; 286:34391-403. [PMID: 21816821 DOI: 10.1074/jbc.m111.244160] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The recombinant lysins of lytic phages, when applied externally to Gram-positive bacteria, can be efficient bactericidal agents, typically retaining high specificity. Their development as novel antibacterial agents offers many potential advantages over conventional antibiotics. Protein engineering could exploit this potential further by generating novel lysins fit for distinct target populations and environments. However, access to the peptidoglycan layer is controlled by a variety of secondary cell wall polymers, chemical modifications, and (in some cases) S-layers and capsules. Classical lysins require a cell wall-binding domain (CBD) that targets the catalytic domain to the peptidoglycan layer via binding to a secondary cell wall polymer component. The cell walls of Gram-positive bacteria generally have a negative charge, and we noticed a correlation between (positive) charge on the catalytic domain and bacteriolytic activity in the absence of the CBD (nonclassical behavior). We investigated a physical basis for this correlation by comparing the structures and activities of pairs of lysins where the lytic activity of one of each pair was CBD-independent. We found that by engineering a reversal of sign of the net charge of the catalytic domain, we could either eliminate or create CBD dependence. We also provide evidence that the S-layer of Bacillus anthracis acts as a molecular sieve that is chiefly size-dependent, favoring catalytic domains over full-length lysins. Our work suggests a number of facile approaches for fine-tuning lysin activity, either to enhance or reduce specificity/host range and/or bactericidal potential, as required.
Collapse
Affiliation(s)
- Lieh Yoon Low
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
65
|
Werts C, Rubino S, Ling A, Girardin SE, Philpott DJ. Nod-like receptors in intestinal homeostasis, inflammation, and cancer. J Leukoc Biol 2011; 90:471-82. [PMID: 21653239 DOI: 10.1189/jlb.0411183] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NLRs have been shown in a number of models to protect against microbial infection through their ability to participate in "pattern recognition" and their triggering of inflammatory pathways to control infection. Over the past few years, however, the role of NLRs, especially Nod1, Nod2, and NLRP3, in intestinal homeostasis has been highlighted. Indeed, these specific NLRs have been implicated in IBD, in particular, the association of Nod2 with CD, yet a clear understanding of how dysfunctional NLR activation leads to aberrant inflammation is still the focus of much investigation. In this review, we will examine how NLRs participate in the maintenance of gut homeostasis and how upset of this regulation can tip the balance toward chronic inflammation and intestinal cancer.
Collapse
Affiliation(s)
- Catherine Werts
- Institut Pasteur, Biology and Genetics of Bacterial Cell Wall, Avenir Group INSERM, Paris, France
| | | | | | | | | |
Collapse
|
66
|
Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes. Mucosal Immunol 2011; 4:325-34. [PMID: 20980996 DOI: 10.1038/mi.2010.71] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Innate immune recognition of the bacterial cell wall constituent peptidoglycan by the cytosolic nucleotide-binding oligomerization domain 2 (Nod2) receptor has a pivotal role in the maintenance of intestinal mucosal homeostasis. Whereas peptidoglycan cleavage by gut-derived lysozyme preserves the recognition motif, the N-acetylmuramoyl-L-alanine amidase activity of the peptidoglycan recognition protein 2 (PGLYRP-2) destroys the Nod2-detected muramyl dipeptide structure. PGLYRP-2 green fluorescent protein (GFP) reporter and wild-type mice were studied by flow cytometry and quantitative RT-PCR to identify Pglyrp-2 expression in cells of the intestinal mucosa and reveal a potential regulatory function on epithelial peptidoglycan recognition. CD3(+)/CD11c(+) T lymphocytes revealed significant Pglyrp-2 expression, whereas epithelial cells and intestinal myeloid cells were negative. The mucosal Pglyrp-2-expressing lymphocyte population demonstrated a mixed T-cell receptor (TCR) αβ or γδ phenotype with predominant CD8α and less so CD8β expression, as well as significant staining for the activation markers B220 and CD69, presenting a typical intraepithelial lymphocyte phenotype. Importantly, exposure of peptidoglycan to PGLYRP-2 significantly reduced Nod2/Rip2-mediated epithelial activation. Also, moderate but significant alterations of the intestinal microbiota composition were noted in Pglyrp-2-deficient animals. PGLYRP-2 might thus have a significant role in regulation of the enteric host-microbe homeostasis.
Collapse
|
67
|
Petnicki-Ocwieja T, DeFrancesco AS, Chung E, Darcy CT, Bronson RT, Kobayashi KS, Hu LT. Nod2 suppresses Borrelia burgdorferi mediated murine Lyme arthritis and carditis through the induction of tolerance. PLoS One 2011; 6:e17414. [PMID: 21387014 PMCID: PMC3046161 DOI: 10.1371/journal.pone.0017414] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/31/2011] [Indexed: 01/07/2023] Open
Abstract
The internalization of Borrelia burgdorferi, the causative agent of Lyme disease, by phagocytes is essential for an effective activation of the immune response to this pathogen. The intracellular, cytosolic receptor Nod2 has been shown to play varying roles in either enhancing or attenuating inflammation in response to different infectious agents. We examined the role of Nod2 in responses to B. burgdorferi. In vitro stimulation of Nod2 deficient bone marrow derived macrophages (BMDM) resulted in decreased induction of multiple cytokines, interferons and interferon regulated genes compared with wild-type cells. However, B. burgdorferi infection of Nod2 deficient mice resulted in increased rather than decreased arthritis and carditis compared to control mice. We explored multiple potential mechanisms for the paradoxical response in in vivo versus in vitro systems and found that prolonged stimulation with a Nod2 ligand, muramyl dipeptide (MDP), resulted in tolerance to stimulation by B. burgdorferi. This tolerance was lost with stimulation of Nod2 deficient cells that cannot respond to MDP. Cytokine patterns in the tolerance model closely paralleled cytokine profiles in infected Nod2 deficient mice. We propose a model where Nod2 has an enhancing role in activating inflammation in early infection, but moderates inflammation after prolonged exposure to the organism through induction of tolerance.
Collapse
Affiliation(s)
- Tanja Petnicki-Ocwieja
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Alicia S. DeFrancesco
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Erin Chung
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Courtney T. Darcy
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Roderick T. Bronson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Koichi S. Kobayashi
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linden T. Hu
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
68
|
Zaidman-Rémy A, Poidevin M, Hervé M, Welchman DP, Paredes JC, Fahlander C, Steiner H, Mengin-Lecreulx D, Lemaitre B. Drosophila immunity: analysis of PGRP-SB1 expression, enzymatic activity and function. PLoS One 2011; 6:e17231. [PMID: 21364998 PMCID: PMC3041801 DOI: 10.1371/journal.pone.0017231] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/25/2011] [Indexed: 11/18/2022] Open
Abstract
Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed.
Collapse
Affiliation(s)
| | | | - Mireille Hervé
- Institut de Biochimie et Biophysique Moléculaire Cellulaire, UMR 8619 CNRS, Université Paris-Sud, Orsay, France
| | | | | | - Carina Fahlander
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Hakan Steiner
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Dominique Mengin-Lecreulx
- Institut de Biochimie et Biophysique Moléculaire Cellulaire, UMR 8619 CNRS, Université Paris-Sud, Orsay, France
| | - Bruno Lemaitre
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
- EPFL, Global Health Institute, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
69
|
Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma. Cell Host Microbe 2010; 8:147-62. [PMID: 20709292 DOI: 10.1016/j.chom.2010.07.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/21/2010] [Accepted: 05/27/2010] [Indexed: 12/18/2022]
Abstract
There are multiple mechanisms that protect the intestine from an excessive inflammatory response to intestinal microorganisms. We report here that all four mammalian peptidoglycan recognition proteins (PGRPs or Pglyrps) protect the host from colitis induced by dextran sulfate sodium (DSS). Pglyrp1(-/-), Pglyrp2(-/-), Pglyrp3(-/-), and Pglyrp4(-/-) mice are all more sensitive than wild-type mice to DSS-induced colitis due to a more inflammatory gut microflora, higher production of interferon-gamma, higher expression of interferon-inducible genes, and an increased number of NK cells in the colon upon initial exposure to DSS, which leads to severe hyperplasia of the lamina propria, loss of epithelial cells, and ulceration in the colon. Thus, during experimental colitis, PGRPs protect the colon of wild-type mice from an early inflammatory response and the loss of the barrier function of intestinal epithelium by promoting normal bacterial flora and by preventing damaging production of interferon-gamma by NK cells in response to injury.
Collapse
|
70
|
Mouse peptidoglycan recognition protein PGLYRP-1 plays a role in the host innate immune response against Listeria monocytogenes infection. Infect Immun 2010; 79:858-66. [PMID: 21134971 DOI: 10.1128/iai.00466-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of mouse peptidoglycan recognition protein PGLYRP-1 in innate immunity against Listeria monocytogenes infection was studied. The recombinant mouse PGLYRP-1 and a polyclonal antibody specific to PGLYRP-1 were prepared. The mouse PGLYRP-1 showed antibacterial activities against L. monocytogenes and other Gram-positive bacteria. PGLYRP-1 mRNA expression was induced in the spleens and livers of mice infected with L. monocytogenes. The viable bacterial number increased, and the production of cytokines such as gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) was reduced in mice when mice had been injected with anti-PGLYRP-1 antibody before infection. The levels of IFN-γ and TNF-α titers in the organs were higher and the viable bacterial number was reduced in mice injected with recombinant mouse PGLYRP-1 (rmPGLYRP-1) before infection. PGLYRP-1 could directly induce these cytokines in spleen cell cultures. The elimination of intracellular bacteria was upregulated in NMuLi hepatocyte cells overexpressing PGLYRP-1. The enhancement of the elimination of L. monocytogenes from the organs was observed in IFN-γ(-/-) mice by rmPGLYRP-1 administration but not in TNF-α(-/-) mice. These results suggest that PGLYRP-1 plays a role in innate immunity against L. monocytogenes infection by inducing TNF-α.
Collapse
|
71
|
Zenhom M, Hyder A, Kraus-Stojanowic I, Auinger A, Roeder T, Schrezenmeir J. PPARγ-dependent peptidoglycan recognition protein 3 (PGlyRP3) expression regulates proinflammatory cytokines by microbial and dietary fatty acids. Immunobiology 2010; 216:715-24. [PMID: 21176858 DOI: 10.1016/j.imbio.2010.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 01/25/2023]
Abstract
PGlyRPs recognize bacterial peptidoglycan and function in antibacterial innate immunity. Focusing on the interference between nutrition and recognition pattern proteins, free fatty acids (FFA) of dietary and bacterial sources may exert their immunological response through modulating the expression level of the PGlyRPs in enterocytes. PGlyRP3 was the only PGlyRPs member expressed in Caco2 cells. In silico analysis showed that the promoter of PGlyRP3 has some PPRE regions that, as tested by EMSA, bind physically to the PPARγ-RXRα complex. PGlyRP3 gene expression was induced by PPARγ ligands including GW1929 and some FFA. Overexpression of PGlyRP3 in Caco2 cells down regulated the expression of the inflammatory cytokines IL-8, IL-12 and TNF-α, while its silencing increased the expression of these cytokines. FFA that induced the PGlyRP3 inhibited the tested cytokines. Silencing of PGlyRP3 gene caused the same FFA to increase the cytokine gene expression. A negative regulation of NF-κB pathway, including up-regulation of Iκβ-α and down regulation of NF-κB and COX-2, is involved in the anti-inflammatory effects of PGlyRP3. In conclusion, PPARγ mediates a modulation of PGlyRP3 gene expression, which is involved in inhibiting inflammation through negative regulation of NF-κB pathway.
Collapse
Affiliation(s)
- Marwa Zenhom
- Department of Physiology and Biochemistry of Nutrition, Max Rubner Institute, Hermann Weigmann Str. 1, 24103 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
72
|
Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect Immun 2010; 79:562-70. [PMID: 21041496 DOI: 10.1128/iai.00651-10] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial pathogens that colonize mucosal surfaces have acquired resistance to antimicrobials that are abundant at these sites. One of the main antimicrobials present on mucosal surfaces is lysozyme, a muramidase that hydrolyzes the peptidoglycan backbone of bacteria. Cleavage of the peptidoglycan backbone leads to bacterial cell death and lysis, which releases bacterial fragments, including peptidoglycan, at the site of infection. Peptidoglycan fragments can be recognized by host receptors and initiate an immune response that will aid in clearing infection. Many mucosal pathogens modify the peptidoglycan residues surrounding the cleavage site for lysozyme to avoid peptidoglycan degradation and the release of these proinflammatory fragments. This review will focus specifically on peptidoglycan modifications, their role in lysozyme resistance, and downstream effects on the host immune response to infection.
Collapse
|
73
|
Rosenzweig HL, Jann MJ, Vance EE, Planck SR, Rosenbaum JT, Davey MP. Nucleotide-binding oligomerization domain 2 and Toll-like receptor 2 function independently in a murine model of arthritis triggered by intraarticular peptidoglycan. ACTA ACUST UNITED AC 2010; 62:1051-9. [PMID: 20131263 DOI: 10.1002/art.27335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Blau syndrome is an autoinflammatory disease resulting from mutations in the NOD2 gene, wherein granulomatous arthritis, uveitis, and dermatitis develop. The mechanisms by which aberrant NOD2 causes joint inflammation are poorly understood. Indeed, very few studies have addressed the function of nucleotide-binding oligomerization domain 2 (NOD-2) in the joint. This study was undertaken to investigate NOD-2 function in an experimental model of arthritis and to explore the potential interplay between Toll-like receptor 2 (TLR-2) and NOD-2 in joint inflammation. METHODS Mice deficient in TLR-2, myeloid differentiation factor 88 (MyD88), or NOD-2 and their wild-type controls were given an intraarticular injection of muramyl dipeptide (MDP), peptidoglycan (PG; a metabolite of which is MDP), or palmitoyl-3-cysteine-serine-lysine-4 (Pam(3)CSK(4)), a synthetic TLR-2 agonist. Joint inflammation was assessed by near-infrared fluorescence imaging and histologic analysis. RESULTS Locally administered PG resulted in joint inflammation, which was markedly reduced in mice deficient in either TLR-2 or the TLR signaling mediator MyD88. In addition to TLR-2 signaling events, NOD-2 mediated joint inflammation, as evidenced by the fact that mice deficient in NOD-2 showed significantly reduced PG-induced arthritis. TLR-2 or MyD88 deficiency did not influence arthritis induced by the specific NOD-2 agonist MDP. In addition, NOD-2 deficiency did not alter the TLR-2-dependent joint inflammation elicited by the synthetic TLR-2 agonist Pam(3)CSK(4). CONCLUSION Whereas NOD-2 and TLR-2 are both critical for the development of PG-induced arthritis, they appear to elicit inflammation independently of each other. Our findings indicate that NOD-2 plays an inflammatory role in arthritis.
Collapse
|
74
|
Dziarski R, Gupta D. Review: Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun 2010; 16:168-74. [PMID: 20418257 DOI: 10.1177/1753425910366059] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peptidoglycan recognition proteins (PGRPs or PGLYRPs) are innate immunity proteins that are conserved from insects to mammals, recognize bacterial peptidoglycan, and function in antibacterial immunity and inflammation. Mammals have four PGRPs - PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4. They are secreted proteins expressed in polymorphonuclear leukocytes (PGLYRP1), liver (PGLYRP2), or on body surfaces, mucous membranes, and in secretions (saliva, sweat) (PGLYRP3 and PGLYRP4). All PGRPs recognize bacterial peptidoglycan. Three PGRPs, PGLYRP1, PGLYRP3, and PGLYRP4 are directly bactericidal for both Gram-positive and Gram-negative bacteria and have no enzymatic activity, whereas PGLYRP2 is an N-acetylmuramoyl-L-alanine amidase that hydrolyzes bacterial cell wall peptidoglycan. Peptidoglycan recognition proteins influence host- pathogen interactions not only through their antibacterial or peptidoglycan-hydrolytic properties, but also through their pro-inflammatory and anti-inflammatory properties that are independent of their hydrolytic and antibacterial activities. The PGRPs likely play a role both in antibacterial defenses and several inflammatory diseases. They modulate local inflammatory responses in tissues (such as arthritic joints) and there is evidence for association of PGRPs with inflammatory diseases, such as psoriasis.
Collapse
Affiliation(s)
- Roman Dziarski
- Indiana University School of Medicine Northwest, Gary, USA.
| | | |
Collapse
|
75
|
Teixeira VH, Olaso R, Martin-Magniette ML, Lasbleiz S, Jacq L, Oliveira CR, Hilliquin P, Gut I, Cornelis F, Petit-Teixeira E. Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. PLoS One 2009; 4:e6803. [PMID: 19710928 PMCID: PMC2729373 DOI: 10.1371/journal.pone.0006803] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/03/2009] [Indexed: 12/13/2022] Open
Abstract
Background Large-scale gene expression profiling of peripheral blood mononuclear cells from Rheumatoid Arthritis (RA) patients could provide a molecular description that reflects the contribution of diverse cellular responses associated with this disease. The aim of our study was to identify peripheral blood gene expression profiles for RA patients, using Illumina technology, to gain insights into RA molecular mechanisms. Methodology/Principal Findings The Illumina Human-6v2 Expression BeadChips were used for a complete genome-wide transcript profiling of peripheral blood mononuclear cells (PBMCs) from 18 RA patients and 15 controls. Differential analysis per gene was performed with one-way analysis of variance (ANOVA) and P values were adjusted to control the False Discovery Rate (FDR<5%). Genes differentially expressed at significant level between patients and controls were analyzed using Gene Ontology (GO) in the PANTHER database to identify biological processes. A differentially expression of 339 Reference Sequence genes (238 down-regulated and 101 up-regulated) between the two groups was observed. We identified a remarkably elevated expression of a spectrum of genes involved in Immunity and Defense in PBMCs of RA patients compared to controls. This result is confirmed by GO analysis, suggesting that these genes could be activated systemically in RA. No significant down-regulated ontology groups were found. Microarray data were validated by real time PCR in a set of nine genes showing a high degree of correlation. Conclusions/Significance Our study highlighted several new genes that could contribute in the identification of innovative clinical biomarkers for diagnostic procedures and therapeutic interventions.
Collapse
Affiliation(s)
- Vitor Hugo Teixeira
- GenHotel-EA3886, Evry University, Paris 7 University Medical School, AutoCure European Consortium member, Evry, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Peptidoglycan-recognition proteins (PGRPs) play a central role in the insect innate immune response to bacteria. In this issue of Cell Host & Microbe, Saha et al. (2009) report that the mammalian PGRP, PGLYRP-2, functions as a cytokine-like molecule in a PG-induced arthritis model.
Collapse
Affiliation(s)
- Ivo Gomperts Boneca
- Institut Pasteur, Group of Biology and Genetics of the Bacterial Cell Wall, Paris, France.
| |
Collapse
|