51
|
Peculiarities of Plasmodium falciparum Gene Regulation and Chromatin Structure. Int J Mol Sci 2021; 22:ijms22105168. [PMID: 34068393 PMCID: PMC8153576 DOI: 10.3390/ijms22105168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
The highly complex life cycle of the human malaria parasite, Plasmodium falciparum, is based on an orchestrated and tightly regulated gene expression program. In general, eukaryotic transcription regulation is determined by a combination of sequence-specific transcription factors binding to regulatory DNA elements and the packaging of DNA into chromatin as an additional layer. The accessibility of regulatory DNA elements is controlled by the nucleosome occupancy and changes of their positions by an active process called nucleosome remodeling. These epigenetic mechanisms are poorly explored in P. falciparum. The parasite genome is characterized by an extraordinarily high AT-content and the distinct architecture of functional elements, and chromatin-related proteins also exhibit high sequence divergence compared to other eukaryotes. Together with the distinct biochemical properties of nucleosomes, these features suggest substantial differences in chromatin-dependent regulation. Here, we highlight the peculiarities of epigenetic mechanisms in P. falciparum, addressing chromatin structure and dynamics with respect to their impact on transcriptional control. We focus on the specialized chromatin remodeling enzymes and discuss their essential function in P. falciparum gene regulation.
Collapse
|
52
|
Maran SR, Fleck K, Monteiro-Teles NM, Isebe T, Walrad P, Jeffers V, Cestari I, Vasconcelos EJR, Moretti N. Protein acetylation in the critical biological processes in protozoan parasites. Trends Parasitol 2021; 37:815-830. [PMID: 33994102 DOI: 10.1016/j.pt.2021.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
Protein lysine acetylation has emerged as a major regulatory post-translational modification in different organisms, present not only on histone proteins affecting chromatin structure and gene expression but also on nonhistone proteins involved in several cellular processes. The same scenario was observed in protozoan parasites after the description of their acetylomes, indicating that acetylation might regulate crucial biological processes in these parasites. The demonstration that glycolytic enzymes are regulated by acetylation in protozoans shows that this modification might regulate several other processes implicated in parasite survival and adaptation during the life cycle, opening the chance to explore the regulatory acetylation machinery of these parasites as drug targets for new treatment development.
Collapse
Affiliation(s)
- Suellen Rodrigues Maran
- Laboratório de Biologia Molecular de Patógenos (LBMP) - Departamento Microbiologia, Imunologia e Parasitologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Krista Fleck
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | | | - Tony Isebe
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Pegine Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Victoria Jeffers
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Nilmar Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP) - Departamento Microbiologia, Imunologia e Parasitologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
53
|
Le Govic Y, Houzé S, Papon N. Repurposing Anticancer Drugs To Tackle Malaria. ChemMedChem 2021; 16:2192-2194. [PMID: 33931947 DOI: 10.1002/cmdc.202100176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/09/2022]
Abstract
Despite considerable efforts, malaria remains one of the most devastating infectious disease worldwide. In the absence of an effective vaccine, the prophylaxis and management of Plasmodium infections still rely on the therapeutic use of antimalarial agents. However, the emergence of resistant parasites has jeopardized the efficiency of virtually all antimalarial drugs, including artemisinin combination therapies (ACTs). Thus, there is an urgent need for innovative treatments with novel targets to avoid or overcome drug resistance. In this context, Huang & colleagues prioritized compounds that can block the activity of epigenetic enzymes, and described the discovery of a selective P. falciparum histone deacetylase (HDAC) inhibitor with high activity against various stages of the parasite. These findings may pave the way toward developing new lead compounds with broad-spectrum activity, thus facilitating malaria treatment and elimination.
Collapse
Affiliation(s)
- Yohann Le Govic
- Laboratoire de Parasitologie-Mycologie, Centre de Biologie Humaine, CHU Amiens Picardie - site Sud, Amiens, France.,Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, Amiens, France
| | - Sandrine Houzé
- CNR du Paludisme, AP-HP, Hôpital Bichat - Claude-Bernard, Laboratoire de Parasitologie-Mycologie, UMR261 Merit, Université de Paris, Paris, France
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (GEIHP), EA 3142, UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| |
Collapse
|
54
|
Creative interior design by Plasmodium falciparum: Lipid metabolism and the parasite's secret chamber. Parasitol Int 2021; 83:102369. [PMID: 33905815 DOI: 10.1016/j.parint.2021.102369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022]
Abstract
Malaria parasites conceal themselves within host erythrocytes and establish a necessary logistics system through the three-membrane layered structures of these cells. To establish this system, lipid metabolism is needed for the de novo synthesis of lipids and the recycling of extracellular lipids and erythrocyte lipid components. Cholesterol supply depends on its uptake from the extracellular environment and erythrocyte cytoplasm, but phospholipids can be synthesized on their own. This differential production of lipid species creates unique modifications in the lipid profile of parasitized erythrocytes, which in turn may influence the biophysical and/or mechanical properties of organelles and vesicles and communication among them. Variations in local membrane properties possibly influence the transportation of various molecules such as parasite-derived proteins, because efficiencies in secretion, vesicle fusion and budding are partly determined by the lipid profiles. Comprehensive understanding of the parasite's lipid metabolism and the biophysics of lipid membranes provides fundamental knowledge about these pathogenic organisms and could lead to new anti-malarials.
Collapse
|
55
|
Carrington E, Cooijmans RHM, Keller D, Toenhake CG, Bártfai R, Voss TS. The ApiAP2 factor PfAP2-HC is an integral component of heterochromatin in the malaria parasite Plasmodium falciparum. iScience 2021; 24:102444. [PMID: 33997710 PMCID: PMC8105651 DOI: 10.1016/j.isci.2021.102444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria parasites undergo a complex life cycle in the human host and the mosquito vector. The ApiAP2 family of DNA-binding proteins plays a dominant role in parasite development and life cycle progression. Most ApiAP2 factors studied to date act as transcription factors regulating stage-specific gene expression. Here, we characterized an ApiAP2 factor in Plasmodium falciparum that we termed PfAP2-HC. We demonstrate that PfAP2-HC specifically binds to heterochromatin throughout the genome. Intriguingly, PfAP2-HC does not bind DNA in vivo and recruitment of PfAP2-HC to heterochromatin is independent of its DNA-binding domain but strictly dependent on heterochromatin protein 1. Furthermore, our results suggest that PfAP2-HC functions neither in the regulation of gene expression nor in heterochromatin formation or maintenance. In summary, our findings reveal PfAP2-HC as a core component of heterochromatin in malaria parasites and identify unexpected properties and substantial functional divergence among the members of the ApiAP2 family of regulatory proteins. The ApiAP2 factor AP2-HC is a core component of heterochromatin in malaria parasites Binding of AP2-HC to heterochromatin strictly depends on heterochromatin protein 1 The AP2 DNA-binding domain of AP2-HC is dispensable for heterochromatin association
Collapse
Affiliation(s)
- Eilidh Carrington
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | | | - Dominique Keller
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | | | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525GA Nijmegen, The Netherlands
| | - Till Steffen Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
56
|
Roberds A, Ferraro E, Luckhart S, Stewart VA. HIV-1 Impact on Malaria Transmission: A Complex and Relevant Global Health Concern. Front Cell Infect Microbiol 2021; 11:656938. [PMID: 33912477 PMCID: PMC8071860 DOI: 10.3389/fcimb.2021.656938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/18/2021] [Indexed: 02/05/2023] Open
Abstract
Malaria/HIV-1 co-infection has become a significant public health problem in the tropics where there is geographical overlap of the two diseases. It is well described that co-infection impacts clinical progression of both diseases; however, less is known about the impact of co-infection on disease transmission. Malaria transmission is dependent upon multiple critical factors, one of which is the presence and viability of the sexual-stage gametocyte. In this review, we summarize evidence surrounding gametocyte production in Plasmodium falciparum and the development factors and the consequential impact that HIV-1 has on malaria parasite transmission. Epidemiological and clinical evidence surrounding anemia, immune dysregulation, and chemotherapy as it pertains to co-infection and gametocyte transmission are reviewed. We discuss significant gaps in understanding that are often due to the biological complexities of both diseases as well as the lack of entomological data necessary to define transmission success. In particular, we highlight special epidemiological populations, such as co-infected asymptomatic gametocyte carriers, and the unique role these populations have in a future focused on malaria elimination and eradication.
Collapse
Affiliation(s)
- Ashleigh Roberds
- Department of Preventive Medicine and Biostatistics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Emily Ferraro
- Department of Preventive Medicine and Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, Department of Biological Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
| | - V Ann Stewart
- Department of Preventive Medicine and Biostatistics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
57
|
Connacher J, Josling GA, Orchard LM, Reader J, Llinás M, Birkholtz LM. H3K36 methylation reprograms gene expression to drive early gametocyte development in Plasmodium falciparum. Epigenetics Chromatin 2021; 14:19. [PMID: 33794978 PMCID: PMC8017609 DOI: 10.1186/s13072-021-00393-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The Plasmodium sexual gametocyte stages are the only transmissible form of the malaria parasite and are thus responsible for the continued transmission of the disease. Gametocytes undergo extensive functional and morphological changes from commitment to maturity, directed by an equally extensive control program. However, the processes that drive the differentiation and development of the gametocyte post-commitment, remain largely unexplored. A previous study reported enrichment of H3K36 di- and tri-methylated (H3K36me2&3) histones in early-stage gametocytes. Using chromatin immunoprecipitation followed by high-throughput sequencing, we identify a stage-specific association between these repressive histone modifications and transcriptional reprogramming that define a stage II gametocyte transition point. Results Here, we show that H3K36me2 and H3K36me3 from stage II gametocytes are associated with repression of genes involved in asexual proliferation and sexual commitment, indicating that H3K36me2&3-mediated repression of such genes is essential to the transition from early gametocyte differentiation to intermediate development. Importantly, we show that the gene encoding the transcription factor AP2-G as commitment master regulator is enriched with H3K36me2&3 and actively repressed in stage II gametocytes, providing the first evidence of ap2-g gene repression in post-commitment gametocytes. Lastly, we associate the enhanced potency of the pan-selective Jumonji inhibitor JIB-04 in gametocytes with the inhibition of histone demethylation including H3K36me2&3 and a disruption of normal transcriptional programs. Conclusions Taken together, our results provide the first description of an association between global gene expression reprogramming and histone post-translational modifications during P. falciparum early sexual development. The stage II gametocyte-specific abundance of H3K36me2&3 manifests predominantly as an independent regulatory mechanism targeted towards genes that are repressed post-commitment. H3K36me2&3-associated repression of genes is therefore involved in key transcriptional shifts that accompany the transition from early gametocyte differentiation to intermediate development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00393-9.
Collapse
Affiliation(s)
- Jessica Connacher
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Gabrielle A Josling
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lindsey M Orchard
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
58
|
Chawla J, Oberstaller J, Adams JH. Targeting Gametocytes of the Malaria Parasite Plasmodium falciparum in a Functional Genomics Era: Next Steps. Pathogens 2021; 10:346. [PMID: 33809464 PMCID: PMC7999360 DOI: 10.3390/pathogens10030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Mosquito transmission of the deadly malaria parasite Plasmodium falciparum is mediated by mature sexual forms (gametocytes). Circulating in the vertebrate host, relatively few intraerythrocytic gametocytes are picked up during a bloodmeal to continue sexual development in the mosquito vector. Human-to-vector transmission thus represents an infection bottleneck in the parasite's life cycle for therapeutic interventions to prevent malaria. Even though recent progress has been made in the identification of genetic factors linked to gametocytogenesis, a plethora of genes essential for sexual-stage development are yet to be unraveled. In this review, we revisit P. falciparum transmission biology by discussing targetable features of gametocytes and provide a perspective on a forward-genetic approach for identification of novel transmission-blocking candidates in the future.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 7, Tampa, FL 33612, USA;
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| |
Collapse
|
59
|
Li R, Ling D, Tang T, Huang Z, Wang M, Ding Y, Liu T, Wei H, Xu W, Mao F, Zhu J, Li X, Jiang L, Li J. Discovery of Novel Plasmodium falciparum HDAC1 Inhibitors with Dual-Stage Antimalarial Potency and Improved Safety Based on the Clinical Anticancer Drug Candidate Quisinostat. J Med Chem 2021; 64:2254-2271. [PMID: 33541085 DOI: 10.1021/acs.jmedchem.0c02104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previously, we identified the clinical anticancer drug candidate quisinostat as a novel and potent antimalarial lead compound. To further enhance the antimalarial effect and improve safety, 31 novel spirocyclic hydroxamic acid derivatives were synthesized based on the structure of quisinostat, and their antimalarial activities and cytotoxicity were evaluated. Among them, compound 11 displayed broad potency in vitro against several multiresistant malarial parasites, especially two artemisinin-resistant clinical isolates. Moreover, 11 could eliminate both liver and erythrocytic parasites in vivo, kill all morphological erythrocytic parasites with specific potency against schizonts, and show acceptable metabolic stability and pharmacokinetic properties. Western blot analysis, PfHDAC gene knockdown, and enzymatic inhibition experiments collectively confirmed that PfHDAC1 was the target of 11. In summary, 11 is a structurally novel PfHDAC1 inhibitor with the potential to prevent and cure malaria, overcome multidrug resistance, and provide a prospective prototype for antimalarial drug research.
Collapse
Affiliation(s)
- Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dazheng Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tongke Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Hanwen Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,College of Pharmacy and Chemistry, Dali University, 5 Xue Ren Road, Dali 671000, China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
60
|
Neal ML, Wei L, Peterson E, Arrieta-Ortiz ML, Danziger S, Baliga N, Kaushansky A, Aitchison J. A systems-level gene regulatory network model for Plasmodium falciparum. Nucleic Acids Res 2021; 49:4891-4906. [PMID: 33450011 PMCID: PMC8136813 DOI: 10.1093/nar/gkaa1245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Many of the gene regulatory processes of Plasmodium falciparum, the deadliest malaria parasite, remain poorly understood. To develop a comprehensive guide for exploring this organism's gene regulatory network, we generated a systems-level model of P. falciparum gene regulation using a well-validated, machine-learning approach for predicting interactions between transcription regulators and their targets. The resulting network accurately predicts expression levels of transcriptionally coherent gene regulatory programs in independent transcriptomic data sets from parasites collected by different research groups in diverse laboratory and field settings. Thus, our results indicate that our gene regulatory model has predictive power and utility as a hypothesis-generating tool for illuminating clinically relevant gene regulatory mechanisms within P. falciparum. Using the set of regulatory programs we identified, we also investigated correlates of artemisinin resistance based on gene expression coherence. We report that resistance is associated with incoherent expression across many regulatory programs, including those controlling genes associated with erythrocyte-host engagement. These results suggest that parasite populations with reduced artemisinin sensitivity are more transcriptionally heterogenous. This pattern is consistent with a model where the parasite utilizes bet-hedging strategies to diversify the population, rendering a subpopulation more able to navigate drug treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John D Aitchison
- To whom correspondence should be addressed. Tel: +1 206 884 3125; Fax: +1 206 884 3104;
| |
Collapse
|
61
|
Hollin T, Le Roch KG. From Genes to Transcripts, a Tightly Regulated Journey in Plasmodium. Front Cell Infect Microbiol 2020; 10:618454. [PMID: 33425787 PMCID: PMC7793691 DOI: 10.3389/fcimb.2020.618454] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, we have witnessed significant progresses in understanding gene regulation in Apicomplexa including the human malaria parasite, Plasmodium falciparum. This parasite possesses the ability to convert in multiple stages in various hosts, cell types, and environments. Recent findings indicate that P. falciparum is talented at using efficient and complementary molecular mechanisms to ensure a tight control of gene expression at each stage of its life cycle. Here, we review the current understanding on the contribution of the epigenome, atypical transcription factors, and chromatin organization to regulate stage conversion in P. falciparum. The adjustment of these regulatory mechanisms occurring during the progression of the life cycle will be extensively discussed.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, United States
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, United States
| |
Collapse
|
62
|
Lactic Acid Supplementation Increases Quantity and Quality of Gametocytes in Plasmodium falciparum Culture. Infect Immun 2020; 89:IAI.00635-20. [PMID: 33077626 DOI: 10.1128/iai.00635-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Malaria infection by Plasmodium falciparum continues to afflict millions of people worldwide, with transmission being dependent upon mosquito ingestion of the parasite gametocyte stage. These sexually committed stages develop from the asexual stages, yet the factors behind this transition are not completely understood. Here, we found that lactic acid increases gametocyte quantity and quality in P. falciparum culture. Low-passage-number NF54 parasites exposed to 8.2 mM lactic acid for various times were monitored using blood film gametocyte counts and RNA analysis throughout 2 weeks of gametocyte development in vitro for a total of 5 biological cohorts. We found that daily continuous medium exchange and 8.2 mM lactic acid supplementation increased gametocytemia approximately 2- to 6-fold relative to controls after 5 days. In membrane feeding mosquito infection experiments, we found that gametocytes continuously exposed to 8.2 mM lactic acid supplementations were more infectious to Anopheles stephensi mosquitoes, essentially doubling prevalence of infected midguts and oocyst density. Supplementation on days 9 to 16 did not increase the quantity of gametocytes but did increase quality, as measured by oocyst density, by 2.4-fold. Lactic acid did not impact asexual growth, as measured by blood film counts and luciferase quantification, as well as radioactive hypoxanthine incorporation assays. These data indicate a novel role for lactic acid in sexual development of the parasite.
Collapse
|
63
|
Kumar M, Skillman K, Duraisingh MT. Linking nutrient sensing and gene expression in Plasmodium falciparum blood-stage parasites. Mol Microbiol 2020; 115:891-900. [PMID: 33236377 DOI: 10.1111/mmi.14652] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide, caused by infection of humans with parasites of the genus Plasmodium. The complex life cycle of Plasmodium parasites is shared between two hosts, with infection of multiple cell types, and the parasite needs to adapt for survival and transmission through significantly different metabolic environments. Within the blood-stage alone, parasites encounter changing levels of key nutrients, including sugars, amino acids, and lipids, due to differences in host dietary nutrition, cellular tropism, and pathogenesis. In this review, we consider the mechanisms that the most lethal of malaria parasites, Plasmodium falciparum, uses to sense nutrient levels and elicit changes in gene expression during blood-stage infections. These changes are brought about by several metabolic intermediates and their corresponding sensor proteins. Sensing of distinct nutritional signals can drive P. falciparum to alter the key blood-stage processes of proliferation, antigenic variation, and transmission.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kristen Skillman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
64
|
Huang Z, Li R, Tang T, Ling D, Wang M, Xu D, Sun M, Zheng L, Zhu F, Min H, Boonhok R, Ding Y, Wen Y, Chen Y, Li X, Chen Y, Liu T, Han J, Miao J, Fang Q, Cao Y, Tang Y, Cui J, Xu W, Cui L, Zhu J, Wong G, Li J, Jiang L. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discov 2020; 6:93. [PMID: 33311461 PMCID: PMC7733455 DOI: 10.1038/s41421-020-00215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
Although artemisinin combination therapies have succeeded in reducing the global burden of malaria, multidrug resistance of the deadliest malaria parasite, Plasmodium falciparum, is emerging worldwide. Innovative antimalarial drugs that kill all life-cycle stages of malaria parasites are urgently needed. Here, we report the discovery of the compound JX21108 with broad antiplasmodial activity against multiple life-cycle stages of malaria parasites. JX21108 was developed from chemical optimization of quisinostat, a histone deacetylase inhibitor. We identified P. falciparum histone deacetylase 1 (PfHDAC1), an epigenetic regulator essential for parasite growth and invasion, as a molecular target of JX21108. PfHDAC1 knockdown leads to the downregulation of essential parasite genes, which is highly consistent with the transcriptomic changes induced by JX21108 treatment. Collectively, our data support that PfHDAC1 is a potential drug target for overcoming multidrug resistance and that JX21108 treats malaria and blocks parasite transmission simultaneously.
Collapse
Affiliation(s)
- Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Tongke Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dazheng Ling
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Dandan Xu
- Department of Microbiology and Parasitology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity, Bengbu, Anhui 233030, China
| | - Maoxin Sun
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lulu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Feng Zhu
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hui Min
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rachasak Boonhok
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Yuhao Wen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yicong Chen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yuxi Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Jiping Han
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Miao
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity, Bengbu, Anhui 233030, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jie Cui
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Gary Wong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
65
|
An ELISA method to assess HDAC inhibitor-induced alterations to P. falciparum histone lysine acetylation. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:249-256. [PMID: 33279862 PMCID: PMC7724001 DOI: 10.1016/j.ijpddr.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
The prevention and treatment of malaria requires a multi-pronged approach, including the development of drugs that have novel modes of action. Histone deacetylases (HDACs), enzymes involved in post-translational protein modification, are potential new drug targets for malaria. However, the lack of recombinant P. falciparum HDACs and suitable activity assays, has made the investigation of compounds designed to target these enzymes challenging. Current approaches are indirect and include assessing total deacetylase activity and protein hyperacetylation via Western blot. These approaches either do not allow differential compound effects to be determined or suffer from low throughput. Here we investigated dot blot and ELISA methods as new, higher throughput assays to detect histone lysine acetylation changes in P. falciparum parasites. As the ELISA method was found to be superior to the dot blot assay using the control HDAC inhibitor vorinostat, it was used to evaluate the histone H3 and H4 lysine acetylation changes mediated by a panel of six HDAC inhibitors that were shown to inhibit P. falciparum deacetylase activity. Vorinostat, panobinostat, trichostatin A, romidepsin and entinostat all caused an ~3-fold increase in histone H4 acetylation using a tetra-acetyl lysine antibody. Tubastatin A, the only human HDAC6-specific inhibitor tested, also caused H4 hyperacetylation, but to a lesser extent than the other compounds. Further investigation revealed that all compounds, except tubastatin A, caused hyperacetylation of the individual N-terminal H4 lysines 5, 8, 12 and 16. These data indicate that tubastatin A impacts P. falciparum H4 acetylation differently to the other HDAC inhibitors tested. In contrast, all compounds caused hyperacetylation of histone H3. In summary, the ELISA developed in this study provides a higher throughput approach to assessing differential effects of antiplasmodial compounds on histone acetylation levels and is therefore a useful new tool in the investigation of HDAC inhibitors for malaria. P. falciparum histone lysine acetylation was compared using dot blot and ELISA. ELISA was more reproducible than dot blot in acetylation assays. ELISA was used to assess acetylation changes induced by anti-cancer HDAC inhibitors. Tubastatin A showed a different histone H4 acetylation profile to other compounds. This new method will facilitate the study of HDAC inhibitors for malaria.
Collapse
|
66
|
Neveu G, Beri D, Kafsack BF. Metabolic regulation of sexual commitment in Plasmodium falciparum. Curr Opin Microbiol 2020; 58:93-98. [PMID: 33053503 DOI: 10.1016/j.mib.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
For malaria parasites regulating sexual commitment, the frequency with which asexual bloodstream forms differentiate into non-replicative male and female gametocytes, is critical because asexual replication is required to maintain a persistent infection of the human host while gametocytes are essential for infection of the mosquito vector and transmission. Here, we describe recent advances in understanding of the regulatory mechanisms controlling this key developmental decision. These include new insights into the mechanistic roles of the transcriptional master switch AP2-G and the epigenetic modulator GDV1, as well as the identification of defined metabolic signals that modulate their activity. Many of these metabolites are linked to parasite phospholipid biogenesis and we propose a model linking this pathway to the epigenetic regulation underlying sexual commitment in P. falciparum.
Collapse
Affiliation(s)
- Gaelle Neveu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065 USA
| | - Divya Beri
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065 USA
| | - Björn Fc Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065 USA.
| |
Collapse
|
67
|
Dynamic Chromatin Structure and Epigenetics Control the Fate of Malaria Parasites. Trends Genet 2020; 37:73-85. [PMID: 32988634 DOI: 10.1016/j.tig.2020.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Multiple hosts and various life cycle stages prompt the human malaria parasite, Plasmodium falciparum, to acquire sophisticated molecular mechanisms to ensure its survival, spread, and transmission to its next host. To face these environmental challenges, increasing evidence suggests that the parasite has developed complex and complementary layers of regulatory mechanisms controlling gene expression. Here, we discuss the recent developments in the discovery of molecular components that contribute to cell replication and differentiation and highlight the major contributions of epigenetics, transcription factors, and nuclear architecture in controlling gene regulation and life cycle progression in Plasmodium spp.
Collapse
|
68
|
Bryant JM, Baumgarten S, Dingli F, Loew D, Sinha A, Claës A, Preiser PR, Dedon PC, Scherf A. Exploring the virulence gene interactome with CRISPR/dCas9 in the human malaria parasite. Mol Syst Biol 2020; 16:e9569. [PMID: 32816370 PMCID: PMC7440042 DOI: 10.15252/msb.20209569] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Mutually exclusive expression of the var multigene family is key to immune evasion and pathogenesis in Plasmodium falciparum, but few factors have been shown to play a direct role. We adapted a CRISPR-based proteomics approach to identify novel factors associated with var genes in their natural chromatin context. Catalytically inactive Cas9 ("dCas9") was targeted to var gene regulatory elements, immunoprecipitated, and analyzed with mass spectrometry. Known and novel factors were enriched including structural proteins, DNA helicases, and chromatin remodelers. Functional characterization of PfISWI, an evolutionarily divergent putative chromatin remodeler enriched at the var gene promoter, revealed a role in transcriptional activation. Proteomics of PfISWI identified several proteins enriched at the var gene promoter such as acetyl-CoA synthetase, a putative MORC protein, and an ApiAP2 transcription factor. These findings validate the CRISPR/dCas9 proteomics method and define a new var gene-associated chromatin complex. This study establishes a tool for targeted chromatin purification of unaltered genomic loci and identifies novel chromatin-associated factors potentially involved in transcriptional control and/or chromatin organization of virulence genes in the human malaria parasite.
Collapse
Affiliation(s)
- Jessica M Bryant
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| | - Sebastian Baumgarten
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| | - Florent Dingli
- Institut CuriePSL Research UniversityCentre de RechercheMass Spectrometry and Proteomics FacilityParisFrance
| | - Damarys Loew
- Institut CuriePSL Research UniversityCentre de RechercheMass Spectrometry and Proteomics FacilityParisFrance
| | - Ameya Sinha
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Aurélie Claës
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| | - Peter R Preiser
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Artur Scherf
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| |
Collapse
|
69
|
López-López E, Barrientos-Salcedo C, Prieto-Martínez FD, Medina-Franco JL. In silico tools to study molecular targets of neglected diseases: inhibition of TcSir2rp3, an epigenetic enzyme of Trypanosoma cruzi. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:203-229. [PMID: 32951812 DOI: 10.1016/bs.apcsb.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest to study and address neglected tropical diseases (NTD). To this end, in silico methods can serve as the bridge that connects academy and industry, encouraging the development of future treatments against these diseases. This chapter discusses current challenges in the development of new therapies, available computational methods and successful cases in computer-aided design with particular focus on human trypanosomiasis. Novel targets are also discussed. As a case study, we identify amentoflavone as a potential inhibitor of TcSir2rp3 (sirtuine) from Trypanosoma cruzi (20.03 μM) with a workflow that integrates chemoinformatic approaches, molecular modeling, and theoretical affinity calculations, as well as in vitro assays.
Collapse
Affiliation(s)
- Edgar López-López
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico; Department of Pharmacology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Fernando D Prieto-Martínez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
70
|
Activity of Epigenetic Inhibitors against Plasmodium falciparum Asexual and Sexual Blood Stages. Antimicrob Agents Chemother 2020; 64:AAC.02523-19. [PMID: 32366713 DOI: 10.1128/aac.02523-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Earlier genetic and inhibitor studies showed that epigenetic regulation of gene expression is critical for malaria parasite survival in multiple life stages and a promising target for new antimalarials. We therefore evaluated the activity of 350 diverse epigenetic inhibitors against multiple stages of Plasmodium falciparum We observed ≥90% inhibition at 10 μM for 28% of compounds against asexual blood stages and early gametocytes, of which a third retained ≥90% inhibition at 1 μM.
Collapse
|
71
|
Abstract
Malaria remains a major public health and economic burden. The heterochromatin environment controls the silencing of genes associated with the fate of malaria parasites. Previous studies have demonstrated that a group of GC-rich ncRNAs (RUF6) is associated with the mutually exclusive expression of var genes, but the underlying mechanisms remain elusive. Here, through a series of genetic manipulation and genome-wide multiomics analysis, we have identified the plasmodial orthologue of RNA exosome-associated Rrp6 as an upstream regulator of RUF6 expression and revealed that the dysregulation of RUF6 upon Rrp6 knockdown triggered local chromatin alteration, thereby activating most heterochromatic genes via direct interaction of RUF6 and distal gene loci. This finding not only uncovered the in-depth mechanism of RUF6-mediated regulation of heterochromatic genes but also identified Rrp6 as a novel regulator of gene expression in human malaria parasites, which provides a new target for developing intervention strategies against malaria. The heterochromatin environment plays a central role in silencing genes associated with the malaria parasite’s development, survival in the host, and transmission to the mosquito vector. However, the underlying mechanism regulating the dynamic chromatin structure is not understood yet. Here, we have uncovered that Plasmodium falciparum Rrp6, an orthologue of eukaryotic RNA exosome-associated RNase, controls the silencing of heterochromatic genes. PfRrp6 knockdown disrupted the singular expression of the GC-rich ncRNA RUF6 family, a known critical regulator of virulence gene expression, through the stabilization of the nascent transcripts. Mechanistic investigation showed that the accumulation of the multiple RUF6 ncRNAs triggered local chromatin remodeling in situ, which activated their adjacent var genes. Strikingly, chromatin isolation by RNA purification analysis (ChIRP-seq) revealed that a remarkable RUF6 ncRNA had interacted with distal heterochromatin regions directly and stimulated a global derepression effect on heterochromatic genes, including all variant gene families and the sexual commitment-associated regulator ap2-g gene. Collectively, Rrp6 appears to conduct the epigenetic surveillance of heterochromatic gene expression through controlling RUF6 levels, thereby securing antigenic variation and sexual commitment of malaria parasites during the infection of the host.
Collapse
|
72
|
Llorà-Batlle O, Tintó-Font E, Cortés A. Transcriptional variation in malaria parasites: why and how. Brief Funct Genomics 2020; 18:329-341. [PMID: 31114839 DOI: 10.1093/bfgp/elz009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional differences enable the generation of alternative phenotypes from the same genome. In malaria parasites, transcriptional plasticity plays a major role in the process of adaptation to fluctuations in the environment. Multiple studies with culture-adapted parasites and field isolates are starting to unravel the different transcriptional alternatives available to Plasmodium falciparum and the underlying molecular mechanisms. Here we discuss how epigenetic variation, directed transcriptional responses and also genetic changes that affect transcript levels can all contribute to transcriptional variation and, ultimately, parasite survival. Some transcriptional changes are driven by stochastic events. These changes can occur spontaneously, resulting in heterogeneity within parasite populations that provides the grounds for adaptation by dynamic natural selection. However, transcriptional changes can also occur in response to external cues. A better understanding of the mechanisms that the parasite has evolved to alter its transcriptome may ultimately contribute to the design of strategies to combat malaria to which the parasite cannot adapt.
Collapse
Affiliation(s)
- Oriol Llorà-Batlle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | | |
Collapse
|
73
|
Alkema M, Reuling IJ, de Jong GM, Lanke K, Coffeng LE, van Gemert GJ, van de Vegte-Bolmer M, de Mast Q, van Crevel R, Ivinson K, Ockenhouse CF, McCarthy JS, Sauerwein R, Collins KA, Bousema T. A randomized clinical trial to compare P. falciparum gametocytaemia and infectivity following blood-stage or mosquito bite induced controlled malaria infection. J Infect Dis 2020; 224:1257-1265. [PMID: 32239171 PMCID: PMC8514191 DOI: 10.1093/infdis/jiaa157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/31/2020] [Indexed: 11/21/2022] Open
Abstract
Background For malaria elimination efforts, it is important to better understand parasite transmission to mosquitoes and develop models for early-clinical evaluation of transmission-blocking interventions. Methods In a randomized open-label trial, 24 participants were infected by bites from Plasmodium falciparum 3D7-infected mosquitoes (mosquito bite [MB]; n = 12) or by induced blood-stage malaria (IBSM) with the same parasite line (n = 12). After subcurative piperaquine treatment, asexual parasite and gametocytes kinetics were assessed, and mosquito feeding experiments were performed. Results Study procedures were well tolerated. The median peak gametocyte density was 1304/mL (interquartile range, 308–1607/mL) after IBSM, compared with 14/mL (10–64/mL) after MB inoculation (P < .001), despite similar peak asexual parasite densities (P = .48). Peak gametocyte density was correlated with preceding pfap2-g transcripts, indicative of gametocyte commitment (ρ = 0.62; P = .002). Direct feeding assays resulted in mosquito infections from 9 of 12 participants after IBSM versus 0 of 12 after MB inoculation (P < .001). Conclusions We observed a striking effect of inoculation method on gametocyte production, suggesting higher gametocyte commitment after IBSM. Our direct comparison of MB and IBSM establishes the controlled human malaria infection transmission model, using intravenous administration of P. falciparum–infected erythrocytes as a model for early-clinical evaluation of interventions that aim to interrupt malaria transmission. Clinical Trial Registration NCT03454048
Collapse
Affiliation(s)
- Manon Alkema
- Department of Medical Microbiology, Radboud university medical center, HB Nijmegen, The Netherlands
| | - Isaie J Reuling
- Department of Medical Microbiology, Radboud university medical center, HB Nijmegen, The Netherlands
| | - Gerdie M de Jong
- Department of Medical Microbiology and Infectious Diseases, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud university medical center, HB Nijmegen, The Netherlands
| | - Luc E Coffeng
- Department of Public Health, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud university medical center, HB Nijmegen, The Netherlands
| | | | - Quirijn de Mast
- Department of Internal Medicine, Radboud university medical center, HB Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud university medical center, HB Nijmegen, The Netherlands
| | - Karen Ivinson
- PATH Malaria Vaccine Initiative, Washington, DC, United States
| | | | - James S McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud university medical center, HB Nijmegen, The Netherlands
| | - Katharine A Collins
- Department of Medical Microbiology, Radboud university medical center, HB Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud university medical center, HB Nijmegen, The Netherlands
| |
Collapse
|
74
|
Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat Commun 2020; 11:1503. [PMID: 32198457 PMCID: PMC7083873 DOI: 10.1038/s41467-020-15026-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/15/2020] [Indexed: 12/20/2022] Open
Abstract
In the malaria parasite Plasmodium falciparum, the switch from asexual multiplication to sexual differentiation into gametocytes is essential for transmission to mosquitos. The transcription factor PfAP2-G is a key determinant of sexual commitment that orchestrates this crucial cell fate decision. Here we identify the direct targets of PfAP2-G and demonstrate that it dynamically binds hundreds of sites across the genome. We find that PfAP2-G is a transcriptional activator of early gametocyte genes, and identify differences in PfAP2-G occupancy between gametocytes derived via next-cycle and same-cycle conversion. Our data implicate PfAP2-G not only as a transcriptional activator of gametocyte genes, but also as a potential regulator of genes important for red blood cell invasion. We also find that regulation by PfAP2-G requires interaction with a second transcription factor, PfAP2-I. These results clarify the functional role of PfAP2-G during sexual commitment and early gametocytogenesis. The transcription factor PfAP2-G is a key determinant of sexual commitment in Plasmodium falciparum. Here, Josling et al. define the transcriptional regulatory network of PfAP2-G by identifying its DNA binding sites genome-wide, which vary depending on the route of sexual conversion and rely on interactions with the PfAP2-I transcription factor.
Collapse
|
75
|
Venugopal K, Hentzschel F, Valkiūnas G, Marti M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat Rev Microbiol 2020; 18:177-189. [PMID: 31919479 PMCID: PMC7223625 DOI: 10.1038/s41579-019-0306-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/28/2022]
Abstract
Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood-feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood-stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions.
Collapse
Affiliation(s)
- Kannan Venugopal
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Franziska Hentzschel
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
76
|
de Jong RM, Tebeje SK, Meerstein‐Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunol Rev 2020; 293:190-215. [PMID: 31840844 PMCID: PMC6973022 DOI: 10.1111/imr.12828] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.
Collapse
MESH Headings
- Antibodies, Blocking/immunology
- Antibodies, Protozoan/immunology
- Host-Parasite Interactions/immunology
- Humans
- Immunity
- Immunomodulation
- Life Cycle Stages
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
Collapse
Affiliation(s)
- Roos M. de Jong
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Lisette Meerstein‐Kessel
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research InstituteAddis AbabaEthiopia
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthijs M. Jore
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Will Stone
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Teun Bousema
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
77
|
Flammersfeld A, Panyot A, Yamaryo-Botté Y, Aurass P, Przyborski JM, Flieger A, Botté C, Pradel G. A patatin-like phospholipase functions during gametocyte induction in the malaria parasite Plasmodium falciparum. Cell Microbiol 2019; 22:e13146. [PMID: 31734953 DOI: 10.1111/cmi.13146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022]
Abstract
Patatin-like phospholipases (PNPLAs) are highly conserved enzymes of prokaryotic and eukaryotic organisms with major roles in lipid homeostasis. The genome of the malaria parasite Plasmodium falciparum encodes four putative PNPLAs with predicted functions during phospholipid degradation. We here investigated the role of one of the plasmodial PNPLAs, a putative PLA2 termed PNPLA1, during blood stage replication and gametocyte development. PNPLA1 is present in the asexual and sexual blood stages and here localizes to the cytoplasm. PNPLA1-deficiency due to gene disruption or conditional gene-knockdown had no effect on intraerythrocytic growth, gametocyte development and gametogenesis. However, parasites lacking PNPLA1 were impaired in gametocyte induction, while PNPLA1 overexpression promotes gametocyte formation. The loss of PNPLA1 further leads to transcriptional down-regulation of genes related to gametocytogenesis, including the gene encoding the sexual commitment regulator AP2-G. Additionally, lipidomics of PNPLA1-deficient asexual blood stage parasites revealed overall increased levels of major phospholipids, including phosphatidylcholine (PC), which is a substrate of PLA2 . PC synthesis is known to be pivotal for erythrocytic replication, while the reduced availability of PC precursors drives the parasite into gametocytogenesis; we thus hypothesize that the higher PC levels due to PNPLA1-deficiency prevent the blood stage parasites from entering the sexual pathway.
Collapse
Affiliation(s)
- Ansgar Flammersfeld
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Atscharah Panyot
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, La Tronche, France
| | - Philipp Aurass
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Jude M Przyborski
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Wernigerode, Germany
| | - Antje Flieger
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Cyrille Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, La Tronche, France
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
78
|
van Biljon R, van Wyk R, Painter HJ, Orchard L, Reader J, Niemand J, Llinás M, Birkholtz LM. Hierarchical transcriptional control regulates Plasmodium falciparum sexual differentiation. BMC Genomics 2019; 20:920. [PMID: 31795940 PMCID: PMC6889441 DOI: 10.1186/s12864-019-6322-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Malaria pathogenesis relies on sexual gametocyte forms of the malaria parasite to be transmitted between the infected human and the mosquito host but the molecular mechanisms controlling gametocytogenesis remains poorly understood. Here we provide a high-resolution transcriptome of Plasmodium falciparum as it commits to and develops through gametocytogenesis. RESULTS The gametocyte-associated transcriptome is significantly different from that of the asexual parasites, with dynamic gene expression shifts characterizing early, intermediate and late-stage gametocyte development and results in differential timing for sex-specific transcripts. The transcriptional dynamics suggest strict transcriptional control during gametocytogenesis in P. falciparum, which we propose is mediated by putative regulators including epigenetic mechanisms (driving active repression of proliferation-associated processes) and a cascade-like expression of ApiAP2 transcription factors. CONCLUSIONS The gametocyte transcriptome serves as the blueprint for sexual differentiation and will be a rich resource for future functional studies on this critical stage of Plasmodium development, as the intraerythrocytic transcriptome has been for our understanding of the asexual cycle.
Collapse
Affiliation(s)
- Riëtte van Biljon
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Heather J Painter
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Review, U.S. Food & Drug Administration, Silver Spring, MD, 20993, USA
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
79
|
Reporter lines based on the gexp02 promoter enable early quantification of sexual conversion rates in the malaria parasite Plasmodium falciparum. Sci Rep 2019; 9:14595. [PMID: 31601834 PMCID: PMC6787211 DOI: 10.1038/s41598-019-50768-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
Transmission of malaria parasites from humans to mosquito vectors requires that some asexual parasites differentiate into sexual forms termed gametocytes. The balance between proliferation in the same host and conversion into transmission forms can be altered by the conditions of the environment. The ability to accurately measure the rate of sexual conversion under different conditions is essential for research addressing the mechanisms underlying sexual conversion, and to assess the impact of environmental factors. Here we describe new Plasmodium falciparum transgenic lines with genome-integrated constructs in which a fluorescent reporter is expressed under the control of the promoter of the gexp02 gene. Using these parasite lines, we developed a sexual conversion assay that shortens considerably the time needed for an accurate determination of sexual conversion rates, and dispenses the need to add chemicals to inhibit parasite replication. Furthermore, we demonstrate that gexp02 is expressed specifically in sexual parasites, with expression starting as early as the sexual ring stage, which makes it a candidate marker for circulating sexual rings in epidemiological studies.
Collapse
|
80
|
Lenz T, Le Roch KG. Three-Dimensional Genome Organization and Virulence in Apicomplexan Parasites. Epigenet Insights 2019; 12:2516865719879436. [PMID: 31633082 PMCID: PMC6769224 DOI: 10.1177/2516865719879436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
Mounting evidence supports the idea that epigenetic, and the overall 3-dimensional (3D) architecture of the genome, plays an important role in gene expression for eukaryotic organisms. We recently used Hi-C methodologies to generate and compare the 3D genome of 7 different apicomplexan parasites, including several pathogenic and less pathogenic malaria parasites as well as related human parasites Babesia microti and Toxoplasma gondii. Our goal was to understand the possible relationship between genome organization, gene expression, and pathogenicity of these infectious agents. Collectively, our results demonstrate that spatial genome organization in most Plasmodium species is constrained by the colocalization of virulence genes that are unique in their effect on chromosome folding, indicating a link between genome organization and gene expression in more virulent pathogens.
Collapse
Affiliation(s)
- Todd Lenz
- Department of Molecular, Cell and Systems Biology (MCSB), University of California, Riverside, Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology (MCSB), University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
81
|
Birget PLG, Schneider P, O’Donnell AJ, Reece SE. Adaptive phenotypic plasticity in malaria parasites is not constrained by previous responses to environmental change. EVOLUTION MEDICINE AND PUBLIC HEALTH 2019; 2019:190-198. [PMID: 31660151 PMCID: PMC6805783 DOI: 10.1093/emph/eoz028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/25/2019] [Indexed: 01/12/2023]
Abstract
Background and objectives Phenotypic plasticity enables organisms to maximize fitness by matching trait values to different environments. Such adaptive phenotypic plasticity is exhibited by parasites, which experience frequent environmental changes during their life cycle, between individual hosts and also in within-host conditions experienced during infections. Life history theory predicts that the evolution of adaptive phenotypic plasticity is limited by costs and constraints, but tests of these concepts are scarce. Methodology Here, we induce phenotypic plasticity in malaria parasites to test whether mounting a plastic response to an environmental perturbation constrains subsequent plastic responses to further environmental change. Specifically, we perturb red blood cell resource availability to induce Plasmodium chabaudi to alter the trait values of several phenotypes underpinning within-host replication and between-host transmission. We then transfer parasites to unperturbed hosts to examine whether constraints govern the parasites’ ability to alter these phenotypes in response to their new in-host environment. Results Parasites alter trait values in response to the within-host environment they are exposed to. We do not detect negative consequences, for within-host replication or between-host transmission, of previously mounting a plastic response to a perturbed within-host environment. Conclusions and implications We suggest that malaria parasites are highly plastic and adapted to adjusting their phenotypes in response to the frequent changes in the within-host conditions they experience during infections. Our findings support the growing body of evidence that medical interventions, such as anti-parasite drugs, induce plastic responses that are adaptive and can facilitate the survival and potentially, drug resistance of parasites. Lay Summary Malaria parasites have evolved flexible strategies to cope with the changing conditions they experience during infections. We show that using such flexible strategies does not impact upon the parasites’ ability to grow (resulting in disease symptoms) or transmit (spreading the disease).
Collapse
Affiliation(s)
- Philip L G Birget
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Petra Schneider
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Aidan J O’Donnell
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Sarah E Reece
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
82
|
Abel S, Le Roch KG. The role of epigenetics and chromatin structure in transcriptional regulation in malaria parasites. Brief Funct Genomics 2019; 18:302-313. [PMID: 31220857 PMCID: PMC6859822 DOI: 10.1093/bfgp/elz005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Due to the unique selective pressures and extreme changes faced by the human malaria parasite Plasmodium falciparum throughout its life cycle, the parasite has evolved distinct features to alter its gene expression patterns. Along with classical gene regulation by transcription factors (TFs), of which only one family, the AP2 TFs, has been described in the parasite genome, a large body of evidence points toward chromatin structure and epigenetic factors mediating the changes in gene expression associated with parasite life cycle stages. These attributes may be critically important for immune evasion, host cell invasion and development of the parasite in its two hosts, the human and the Anopheles vector. Thus, the factors involved in the maintenance and regulation of chromatin and epigenetic features represent potential targets for antimalarial drugs. In this review, we discuss the mechanisms in P. falciparum that regulate chromatin structure, nucleosome landscape, the 3-dimensional structure of the genome and additional distinctive features created by parasite-specific genes and gene families. We review conserved traits of chromatin in eukaryotes in order to highlight what is unique in the parasite.
Collapse
Affiliation(s)
- Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
83
|
Ruiz JL, Tena JJ, Bancells C, Cortés A, Gómez-Skarmeta JL, Gómez-Díaz E. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2019; 46:9414-9431. [PMID: 30016465 PMCID: PMC6182165 DOI: 10.1093/nar/gky643] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, we performed genome-wide profiling of chromatin accessibility in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. Our assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. We show that the dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum.
Collapse
Affiliation(s)
- José Luis Ruiz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, Seville 41092, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville 41013, Spain
| | - Cristina Bancells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain.,ICREA, Barcelona, Catalonia 08010, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville 41013, Spain
| | - Elena Gómez-Díaz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, Seville 41092, Spain.,Instituto de Parasitología y Biomedicina 'López-Neyra' (IPBLN), Consejo Superior de Investigaciones Científicas, Granada 18016, Spain
| |
Collapse
|
84
|
Tanaka TQ, Tokuoka SM, Nakatani D, Hamano F, Kawazu SI, Wellems TE, Kita K, Shimizu T, Tokumasu F. Polyunsaturated fatty acids promote Plasmodium falciparum gametocytogenesis. Biol Open 2019; 8:bio.042259. [PMID: 31221627 PMCID: PMC6679406 DOI: 10.1242/bio.042259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The molecular triggers of sexual differentiation into gametocytes by blood stage Plasmodium falciparum, the most malignant human malaria parasites, are subject of much investigation for potential transmission-blocking strategies. The parasites are readily grown in vitro with culture media supplemented by the addition of human serum (10%) or by a commercially available substitute (0.5% AlbuMAX). We found better gametocytemia with serum than AlbuMAX, suggesting suboptimal concentrations of some components in the commercial product; consistent with this hypothesis, substantial concentration differences of multiple fatty acids were detected between serum- and AlbuMAX-supplemented media. Mass spectroscopy analysis distinguished the lipid profiles of gametocyte- and asexual stage-parasite membranes. Delivery of various combinations of unsaturated fatty-acid-containing phospholipids to AlbuMAX-supported gametocyte cultures improved gametocyte production to the levels achieved with human-serum-supplemented media. Maturing gametocytes readily incorporated externally supplied d5-labeled glycerol with fatty acids into unsaturated phospholipids. Phospholipids identified in this work thus may be taken up from extracellular sources or generated internally for important steps of gametocyte development. Further study of polyunsaturated fatty-acid metabolism and phospholipid profiles will improve understanding of gametocyte development and malaria parasite transmission.
Collapse
Affiliation(s)
- Takeshi Q Tanaka
- International Medical Zoology, Graduate School of Medicine, Kagawa University, Kagawa, 761-0793, Japan.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA.,Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| | - Daichi Nakatani
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Fumie Hamano
- Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shin-Ichiro Kawazu
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan.,Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Fuyuki Tokumasu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA .,Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| |
Collapse
|
85
|
Ngotho P, Soares AB, Hentzschel F, Achcar F, Bertuccini L, Marti M. Revisiting gametocyte biology in malaria parasites. FEMS Microbiol Rev 2019; 43:401-414. [PMID: 31220244 PMCID: PMC6606849 DOI: 10.1093/femsre/fuz010] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Gametocytes are the only form of the malaria parasite that is transmissible to the mosquito vector. They are present at low levels in blood circulation and significant knowledge gaps exist in their biology. Recent reductions in the global malaria burden have brought the possibility of elimination and eradication, with renewed focus on malaria transmission biology as a basis for interventions. This review discusses recent insights into gametocyte biology in the major human malaria parasite, Plasmodium falciparum and related species.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Alexandra Blancke Soares
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Lucia Bertuccini
- Core Facilities, Microscopy Area, Instituto Superiore di Sanita, Via Regina Elena 299, 00161 Rome, Italy
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA
| |
Collapse
|
86
|
Roberts AD, Nair SC, Guerra AJ, Prigge ST. Development of a conditional localization approach to control apicoplast protein trafficking in malaria parasites. Traffic 2019; 20:571-582. [PMID: 31094037 DOI: 10.1111/tra.12656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/24/2023]
Abstract
Secretory proteins are of particular importance to apicomplexan parasites and comprise over 15% of the genomes of the human pathogens that cause diseases like malaria, toxoplasmosis and babesiosis as well as other diseases of agricultural significance. Here, we developed an approach that allows us to control the trafficking destination of secretory proteins in the human malaria parasite Plasmodium falciparum. Based on the unique structural requirements of apicoplast transit peptides, we designed three conditional localization domains (CLD1, 2 and 3) that can be used to control protein trafficking via the addition of a cell permeant ligand. Studies comparing the trafficking dynamics of each CLD show that CLD2 has the most optimal trafficking efficiency. To validate this system, we tested whether CLD2 could conditionally localize a biotin ligase called holocarboxylase synthetase 1 (HCS1) without interfering with the function of the enzyme. In a parasite line expressing CLD2-HCS1, we were able to control protein biotinylation in the apicoplast in a ligand-dependent manner, demonstrating the full functionality of the CLD tool. We have developed and validated a novel molecular tool that may be used in future studies to help elucidate the function of secretory proteins in malaria parasites.
Collapse
Affiliation(s)
- Aleah D Roberts
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sethu C Nair
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Alfredo J Guerra
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
87
|
Plasmodium falciparum sexual differentiation in malaria patients is associated with host factors and GDV1-dependent genes. Nat Commun 2019; 10:2140. [PMID: 31086187 PMCID: PMC6514009 DOI: 10.1038/s41467-019-10172-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Plasmodium sexual differentiation is required for malaria transmission, yet much remains unknown about its regulation. Here, we quantify early gametocyte-committed ring (gc-ring) stage, P. falciparum parasites in 260 uncomplicated malaria patient blood samples 10 days before maturation to transmissible stage V gametocytes using a gametocyte conversion assay (GCA). Seventy six percent of the samples have gc-rings, but the ratio of gametocyte to asexual-committed rings (GCR) varies widely (0–78%). GCR correlates positively with parasitemia and is negatively influenced by fever, not hematocrit, age or leukocyte counts. Higher expression levels of GDV1-dependent genes, ap2-g, msrp1 and gexp5, as well as a gdv1 allele encoding H217 are associated with high GCR, while high plasma lysophosphatidylcholine levels are associated with low GCR in the second study year. The results provide a view of sexual differentiation in the field and suggest key regulatory roles for clinical factors and gdv1 in gametocytogenesis in vivo. Here, the authors quantify early gametocyte-committed ring (gc-ring) stage Plasmodium falciparum parasites in 260 malaria patients 10 days before maturation to transmissible stage V gametocytes, and show that the ratio of circulating gc-rings is positively correlated with parasitemia and negatively correlated with body temperature.
Collapse
|
88
|
Josling GA, Llinás M. Commitment Isn't for Everyone. Trends Parasitol 2019; 35:381-383. [PMID: 31053335 DOI: 10.1016/j.pt.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 03/31/2019] [Indexed: 11/29/2022]
Abstract
The majority of malaria parasites during human infection are asexual and are unable to be transmitted to mosquitoes. Only sexually differentiated parasites (gametocytes) can be successfully transmitted to complete the lifecycle. In a recent study by Bancells et al. (Nat. Microbiol. 2019;4:144-154), a new route of sexual conversion is identified that does not require a prior round of replication.
Collapse
Affiliation(s)
- Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
89
|
ApiAP2 Transcription Factors in Apicomplexan Parasites. Pathogens 2019; 8:pathogens8020047. [PMID: 30959972 PMCID: PMC6631176 DOI: 10.3390/pathogens8020047] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Apicomplexan parasites are protozoan organisms that are characterised by complex life cycles and they include medically important species, such as the malaria parasite Plasmodium and the causative agents of toxoplasmosis (Toxoplasma gondii) and cryptosporidiosis (Cryptosporidium spp.). Apicomplexan parasites can infect one or more hosts, in which they differentiate into several morphologically and metabolically distinct life cycle stages. These developmental transitions rely on changes in gene expression. In the last few years, the important roles of different members of the ApiAP2 transcription factor family in regulating life cycle transitions and other aspects of parasite biology have become apparent. Here, we review recent progress in our understanding of the different members of the ApiAP2 transcription factor family in apicomplexan parasites.
Collapse
|
90
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
91
|
Engel JA, Norris EL, Gilson P, Przyborski J, Shonhai A, Blatch GL, Skinner-Adams TS, Gorman J, Headlam M, Andrews KT. Proteomic analysis of Plasmodium falciparum histone deacetylase 1 complex proteins. Exp Parasitol 2019; 198:7-16. [PMID: 30682336 DOI: 10.1016/j.exppara.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/01/2018] [Accepted: 01/20/2019] [Indexed: 01/12/2023]
Abstract
Plasmodium falciparum histone deacetylases (PfHDACs) are an important class of epigenetic regulators that alter protein lysine acetylation, contributing to regulation of gene expression and normal parasite growth and development. PfHDACs are therefore under investigation as drug targets for malaria. Despite this, our understanding of the biological roles of these enzymes is only just beginning to emerge. In higher eukaryotes, HDACs function as part of multi-protein complexes and act on both histone and non-histone substrates. Here, we present a proteomics analysis of PfHDAC1 immunoprecipitates, identifying 26 putative P. falciparum complex proteins in trophozoite-stage asexual intraerythrocytic parasites. The co-migration of two of these (P. falciparum heat shock proteins 70-1 and 90) with PfHDAC1 was validated using Blue Native PAGE combined with Western blot. These data provide a snapshot of possible PfHDAC1 interactions and a starting point for future studies focused on elucidating the broader function of PfHDACs in Plasmodium parasites.
Collapse
Affiliation(s)
- Jessica A Engel
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Emma L Norris
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Paul Gilson
- Burnet Institute, Monash University, Victoria, Australia
| | - Jude Przyborski
- Centre of Infectious Diseases, Parasitology, University Hospital Heidelberg, Germany
| | - Addmore Shonhai
- Biochemistry Department, University of Venda, Thohoyandou, South Africa
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Jeffrey Gorman
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | | | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
| |
Collapse
|
92
|
Bouchut A, Rotili D, Pierrot C, Valente S, Lafitte S, Schultz J, Hoglund U, Mazzone R, Lucidi A, Fabrizi G, Pechalrieu D, Arimondo PB, Skinner-Adams TS, Chua MJ, Andrews KT, Mai A, Khalife J. Identification of novel quinazoline derivatives as potent antiplasmodial agents. Eur J Med Chem 2019; 161:277-291. [DOI: 10.1016/j.ejmech.2018.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
|
93
|
Bancells C, Llorà-Batlle O, Poran A, Nötzel C, Rovira-Graells N, Elemento O, Kafsack BFC, Cortés A. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat Microbiol 2019; 4:144-154. [PMID: 30478286 PMCID: PMC6294672 DOI: 10.1038/s41564-018-0291-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023]
Abstract
Human to vector transmission of malaria requires that some blood-stage parasites abandon asexual growth and convert into non-replicating sexual forms called gametocytes. The initial steps of gametocytogenesis remain largely uncharacterized. Here, we study this part of the malaria life cycle in Plasmodium falciparum using PfAP2-G, the master regulator of sexual conversion, as a marker of commitment. We demonstrate the existence of PfAP2-G-positive sexually committed parasite stages that precede the previously known committed schizont stage. We also found that sexual conversion can occur by two different routes: the previously described route in which PfAP2-G-expressing parasites complete a replicative cycle as committed forms before converting into gametocytes upon re-invasion, or a direct route with conversion within the same cycle as initial PfAP2-G expression. The latter route is linked to early PfAP2-G expression in ring stages. Reanalysis of published single-cell RNA-sequencing (RNA-seq) data confirmed the presence of both routes. Consistent with these results, using plaque assays we observed that, in contrast to the prevailing model, many schizonts produced mixed plaques containing both asexual parasites and gametocytes. Altogether, our results reveal unexpected features of the initial steps of sexual development and extend the current view of this part of the malaria life cycle.
Collapse
Affiliation(s)
- Cristina Bancells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Asaf Poran
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Nötzel
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | | | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Björn F C Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
94
|
Mason DJ, Eastman RT, Lewis RPI, Stott IP, Guha R, Bender A. Using Machine Learning to Predict Synergistic Antimalarial Compound Combinations With Novel Structures. Front Pharmacol 2018; 9:1096. [PMID: 30333748 PMCID: PMC6176478 DOI: 10.3389/fphar.2018.01096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
The parasite Plasmodium falciparum is the most lethal species of Plasmodium to cause serious malaria infection in humans, and with resistance developing rapidly novel treatment modalities are currently being sought, one of which being combinations of existing compounds. The discovery of combinations of antimalarial drugs that act synergistically with one another is hence of great importance; however an exhaustive experimental screen of large drug space in a pairwise manner is not an option. In this study we apply our machine learning approach, Combination Synergy Estimation (CoSynE), which can predict novel synergistic drug interactions using only prior experimental combination screening data and knowledge of compound molecular structures, to a dataset of 1,540 antimalarial drug combinations in which 22.2% were synergistic. Cross validation of our model showed that synergistic CoSynE predictions are enriched 2.74 × compared to random selection when both compounds in a predicted combination are known from other combinations among the training data, 2.36 × when only one compound is known from the training data, and 1.5 × for entirely novel combinations. We prospectively validated our model by making predictions for 185 combinations of 23 entirely novel compounds. CoSynE predicted 20 combinations to be synergistic, which was experimentally validated for nine of them (45%), corresponding to an enrichment of 1.70 × compared to random selection from this prospective data set. Such enrichment corresponds to a 41% reduction in experimental effort. Interestingly, we found that pairwise screening of the compounds CoSynE individually predicted to be synergistic would result in an enrichment of 1.36 × compared to random selection, indicating that synergy among compound combinations is not a random event. The nine novel and correctly predicted synergistic compound combinations mainly (where sufficient bioactivity information is available) consist of efflux or transporter inhibitors (such as hydroxyzine), combined with compounds exhibiting antimalarial activity alone (such as sorafenib, apicidin, or dihydroergotamine). However, not all compound synergies could be rationalized easily in this way. Overall, this study highlights the potential for predictive modeling to expedite the discovery of novel drug combinations in fight against antimalarial resistance, while the underlying approach is also generally applicable.
Collapse
Affiliation(s)
- Daniel J Mason
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom.,Healx Ltd., Cambridge, United Kingdom
| | - Richard T Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Richard P I Lewis
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Ian P Stott
- Unilever Research and Development, Wirral, United Kingdom
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
95
|
Kumar A, Dhar SK, Subbarao N. In silico identification of inhibitors against Plasmodium falciparum histone deacetylase 1 (PfHDAC-1). J Mol Model 2018; 24:232. [PMID: 30109440 DOI: 10.1007/s00894-018-3761-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
In erythrocytes, actively multiplying Plasmodium falciparum parasites exhibit a unique signature of virulence associated histone modifications, thereby epigenetically regulating the expression of the majority of genes. Histone acetylation is one such modification, effectuated and maintained by the dynamic interplay of two functionally antagonist enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Their inhibition leads to hypo/hyperacetylation and is known to be deleterious for P. falciparum, and hence they have become attractive molecular targets to design novel antimalarials. Many compounds, including four Food and Drug Administration (FDA) approved drugs, have been developed so far to inhibit HDAC activity but are not suitable to treat malaria as they lack selectivity and cause cytotoxicity in mammalian cells. In this study, we used comparative modeling and molecular docking to establish different binding modes of nonselective and selective compounds in the PfHDAC-1 (a class I HDAC protein in P. falciparum) active site and identified the involvement of active site nonidentical residues in binding of selective compounds. Further, we have applied virtual screening with precise selection criteria and molecular dynamics simulation to identify novel potential inhibitors against PfHDAC-1. We report 20 compounds (10 from ChEMBL and 10 from analogues compound library) bearing seven scaffolds having better affinity toward PfHDAC-1. Sixteen of these compounds are known antimalarials with 14 having activity in the nanomolar range against various drug resistant and sensitive strains of P. falciparum. The cytotoxicity of these compounds against various human cell lines are reported at relatively higher concentration and hence can be used as potential PfHDAC-1 inhibitors in P. falciparum. These findings indeed show great potential for using the above molecules as prospective antimalarials.
Collapse
Affiliation(s)
- Amarjeet Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
96
|
Batugedara G, Le Roch KG. Unraveling the 3D genome of human malaria parasites. Semin Cell Dev Biol 2018; 90:144-153. [PMID: 30009946 DOI: 10.1016/j.semcdb.2018.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 01/31/2023]
Abstract
The chromosomes within the eukaryotic cell nucleus are highly dynamic and adopt complex hierarchical structures. Understanding how this three-dimensional (3D) nuclear architectureaffects gene regulation, cell cycle progression and disease pathogenesis are important biological questions in development and disease. Recently, many genome-wide technologies including chromosome conformation capture (3C) and 3C-based methodologies (4C, 5C, and Hi-C) have been developed to investigate 3D chromatin structure. In this review, we introduce 3D genome methodologies, with a focus on their application for understanding the nuclear architecture of the human malaria parasite, Plasmodium falciparum. An increasing amount of evidence now suggests that gene regulation in the parasite is largely regulated by epigenetic mechanisms and nuclear reorganization. Here, we explore the 3D genome architecture of P. falciparum, including local and global chromatin structure. In addition, molecular components important for maintaining 3D chromatin organization including architectural proteins and long non-coding RNAs are discussed. Collectively, these studies contribute to our understanding of how the plasticity of 3D genome architecture regulates gene expression and cell cycle progression in this deadly parasite.
Collapse
Affiliation(s)
- Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
97
|
Abstract
Malaria is the major cause of mortality and morbidity in tropical countries. The causative agent, Plasmodium sp., has a complex life cycle and is armed with various mechanisms which ensure its continuous transmission. Gametocytes represent the sexual stage of the parasite and are indispensable for the transmission of the parasite from the human host to the mosquito. Despite its vital role in the parasite's success, it is the least understood stage in the parasite's life cycle. The presence of gametocytes in asymptomatic populations and induction of gametocytogenesis by most antimalarial drugs warrants further investigation into its biology. With a renewed focus on malaria elimination and advent of modern technology available to biologists today, the field of gametocyte biology has developed swiftly, providing crucial insights into the molecular mechanisms driving sexual commitment. This review will summarise key current findings in the field of gametocyte biology and address the associated challenges faced in malaria detection, control and elimination.
Collapse
|
98
|
Josling GA, Williamson KC, Llinás M. Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annu Rev Microbiol 2018; 72:501-519. [PMID: 29975590 DOI: 10.1146/annurev-micro-090817-062712] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sexual differentiation of malaria parasites from the asexual blood stage into gametocytes is an essential part of the life cycle, as gametocytes are the form that is taken up by the mosquito host. Because of the essentiality of this process for transmission to the mosquito, gametocytogenesis is an extremely attractive target for therapeutic interventions. The subject of this review is the considerable progress that has been made in recent years in elucidating the molecular mechanisms governing this important differentiation process. In particular, a number of critical transcription factors and epigenetic regulators have emerged as crucial elements in the regulation of commitment. The identification of these factors has allowed us to understand better than ever before the events occurring prior to and during commitment to sexual development and offers potential for new therapeutic interventions.
Collapse
Affiliation(s)
- Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kim C Williamson
- Microbiology and Immunology Department, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
99
|
Abstract
Toxoplasma gondii is a common veterinary and human pathogen that persists as latent bradyzoite forms within infected hosts. The ability of the parasite to interconvert between tachyzoite and bradyzoite is key for pathogenesis of toxoplasmosis, particularly in immunocompromised individuals. The transition between tachyzoites and bradyzoites is epigenetically regulated and coupled to the cell cycle. Recent epigenomic studies have begun to elucidate the chromatin states associated with developmental switches in T. gondii. Evidence is also emerging that AP2 transcription factors both activate and repress the bradyzoite developmental program. Further studies are needed to understand the mechanisms by which T. gondii transduces environmental signals to coordinate the epigenetic and transcriptional machinery that are responsible for tachyzoite-bradyzoite interconversion.
Collapse
Affiliation(s)
- Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.,Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA;
| |
Collapse
|
100
|
Abstract
Eukaryotic pathogens must survive in different hosts, respond to changing environments, and exploit specialized niches to propagate. Plasmodium parasites cause human malaria during bloodstream infections, where they must persist long enough to be transmitted. Parasites have evolved diverse strategies of variant gene expression that control critical biological processes of blood-stage infections, including antigenic variation, erythrocyte invasion, innate immune evasion, and nutrient acquisition, as well as life-cycle transitions. Epigenetic mechanisms within the parasite are being elucidated, with discovery of epigenomic marks associated with gene silencing and activation, and the identification of epigenetic regulators and chromatin proteins that are required for the switching and maintenance of gene expression. Here, we review the key epigenetic processes that facilitate transition through the parasite life cycle and epigenetic regulatory mechanisms utilized by Plasmodium parasites to survive changing environments and consider epigenetic switching in the context of the outcome of human infections.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| | - Kristen M Skillman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|