51
|
Abstract
The term nonaqueous capillary electrophoresis (NACE) commonly refers to capillary electrophoresis with purely nonaqueous background electrolytes (BGE). Main advantages of NACE are the possibility to analyze substances with very low solubility in aqueous media as well as separation selectivity that can be quite different in organic solvents (compared to water)-a property that can be employed for manipulation of separation selectivities. Mass spectrometry (MS) has become more and more popular as a detector in CE a fact that applies also for NACE. In the present chapter, the development of NACE-MS since 2004 is reviewed. Relevant parameters like composition of BGE and its influence on separation and detection in NACE as well as sheath liquid for NACE-MS are discussed. Finally, an overview of the papers published in the field of NACE-MS between 2004 and 2014 is given. Applications are grouped according to the field (analysis of natural products, biomedical analysis, food analysis, analysis of industrial products, and fundamental investigations).
Collapse
Affiliation(s)
- Christian W Klampfl
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria.
| | - Markus Himmelsbach
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria
| |
Collapse
|
52
|
Benavente F, Medina-Casanellas S, Giménez E, Sanz-Nebot V. On-Line Solid-Phase Extraction Capillary Electrophoresis Mass Spectrometry for Preconcentration and Clean-Up of Peptides and Proteins. Methods Mol Biol 2016; 1466:67-84. [PMID: 27473482 DOI: 10.1007/978-1-4939-4014-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the major drawbacks of capillary electrophoresis (CE) and other microscale separation techniques, for the analysis of low abundant peptides and proteins in complex samples, are the poor concentration limits of detection. Several strategies have been developed to improve CE sensitivity. Here, we describe an on-line solid-phase extraction capillary electrophoresis mass spectrometry method with a commercial C18 sorbent for clean-up and preconcentration of neuropeptides from highly diluted biological samples.
Collapse
Affiliation(s)
- Fernando Benavente
- Department of Analytical Chemistry, University of Barcelona, Av. Diagonal 647, Barcelona, 08028, Spain.
| | - Silvia Medina-Casanellas
- Department of Analytical Chemistry, University of Barcelona, Av. Diagonal 647, Barcelona, 08028, Spain
| | - Estela Giménez
- Department of Analytical Chemistry, University of Barcelona, Av. Diagonal 647, Barcelona, 08028, Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry, University of Barcelona, Av. Diagonal 647, Barcelona, 08028, Spain
| |
Collapse
|
53
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci 2015; 39:198-211. [DOI: 10.1002/jssc.201500973] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
54
|
Jarvas G, Guttman A, Foret F. Numerical modeling of capillary electrophoresis - electrospray mass spectrometry interface design. MASS SPECTROMETRY REVIEWS 2015; 34:558-569. [PMID: 24676884 DOI: 10.1002/mas.21423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Capillary electrophoresis hyphenated with electrospray mass spectrometry (CE-ESI-MS) has emerged in the past decade as one of the most powerful bioanalytical techniques. As the sensitivity and efficiency of new CE-ESI-MS interface designs are continuously improving, numerical modeling can play important role during their development. In this review, different aspects of computer modeling and simulation of CE-ESI-MS interfaces are comprehensively discussed. Relevant essentials of hydrodynamics as well as state-of-the-art modeling techniques are critically evaluated. Sheath liquid-, sheathless-, and liquid-junction interfaces are reviewed from the viewpoint of multidisciplinary numerical modeling along with details of single and multiphase models together with electric field mediated flows, electrohydrodynamics, and free fluid-surface methods. Practical examples are given to help non-specialists to understand the basic principles and applications. Finally, alternative approaches like air amplifiers are also included. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 34: 558-569, 2015.
Collapse
Affiliation(s)
- Gabor Jarvas
- CEITEC-Central European Institute of Technology, Brno, Czech Republic
- MTA-PE Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprem, Hungary
| | - Andras Guttman
- MTA-PE Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprem, Hungary
| | - Frantisek Foret
- CEITEC-Central European Institute of Technology, Brno, Czech Republic
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
55
|
|
56
|
Capillary electrophoresis in an extended nanospray tip–electrospray as an electrophoretic column. J Chromatogr A 2015; 1388:274-9. [DOI: 10.1016/j.chroma.2015.02.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 11/23/2022]
|
57
|
Wolfender JL, Marti G, Thomas A, Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 2015; 1382:136-64. [DOI: 10.1016/j.chroma.2014.10.091] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 12/11/2022]
|
58
|
Shyti R, Kohler I, Schoenmaker B, Derks RJE, Ferrari MD, Tolner EA, Mayboroda OA, van den Maagdenberg AMJM. Plasma metabolic profiling after cortical spreading depression in a transgenic mouse model of hemiplegic migraine by capillary electrophoresis – mass spectrometry. MOLECULAR BIOSYSTEMS 2015; 11:1462-71. [DOI: 10.1039/c5mb00049a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cortical spreading depression-induced brain metabolic changes have been captured in the plasma of a transgenic migraine mouse model using CE-MS.
Collapse
Affiliation(s)
- Reinald Shyti
- Department of Human Genetics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Isabelle Kohler
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Bart Schoenmaker
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Rico J. E. Derks
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Michel D. Ferrari
- Department of Neurology
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Else A. Tolner
- Department of Neurology
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | | |
Collapse
|
59
|
Bignardi C, Cavazza A, Corradini C. Selected product ion monitoring for quantification of 5-hydroxymethylfurfural in food products by capillary zone electrophoresis-tandem ion trap mass spectrometry. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
60
|
Ramautar R, Somsen GW, de Jong GJ. CE-MS for metabolomics: Developments and applications in the period 2012-2014. Electrophoresis 2014; 36:212-24. [DOI: 10.1002/elps.201400388] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Rawi Ramautar
- Division of Analytical Biosciences; LACDR; Leiden University; Leiden The Netherlands
| | - Govert W. Somsen
- AIMMS research group BioMolecular Analysis; Division of BioAnalytical Chemistry; VU University Amsterdam; Amsterdam The Netherlands
| | - Gerhardus J. de Jong
- Biomolecular Analysis; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
61
|
Klepárník K. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory. Electrophoresis 2014; 36:159-78. [DOI: 10.1002/elps.201400392] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
62
|
Lindenburg PW, Haselberg R, Rozing G, Ramautar R. Developments in Interfacing Designs for CE–MS: Towards Enabling Tools for Proteomics and Metabolomics. Chromatographia 2014. [DOI: 10.1007/s10337-014-2795-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
63
|
New insights in carbohydrate-deficient transferrin analysis with capillary electrophoresis–mass spectrometry. Forensic Sci Int 2014; 243:14-22. [DOI: 10.1016/j.forsciint.2014.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/21/2014] [Accepted: 03/12/2014] [Indexed: 11/21/2022]
|
64
|
Jarvas G, Grym J, Foret F, Guttman A. Simulation-based design of a microfabricated pneumatic electrospray nebulizer. Electrophoresis 2014; 36:386-92. [PMID: 25257095 DOI: 10.1002/elps.201400387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022]
Abstract
A microfabricated pneumatic electrospray nebulizer has been developed and evaluated using computer simulations and experimental measurements of the MS signals. The microdevice under development is designed for electrospray MS interfacing without the need to fabricate an electrospray needle and can be used as a disposable or an integral part of a reusable system. The design of the chip layout was supported by computational fluid dynamics simulations. The tested microdevices were fabricated in glass using conventional photolithography, followed by wet chemical etching and thermal bonding. The performance of the microfabricated nebulizer was evaluated by means of TOF-MS with a peptide mixture. It was demonstrated that the nebulizer, operating at supersonic speed of the nebulizing gas, produced very stable nanospray (900 nL/min) as documented by less than 0.1% (SE) fluctuation in total mass spectrometric signal intensity.
Collapse
Affiliation(s)
- Gabor Jarvas
- CEITEC - Central European Institute of Technology, Brno, Czech Republic; MTA-PE Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprem, Hungary
| | | | | | | |
Collapse
|
65
|
Zhao J, Hu DJ, Lao K, Yang ZM, Li SP. Advance of CE and CEC in phytochemical analysis (2012–2013). Electrophoresis 2014; 35:205-24. [PMID: 24114928 DOI: 10.1002/elps.201300321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022]
Abstract
This article presents an overview of the advance of CE and CEC in phytochemical analysis, based on the literature not mentioned in our previous review papers [Chen, X. J., Zhao, J., Wang, Y. T., Huang, L. Q., Li, S. P., Electrophoresis 2012, 33, 168–179], mainly covering the years 2012–2013. In this article, attention is paid to online preconcentration, rapid separation, and sensitive detection. Selected examples illustrate the applicability of CE and CEC in biomedical, pharmaceutical, environmental, and food analysis. Finally, some general conclusions and future perspectives are given.
Collapse
|
66
|
Creamer JS, Oborny NJ, Lunte SM. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:5427-5449. [PMID: 25126117 PMCID: PMC4128283 DOI: 10.1039/c4ay00447g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis.
Collapse
Affiliation(s)
- Jessica S. Creamer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Nathan J. Oborny
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M. Lunte
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
67
|
Zhu H, Li G, Huang G. Screening of complicated matrixes with paper assisted ultrasonic spray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:935-942. [PMID: 24664810 DOI: 10.1007/s13361-014-0862-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/24/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
To analyze compounds in complicated matrixes using mass spectrometry, we describe a novel ambient ionization approach, termed paper assisted ultrasonic spray ionization (PAUSI). The ionization process is based on the ultrasonic vibration of the piezoelectric ceramic disk, on which the samples are placed. Porous materials are utilized to generate fine initial droplet, which could alleviate matrix effect during ionization process for complicated matrix. PAUSI was evaluated as an attractive tool to screen analytes from complicated matrixes, such as (1) bovine serum with NaCl 150 g/L, (2) viscous samples, and (3) biological fluid, without any sample preparation. Moreover, it provides great advantage in simplifying the mass spectrometry analysis process, and the ionization device is inexpensive and easy to operate.
Collapse
Affiliation(s)
- Hongying Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | | | | |
Collapse
|
68
|
do Lago CL, Vidal DTR, Francisco KJM, dos Santos VB. A simple approach to compensate the suction caused by the electrospray ionization source in capillary electrophoresis-mass spectrometry systems. Electrophoresis 2014; 35:2412-6. [DOI: 10.1002/elps.201300651] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Claudimir Lucio do Lago
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Denis Tadeu Rajh Vidal
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | | | - Vagner Bezerra dos Santos
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
69
|
Recent developments in liquid-phase separation techniques for metabolomics. Bioanalysis 2014; 6:1011-26. [DOI: 10.4155/bio.14.51] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolomics is the comprehensive analysis of low molecular weight compounds in biological samples such as cells, body fluids and tissues. Comprehensive profiling of metabolites in complex sample matrices with the current analytical toolbox remains a huge challenge. Over the past few years, liquid chromatography–mass spectrometry (LC–MS) and capillary electrophoresis–mass spectrometry (CE–MS) have emerged as powerful complementary analytical techniques in the field of metabolomics. This Review provides an update of the most recent developments in LC–MS and CE–MS for metabolomics. Concerning LC–MS, attention is paid to developments in column technology and miniaturized systems, while strategies are discussed to improve the reproducibility and the concentration sensitivity of CE–MS for metabolomics studies. Novel interfacing techniques for coupling CE to MS are also considered. Representative examples illustrate the potential of the recent developments in LC–MS and CE–MS for metabolomics. Finally, some conclusions and perspectives are provided.
Collapse
|
70
|
In-spray supercharging of intact proteins by capillary electrophoresis–electrospray ionization–mass spectrometry using sheath liquid interface. Anal Chim Acta 2014; 813:97-105. [DOI: 10.1016/j.aca.2013.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/17/2013] [Accepted: 12/28/2013] [Indexed: 01/10/2023]
|
71
|
Zhong X, Zhang Z, Jiang S, Li L. Recent advances in coupling capillary electrophoresis-based separation techniques to ESI and MALDI-MS. Electrophoresis 2013; 35:1214-25. [PMID: 24170529 DOI: 10.1002/elps.201300451] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/13/2023]
Abstract
Coupling CE-based separation techniques to MS creates a powerful platform for analysis of a wide range of biomolecules from complex samples because it combines the high separation efficiency of CE and the sensitivity and selectivity of MS detection. ESI and MALDI, as the most common soft ionization techniques employed for CE and MS coupling, offer distinct advantages for biomolecular characterization. This review is focused primarily on technological advances in combining CE and chip-based CE with ESI and MALDI-MS detection in the past five years. Selected applications in the analyses of metabolites, peptides, and proteins with recently developed CE-MS platforms are also highlighted.
Collapse
Affiliation(s)
- Xuefei Zhong
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
72
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis 2013; 35:69-95. [PMID: 24255019 DOI: 10.1002/elps.201300331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
The review presents a comprehensive survey of recent developments and applications of capillary and microchip electroseparation methods (zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography) for analysis, isolation, purification, and physicochemical and biochemical characterization of peptides. Advances in the investigation of electromigration properties of peptides, in the methodology of their analysis, including sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, as well as in detection of peptides, are presented. New developments in particular CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
73
|
Bonvin G, Schappler J, Rudaz S. Non-aqueous capillary electrophoresis for the analysis of acidic compounds using negative electrospray ionization mass spectrometry. J Chromatogr A 2013; 1323:163-73. [PMID: 24315358 DOI: 10.1016/j.chroma.2013.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 01/09/2023]
Abstract
Non-aqueous capillary electrophoresis (NACE) is an attractive CE mode, in which water solvent of the background electrolyte (BGE) is replaced by organic solvent or by a mixture of organic solvents. This substitution alters several parameters, such as the pKa, permittivity, viscosity, zeta potential, and conductivity, resulting in a modification of CE separation performance (i.e., selectivity and/or efficiency). In addition, the use of NACE is particularly well adapted to ESI-MS due to the high volatility of solvents and the low currents that are generated. Organic solvents reduce the number of side electrochemical reactions at the ESI tip, thereby allowing the stabilization of the ESI current and a decrease in background noise. All these features make NACE an interesting alternative to the aqueous capillary zone electrophoresis (CZE) mode, especially in combination with mass spectrometry (MS) detection. The aim of this work was to evaluate the use of NACE coupled to negative ESI-MS for the analysis of acidic compounds with two available CE-MS interfaces (sheath liquid and sheathless). First, NACE was compared to aqueous CZE for the analysis of several pharmaceutical acidic compounds (non-steroidal anti-inflammatory drugs, NSAIDs). Then, the separation performance and the sensitivity achieved by both interfaces were evaluated, as were the impact of the BGE and the sample composition. Finally, analyses of glucuronides in urine samples subjected to a minimal sample pre-treatment ("dilute-and-shoot") were performed by NACE-ESI-MS, and the matrix effect was evaluated. A 20- to 100-fold improvement in sensitivity was achieved using the NACE mode in combination with the sheathless interface and no matrix effect was observed regardless of the interfaces.
Collapse
Affiliation(s)
- Grégoire Bonvin
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Bd d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Julie Schappler
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Bd d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Bd d'Yvoy 20, 1211 Geneva 4, Switzerland.
| |
Collapse
|
74
|
Li X, Xiao D, Ou XM, McCullum C, Liu YM. A microchip electrophoresis-mass spectrometric platform for fast separation and identification of enantiomers employing the partial filling technique. J Chromatogr A 2013; 1318:251-6. [DOI: 10.1016/j.chroma.2013.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
75
|
Park SG, Murray KK. Ambient laser ablation sampling for capillary electrophoresis mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1673-1680. [PMID: 23821560 DOI: 10.1002/rcm.6618] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Ambient laser ablation with mass spectrometric detection is a powerful method for direct analysis of biological samples in their native environment. Capillary electrophoresis (CE) can separate complex mixtures of biological molecules prior to mass spectrometry (MS) analysis and an ambient sampling interface for CE/MS will allow the detection of minor components. METHODS An infrared (IR) laser ablated and transferred sample materials under ambient conditions for direct loading onto the CE separation column. Samples were deposited on a transparent target and ablated in transmission geometry using a pulsed mid-IR laser. The ablated materials were captured in the exposed sampling solvent and then loaded into a capillary by electrokinetic injection for separation and analysis by electrospray ionization (ESI)-MS. RESULTS The system was tested using mixtures of peptide and protein standards. It is estimated that tens of fmol of material was transferred from the ablation target for injection into the CE system and the theoretical plate number was between 1000 and 3000. CONCLUSIONS A novel interface for ambient sampling to CE/MS was developed. The interface is generally applicable and has potential utility for mass spectrometry imaging as well as the loading of microfluidic devices from untreated ambient samples.
Collapse
Affiliation(s)
- Sung-Gun Park
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
76
|
Wang CW, Her GR. Sheathless capillary electrophoresis electrospray ionization-mass spectrometry interface based on poly(dimethylsiloxane) membrane emitter and thin conducting liquid film. Electrophoresis 2013; 34:2538-45. [DOI: 10.1002/elps.201300069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Che-Wei Wang
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Guor-Rong Her
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| |
Collapse
|
77
|
Kumar P, Jaison PG, Sundararajan M, Telmore VM, Ghosh SK, Aggarwal SK. Speciation of platinum-benzoylthiourea in the gas phase using electrospray ionization mass spectrometry and density functional theory. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:947-954. [PMID: 23592196 DOI: 10.1002/rcm.6532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Determining the speciation of platinum-benzoylthiourea (Pt-BTU) in the gas phase is a challenging task due to various reaction pathways and the conformational flexibility of the BTU ligand. METHODS Electrospray ionization mass spectrometry (ESI-MS) experiments and density functional theory (DFT) based calculations were carried out to shed light on this complex reaction in the gas phase using K2 PtCl4 salt and BTU. Various Pt complexes were studied in both positive and negative ion modes of ESI-MS using a quadrupole-time-of-flight mass spectrometer. The effects of the ESI-MS experimental parameters such as capillary voltage, pH and electrolyte on the peak intensity of the Pt-BTU complex were investigated. DFT calculations employing B3LYP functional with the 6-311++G** basis set were used to characterize the geometric parameters and fragmentation patterns of various Pt complexes in the gas phase. RESULTS In the positive ion mode, complexes with differing numbers of BTU ligands coordinated to the metal ion were observed, whereas, in the negative ion mode, no species associated with BTU or with the solvent (acetonitrile) molecules were found. It was also found that Pt forms complexes with the BTU ligand in different stoichiometric ratios. For both Pt(BTU)2 and Pt(BTU)3 complexes, the BTU ligand undergoes deprotonation followed by bi-dentate coordination. DFT calculations suggest that BTU can coordinate to Pt in both cis and trans isomeric forms, which are nearly iso-energetic with a slight preference towards the trans-isomer. The preference of trans-BTU binding is attributed to the exclusive retention of intra-molecular hydrogen bonding which is absent in the cis-form. CONCLUSIONS Experimental and theoretical calculations have shown that the gas-phase interaction of BTU to Pt is very complex. The BTU ligand can coordinate to Pt in both mono-dentate and bi-dentate modes, the latter mode being favorable upon deprotonation of the BTU ligand. Furthermore, many close lying species with different geometric isomeric forms are found to be possible due to the presence of intra- and inter-molecular hydrogen bonding.
Collapse
Affiliation(s)
- Pranaw Kumar
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | | | | | | | |
Collapse
|
78
|
Kohler I, Schappler J, Rudaz S. Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine. Anal Chim Acta 2013; 780:101-9. [DOI: 10.1016/j.aca.2013.03.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 10/26/2022]
|
79
|
Li X, Zhao S, Liu YM. Evaluation of a microchip electrophoresis-mass spectrometry platform deploying a pressure-driven make-up flow. J Chromatogr A 2013; 1285:159-64. [PMID: 23473508 PMCID: PMC3602291 DOI: 10.1016/j.chroma.2013.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 01/27/2023]
Abstract
Integration of a pressure-driven make-up flow (MUF) into a microchip electrophoresis (MCE) platform in order to facilitate its coupling with electrospray ionization-mass spectrometric detection (ESI-MS) is described. In the glass/PDMS hybrid microchip, a MUF channel was made to intersect with the MCE separation channel at an angle of 45°. The MUF was generated by a syringe pump. Microscopic image results from simulation studies showed that the pressure-driven MUF and the potential-driven electroosmotic flow in the MCE separation channel could be run separately without interfering with each other and mixed well at the joint point by adjusting either the MUF flow rate or the potential applied for MCE separation. The MUF had several desirable functions, including making the start of electrospray easy and cleaning the nanoESI emitter continuously when not spraying. High separation efficiency was achieved with the proposed MCE-nanoESI-MS system in separating an amino acid mixture containing glutamine, serine, threonine, phenylalanine, and glutamic acid. All of them were baseline separated from each other within 3 min. Plate numbers of >10,000 (on a 2.5 cm MCE separation channel) were obtained. The analytical platform also showed a linear response for quantification of DOPA with a detection limit (S/N=3) of 0.10 μM. In addition, on-line derivatization of MCE elutes in order to enhance MS detection sensitivity was easily carried out by adding the tagging reagent into the MUF. These results indicated that the present system might have a good potential in MCE-MS applications.
Collapse
Affiliation(s)
- Xiangtang Li
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS, 39217
| | - Shulin Zhao
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS, 39217
- College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 51004, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS, 39217
| |
Collapse
|
80
|
Zhang Z, Zhang F, Liu Y. Recent Advances in Enhancing the Sensitivity and Resolution of Capillary Electrophoresis. J Chromatogr Sci 2013; 51:666-83. [DOI: 10.1093/chromsci/bmt012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|