51
|
Oral delivery of polyester nanoparticles for brain-targeting: Challenges and opportunities. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
52
|
Stavitskaya A, Rubtsova M, Glotov A, Vinokurov V, Vutolkina A, Fakhrullin R, Lvov Y. Architectural design of core-shell nanotube systems based on aluminosilicate clay. NANOSCALE ADVANCES 2022; 4:2823-2835. [PMID: 36132000 PMCID: PMC9419087 DOI: 10.1039/d2na00163b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/17/2022] [Indexed: 05/25/2023]
Abstract
A nanoarchitectural approach to the design of functional nanomaterials based on natural aluminosilicate nanotubes and their catalysis, and practical applications are described in this paper. We focused on the buildup of hybrid core-shell systems with metallic or organic molecules encased in aluminosilicate walls, and nanotube templates for structured silica and zeolite preparation. The basis for such an architectural design is a unique Al2O3/SiO2 dual chemistry of 50 nm diameter halloysite tubes. Their structure and site dependent properties are well combined with biocompatibility, environmental safety, and abundant availability, which makes the described functional systems scalable for industrial applications. In these organic/ceramic hetero systems, we outline drug, dye and chemical inhibitor loading inside the clay nanotubes, accomplished with their silane or amphiphile molecule surface modifications. For metal-ceramic tubule composites, we detailed the encapsulation of 2-5 nm Au, Ru, Pt, and Ag particles, Ni and Co oxides, NiMo, and quantum dots of CdZn sulfides into the lumens or their attachment at the outside surface. These metal-clay core-shell nanosystems show high catalytic efficiency with increased mechanical and temperature stabilities. The combination of halloysite nanotubes with mesoporous MCM-41 silica allowed for a synergetic enhancement of catalysis properties. Finally, we outlined the clay nanotubes' self-assembly into organized arrays with orientation and ordering similar to nematic liquid crystals, and these systems are applicable for life-related applications, such as petroleum spill bioremediation, antimicrobial protection, wound healing, and human hair coloring.
Collapse
Affiliation(s)
- Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Maria Rubtsova
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Aleksandr Glotov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Anna Vutolkina
- Chemistry Department, M. Lomonosov Moscow State University Moscow 119991 Russian Federation
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan Republic of Tatarstan 420008 Russian Federation
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University Ruston LA 71272 USA
| |
Collapse
|
53
|
Zhao YQ, Li LJ, Zhou EF, Wang JY, Wang Y, Guo LM, Zhang XX. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1751036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Lipid-based nanocarriers have been extensively investigated for drug delivery due to their advantages including biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. However, the shortcomings of traditional lipid-based nanocarriers such as insufficient targeting, capture by the reticuloendothelial system, and fast elimination limit the efficiency of drug delivery and therapeutic efficacy. Therefore, a series of multifunctional lipid-based nanocarriers have been developed to enhance the accumulation of drugs in the lesion site, aiming for improved diagnosis and treatment of various diseases. In this review, we summarized the advances and applications of lipid-based nanocarriers from traditional to novel functional lipid preparations, including liposomes, stimuli-responsive lipid-based nanocarriers, ionizable lipid nanoparticles, lipid hybrid nanocarriers, as well as biomembrane-camouflaged nanoparticles, and further discussed the challenges and prospects of this system. This exploration may give a complete idea viewing the lipid-based nanocarriers as a promising choice for drug delivery system, and fuel the advancement of pharmaceutical products by materials innovation and nanotechnology.
Collapse
Affiliation(s)
- Yan-Qi Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li-Jun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Er-Fen Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jiang-Yue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lin-Miao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
54
|
Mei L, Ji Q, Jin Z, Guo T, Yu K, Ding W, Liu C, Wu Y, Zhang N. Nano-microencapsulation of tea seed oil via modified complex coacervation with propolis and phosphatidylcholine for improving antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
55
|
Computational simulation-based study of novel ZnO Buckyball structures. J Mol Graph Model 2022; 116:108241. [DOI: 10.1016/j.jmgm.2022.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
|
56
|
Lamch Ł, Wilk KA, Dékány I, Deák Á, Hornok V, Janovák L. Rational Mitomycin Nanocarriers Based on Hydrophobically Functionalized Polyelectrolytes and Poly(lactide- co-glycolide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5404-5417. [PMID: 35442685 PMCID: PMC9097536 DOI: 10.1021/acs.langmuir.1c03360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Encapsulation of hydrophilic and amphiphilic drugs in appropriate colloidal carrier systems for sustained release is an emerging problem. In general, hydrophobic bioactive substances tend to accumulate in water-immiscible polymeric domains, and the release process is controlled by their low aqueous solubility and limited diffusion from the nanocarrier matrix. Conversely, hydrophilic/amphiphilic drugs are typically water-soluble and insoluble in numerous polymers. Therefore, a core-shell approach─nanocarriers comprising an internal core and external shell microenvironments of different properties─can be exploited for hydrophilic/amphiphilic drugs. To produce colloidally stable poly(lactic-co-glycolic) (PLGA) nanoparticles for mitomycin C (MMC) delivery and controlled release, a unique class of amphiphilic polymers─hydrophobically functionalized polyelectrolytes─were utilized as shell-forming materials, comprising both stabilization via electrostatic repulsive forces and anchoring to the core via hydrophobic interactions. Undoubtedly, the use of these polymeric building blocks for the core-shell approach contributes to the enhancement of the payload chemical stability and sustained release profiles. The studied nanoparticles were prepared via nanoprecipitation of the PLGA polymer and were dissolved in acetone as a good solvent and in an aqueous solution containing hydrophobically functionalized poly(4-styrenesulfonic-co-maleic acid) and poly(acrylic acid) of differing hydrophilic-lipophilic balance values. The type of the hydrophobically functionalized polyelectrolyte (HF-PE) was crucial for the chemical stability of the payload─derivatives of poly(acrylic acid) were found to cause very rapid degradation (hydrolysis) of MMC, in contrast to poly(4-styrenesulfonic-co-maleic acid). The present contribution allowed us to gain crucial information about novel colloidal nanocarrier systems for MMC delivery, especially in the fields of optimal HF-PE concentrations, appropriate core and shell building materials, and the colloidal and chemical stability of the system.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Kazimiera A. Wilk
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Imre Dékány
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Ágota Deák
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Viktória Hornok
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - László Janovák
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
57
|
Birlik Demirel G, Bayrak Ş. Ultrasound/redox/pH-responsive hybrid nanoparticles for triple-triggered drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
Sayed Zia Mohammadi, Mosazadeh F, Beitollah H, Barani Z. A Novel Electrochemical Sensor for Epinephrine in the Presence of Acetylcholine Based on Modified Screen-Printed Electrode. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
60
|
Controlled Drug Release of Smart Magnetic Self-Assembled Micelle, Kinetics and Transport Mechanisms. J Pharm Sci 2022; 111:2378-2388. [DOI: 10.1016/j.xphs.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
|
61
|
New Core-Shell Nanostructures for FRET Studies: Synthesis, Characterization, and Quantitative Analysis. Int J Mol Sci 2022; 23:ijms23063182. [PMID: 35328604 PMCID: PMC8952644 DOI: 10.3390/ijms23063182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
This work describes the synthesis and characterization of new core-shell material designed for Förster resonance energy transfer (FRET) studies. Synthesis, structural and optical properties of core-shell nanostructures with a large number of two kinds of fluorophores bound to the shell are presented. As fluorophores, strongly fluorescent rhodamine 101 and rhodamine 110 chloride were selected. The dyes exhibit significant spectral overlap between acceptor absorption and donor emission spectra, which enables effective FRET. Core-shell nanoparticles strongly differing in the ratio of donors to acceptor numbers were prepared. This leads to two different interesting cases: typical single-step FRET or multistep energy migration preceding FRET. The single-step FRET model that was designed and presented by some of us recently for core-shell nanoparticles is herein experimentally verified. Very good agreement between the analytical expression for donor fluorescence intensity decay and experimental data was obtained, which confirmed the correctness of the model. Multistep energy migration between donors preceding the final transfer to the acceptor can also be successfully described. In this case, however, experimental data are compared with the results of Monte Carlo simulations, as there is no respective analytical expression. Excellent agreement in this more general case evidences the usefulness of this numerical method in the design and prediction of the properties of the synthesized core-shell nanoparticles labelled with multiple and chemically different fluorophores.
Collapse
|
62
|
Koudrina A, Chartrand C, Cron GO, O'Brien J, Tsai EC, DeRosa MC. Fibrinogen aptamer functionalized gold-coated iron-oxide nanoparticles for targeted imaging of thrombi. Chem Commun (Camb) 2022; 58:2870-2873. [PMID: 35132974 DOI: 10.1039/d1cc03817f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Targeting of molecular constituents of thrombi with aptamer functionalized core-shell nanoparticles (CSN) allowed for high resolution clot delineation in T2-weighted magnetic resonance imaging. Meanwhile, the gold-coating demonstrated sufficient contrast capabilities in computed tomography (1697 HU μM-1). This targeted CSN formulation could allow for precise imaging of blood clots at low nanomolar concentrations.
Collapse
Affiliation(s)
- Anna Koudrina
- Department of Chemistry, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.
| | - Celine Chartrand
- Department of Chemistry, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.
| | - Greg O Cron
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada.,Faculty of Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada.,The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON K1H 8L6, Canada
| | | | - Eve C Tsai
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada.,Faculty of Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada.,The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON K1H 8L6, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
63
|
Sardo C, Mencherini T, Tommasino C, Esposito T, Russo P, Del Gaudio P, Aquino RP. Inulin-g-poly-D,L-lactide, a sustainable amphiphilic copolymer for nano-therapeutics. Drug Deliv Transl Res 2022; 12:1974-1990. [PMID: 35194764 PMCID: PMC9242920 DOI: 10.1007/s13346-022-01135-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
Cancer therapies started to take a big advantage from new nanomedicines on the market. Since then, research tried to better understand how to maximize efficacy while maintaining a high safety profile. Polyethylene glycol (PEG), the gold standard for nanomedicines coating design, is a winning choice to ensure a long circulation and colloidal stability, while in some cases, patients could develop PEG-directed immunoglobulins after the first administration. This lead to a phenomenon called accelerated blood clearance (ABC effect), and it is correlated with clinical failure because of the premature removal of the nanosystem from the circulation by immune mechanism. Therefore, alternatives to PEG need to be found. Here, looking at the backbone structural analogy, the hydrophilicity, flexibility, and its GRAS status, the natural polysaccharide inulin (INU) was investigated as PEG alternative. In particular, the first family of Inulin-g-poly-D,L-lactide amphiphilic copolymers (INU-PLAs) was synthesized. The new materials were fully characterized from the physicochemical point of view (solubility, 1D and 2D NMR, FT-IR, UV–Vis, GPC, DSC) and showed interesting hybrid properties compared to precursors. Moreover, their ability in forming stable colloids and to serve as a carrier for doxorubicin were investigated and compared with the already well-known and well-characterized PEGylated counterpart, polyethylene glycol-b-poly-D,L-lactide (PEG-PLA). This preliminary investigation showed INU-PLA to be able to assemble in nanostructures less than 200 nm in size and capable of loading doxorubicin with an encapsulation efficiency in the same order of magnitude of PEG-PLA analogues.
Collapse
Affiliation(s)
- Carla Sardo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Teresa Mencherini
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Carmela Tommasino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Tiziana Esposito
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Paola Russo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
64
|
Sarma S, Agarwal S, Bhuyan P, Hazarika J, Ganguly M. Resveratrol-loaded chitosan-pectin core-shell nanoparticles as novel drug delivery vehicle for sustained release and improved antioxidant activities. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210784. [PMID: 35127111 PMCID: PMC8808105 DOI: 10.1098/rsos.210784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/05/2022] [Indexed: 05/05/2023]
Abstract
Resveratrol, chemically known as 3,5,4'-trihydroxy-trans-stilbene, is a natural polyphenol with promising multi-targeted health benefits. The optimal therapeutic uses of resveratrol are limited due to its poor solubility, rapid metabolism and low bioavailability. To address the issues, we have encapsulated resveratrol inside the nanosized core made of chitosan and coated this core with pectin-shell in order to fabricate a drug delivery vehicle which can entrap resveratrol for a longer period of time. The core-shell nanoparticles fabricated in this way were characterized with the help of Fourier transform infrared spectrometer, field-emission scanning electron microscope, field-emission transmission electron microscopy/selected area electron diffraction, high-resolution transmission electron microscope, dynamic light scattering and zeta potential measurements. In vitro drug release study showed the ability of the core-shell nanoparticles to provide sustained release of resveratrol for almost 30 h. The release efficiency of the drug was found to be pH dependent, and a sequential control over drug release can be obtained by varying the shell thickness. The resveratrol encapsulated in a nanocarrier was found to have a better in vitro antioxidant activity than free resveratrol as determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. This work finally offers a novel nano-based drug delivery system.
Collapse
Affiliation(s)
- Shruti Sarma
- Cotton University, Guwahati 781001, Assam, India
| | | | | | | | | |
Collapse
|
65
|
Salim A, Ghoshal S, Bakhtiar H. Prominent absorption and luminescence characteristics of novel silver-cinnamon core-shell nanoparticles prepared in ethanol using PLAL method. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
66
|
Berta L, Coman NA, Rusu A, Tanase C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. MATERIALS 2021; 14:ma14247677. [PMID: 34947271 PMCID: PMC8705710 DOI: 10.3390/ma14247677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
The study of bimetallic nanoparticles (BNPs) has constantly been expanding, especially in the last decade. The biosynthesis of BNPs mediated by natural extracts is simple, low-cost, and safe for the environment. Plant extracts contain phenolic compounds that act as reducing agents (flavonoids, terpenoids, tannins, and alkaloids) and stabilising ligands moieties (carbonyl, carboxyl, and amine groups), useful in the green synthesis of nanoparticles (NPs), and are free of toxic by-products. Noble bimetallic NPs (containing silver, gold, platinum, and palladium) have potential for biomedical applications due to their safety, stability in the biological environment, and low toxicity. They substantially impact human health (applications in medicine and pharmacy) due to the proven biological effects (catalytic, antioxidant, antibacterial, antidiabetic, antitumor, hepatoprotective, and regenerative activity). To the best of our knowledge, there are no review papers in the literature on the synthesis and characterisation of plant-mediated BNPs and their pharmacological potential. Thus, an effort has been made to provide a clear perspective on the synthesis of BNPs and the antioxidant, antibacterial, anticancer, antidiabetic, and size/shape-dependent applications of BNPs. Furthermore, we discussed the factors that influence BNPs biosyntheses such as pH, temperature, time, metal ion concentration, and plant extract.
Collapse
Affiliation(s)
- Lavinia Berta
- Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Năstaca-Alina Coman
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
- Correspondence:
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
67
|
Aparna A, Sreehari H, Chandran A, Anjali KP, Alex AM, Anuvinda P, Gouthami GB, Pillai NP, Parvathy N, Sadanandan S, Saritha A. Ligand-protected nanoclusters and their role in agriculture, sensing and allied applications. Talanta 2021; 239:123134. [PMID: 34922101 DOI: 10.1016/j.talanta.2021.123134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Nano biotechnology, when coupled with green chemistry, can revolutionize human life because of the vast opportunities and benefits it can offer to the quality of human life. Luminescent metal nanoclusters (NCs) have recently developed as a potential research area with applications in different areas like medical, imaging, sensing etc. Recently these new candidates have proved to be beneficial in the food supply chain enabling controlled release of nutrients, pesticides and as nanosensors for the detection of contaminants and play roles in healthy food storage and maintaining food quality. An assortment of nanomaterials has been employed for these applications and reviews have been published on the use of nanotechnology in agriculture. Ligand-protected metal nanoclusters are a distinctive class of small organic-inorganic nanostructures that garnered immense research interest in recent years owing to their stability at specific "magic size" compositions along with tunable properties that make them promising candidates for a wide range of nanotechnology-based applications. This review tries to consolidate the recent developments in the area of ligand-protected nanoclusters in connection with the detection of pesticides, food contaminants, heavy metal ions and plant growth monitoring for healthy agricultural practices. Its antimicrobial activity to manage the microbial contamination is highlighted. The review also throws light on the various perspectives by which food production and allied areas will be transformed in future.
Collapse
Affiliation(s)
- Asok Aparna
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - H Sreehari
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Amrutha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - K P Anjali
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Ansu Mary Alex
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - P Anuvinda
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - G B Gouthami
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Neeraja P Pillai
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - N Parvathy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Sandhya Sadanandan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India.
| |
Collapse
|
68
|
Wen H, Xu X, Cheong S, Lo SC, Chen JH, Chang SLY, Dwyer C. Metrology of convex-shaped nanoparticles via soft classification machine learning of TEM images. NANOSCALE ADVANCES 2021; 3:6956-6964. [PMID: 36132371 PMCID: PMC9417281 DOI: 10.1039/d1na00524c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 06/15/2023]
Abstract
The shape of nanoparticles is a key performance parameter for many applications, ranging from nanophotonics to nanomedicines. However, the unavoidable shape variations, which occur even in precision-controlled laboratory synthesis, can significantly impact on the interpretation and reproducibility of nanoparticle performance. Here we have developed an unsupervised, soft classification machine learning method to perform metrology of convex-shaped nanoparticles from transmission electron microscopy images. Unlike the existing methods, which are based on hard classification, soft classification provides significantly greater flexibility in being able to classify both distinct shapes, as well as non-distinct shapes where hard classification fails to provide meaningful results. We demonstrate the robustness of our method on a range of nanoparticle systems, from laboratory-scale to mass-produced synthesis. Our results establish that the method can provide quantitative, accurate, and meaningful metrology of nanoparticle ensembles, even for ensembles entailing a continuum of (possibly irregular) shapes. Such information is critical for achieving particle synthesis control, and, more importantly, for gaining deeper understanding of shape-dependent nanoscale phenomena. Lastly, we also present a method, which we coin the "binary DoG", which achieves significant progress on the challenging problem of identifying the shapes of aggregated nanoparticles.
Collapse
Affiliation(s)
- Haotian Wen
- School of Materials Science and Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Xiaoxue Xu
- School of Mathematical and Physical Sciences, University of Technology, Sydney Ultimo NSW 2007 Australia
| | - Soshan Cheong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney NSW 2052 Australia
| | - Shen-Chuan Lo
- Material and Chemical Research Laboratories, Industrial Technology Research Institute Hsinchu Taiwan
| | - Jung-Hsuan Chen
- Material and Chemical Research Laboratories, Industrial Technology Research Institute Hsinchu Taiwan
| | - Shery L Y Chang
- School of Materials Science and Engineering, University of New South Wales Sydney NSW 2052 Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney NSW 2052 Australia
| | - Christian Dwyer
- Electron Imaging and Spectroscopy Tools PO Box 506 Sans Souci NSW 2219 Australia
- Physics, School of Science, RMIT University Melbourne Victoria 3001 Australia
| |
Collapse
|
69
|
Influence of Spatial Dispersion on the Electromagnetic Properties of Magnetoplasmonic Nanostructures. NANOMATERIALS 2021; 11:nano11123297. [PMID: 34947646 PMCID: PMC8708994 DOI: 10.3390/nano11123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Magnetoplasmonics based on composite nanostructures is widely used in many biomedical applications. Nanostructures, consisting of a magnetic core and a gold shell, exhibit plasmonic properties, that allow the concentration of electromagnetic energy in ultra-small volumes when used, for example, in imaging and therapy. Magnetoplasmonic nanostructures have become an indispensable tool in nanomedicine. The gold shell protects the core from oxidation and corrosion, providing a biocompatible platform for tumor imaging and cancer treatment. By adjusting the size of the core and the shell thickness, the maximum energy concentration can be shifted from the ultraviolet to the near infrared, where the depth of light penetration is maximum due to low scattering and absorption by tissues. A decrease in the thickness of the gold shell to several nanometers leads to the appearance of the quantum effect of spatial dispersion in the metal. The presence of the quantum effect can cause both a significant decrease in the level of energy concentration by plasmon particles and a shift of the maxima to the short-wavelength region, thereby reducing the expected therapeutic effect. In this study, to describe the influence of the quantum effect of spatial dispersion, we used the discrete sources method, which incorporates the generalized non-local optical response theory. This approach made it possible to account for the influence of the nonlocal effect on the optical properties of composite nanoparticles, including the impact of the asymmetry of the core-shell structure on the energy characteristics. It was found that taking spatial dispersion into account leads to a decrease in the maximum value of the concentration of electromagnetic energy up to 25%, while the blue shift can reach 15 nm.
Collapse
|
70
|
HODA N, BUDAMA AKPOLAT L, MERT SİVRİ F, KURTULUŞ D. Biosynthesis of Bimetallic Ag-Au (core-shell) Nanoparticles Using Aqueous Extract of Bay Leaves (Laurus nobilis L.). JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.885558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
71
|
Ahmadi M, Pourmadadi M, Ghorbanian SA, Yazdian F, Rashedi H. Ultra pH-sensitive nanocarrier based on Fe 2O 3/chitosan/montmorillonite for quercetin delivery. Int J Biol Macromol 2021; 191:738-745. [PMID: 34517028 DOI: 10.1016/j.ijbiomac.2021.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023]
Abstract
Harmful side effects of the chemotherapeutic agent have been investigated in many recent studies. Since Fe2O3 nanoparticles have proper porosity, they are capable for loading noticeable amount of drugs and controlled release. We developed Fe2O3/chitosan/montmorillonite nanocomposite. Quercetin (QC) nanoparticles, which have fewer side effects than chemical anti-tumor drugs, were encapsulated in the synthesized nanocarrier and were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), dynamic light scattering (DLS), and zeta potential. For quercetin, the encapsulation efficiency and the loading efficiency of the drug in Fe2O3-CS-MMT@QC were found to be about 94% and 57%, respectively. The release profile of QC in different mediums indicated pH-dependency and controlled release of the nanocomposite, adhering to The Weibull kinetic model. Biocompatibility of the Fe2O3/CS/MMT nanoparticles against the MCF-7 cells was shown by MTT assay and confirmed by flow cytometry. These data demonstrate that the designed Fe2O3-CS-MMT@QC would have potential drug delivery to treat cancer cells.
Collapse
Affiliation(s)
- Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Iran
| | - Sohrab Ali Ghorbanian
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Iran.
| | - Hamid Rashedi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
72
|
Bonnet S, Elfatairi R, Franconi F, Roger E, Legeay S. Organic nanoparticle tracking during pharmacokinetic studies. Nanomedicine (Lond) 2021; 16:2539-2536. [PMID: 34814704 DOI: 10.2217/nnm-2021-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To understand how nanoparticles (NPs) interact with biological barriers and to ensure they maintain their integrity over time, it is crucial to study their in vivo pharmacokinetic (PK) profiles. Many methods of tracking have been used to describe the in vivo fate of NPs and to evaluate their PKs and structural integrity. However, they do not deliver the same level of information and this may cause misinterpretations. Here, the authors review and discuss the different methods for in vivo tracking of organic NPs. Among them, Förster resonance energy transfer (FRET) presents great potential to track NPs' integrity. However, FRET still requires validated methods to extract and quantify NPs in biological fluids and tissues.
Collapse
Affiliation(s)
- Samuel Bonnet
- Université d'Angers, PRISM, SFR ICAT, Plate-forme de recherche en imagerie et spectroscopie multi-modales, Angers F-49000, France
| | - Rana Elfatairi
- Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| | - Florence Franconi
- Université d'Angers, PRISM, SFR ICAT, Plate-forme de recherche en imagerie et spectroscopie multi-modales, Angers F-49000, France.,Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| | - Emilie Roger
- Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| | - Samuel Legeay
- Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| |
Collapse
|
73
|
Robalino DH, Durán del Amor MDM, Almagro Gómez CM, Hernández Cifre JG. Aggregation of Gold Nanoparticles in Presence of the Thermoresponsive Cationic Diblock Copolymer PNIPAAM 48-b-PAMPTMA 6. Polymers (Basel) 2021; 13:4066. [PMID: 34883571 PMCID: PMC8658865 DOI: 10.3390/polym13234066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
The adsorption of the thermoresponsive positively charged copolymer poly(N-isopropylacrylamide)-block-poly(3-acrylamidopropyl)trimethylammonium chloride, PNIPAAM48-b-PAMPTMA6(+), onto negatively charged gold nanoparticles can provide stability to the nanoparticles and make the emerging structure tunable by temperature. In this work, we characterize the nanocomposite formed by gold nanoparticles and copolymer chains and study the influence of the copolymer on the expected aggregation process that undergoes those nanoparticles at high ionic strength. We also determine the lower critical solution temperature (LCST) of the copolymer (around 42 °C) and evaluate the influence of the temperature on the nanocomposite. For those purposes, we use dynamic light scattering, UV-vis spectroscopy and transmission electron microscopy. At the working PNIPAAM48-b-PAMPTMA6(+) concentration, we observe the existence of copolymer structures that trap the gold nanoparticles and avoid the formation of nanoparticles aggregates. Finally, we discuss how these structures can be useful in catalysis and nanoparticles recovery.
Collapse
Affiliation(s)
- David Herrera Robalino
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain; (D.H.R.); (C.M.A.G.)
| | | | - Carmen María Almagro Gómez
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain; (D.H.R.); (C.M.A.G.)
| | - José Ginés Hernández Cifre
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain; (D.H.R.); (C.M.A.G.)
| |
Collapse
|
74
|
Recent advancements and future submissions of silica core-shell nanoparticles. Int J Pharm 2021; 609:121173. [PMID: 34627997 DOI: 10.1016/j.ijpharm.2021.121173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
The core-shell silica-based nanoparticles (CSNPs) possess outstanding properties for developing next-generation therapeutics. CSNPs provide greater surface area owing to their mesoporous structure, which offers a high opportunity for surface modification. This review highlights the potential of core-shell silica-based nanoparticle (CSNP) based injectable nanotherapeutics (INT); its role in drug delivery, biomedical imaging, light-triggered phototherapy, Plasmonic enhancers, gene delivery, magnetic hyperthermia, immunotherapy, and potential as next-generation theragnostic. Specifically, the conceptual crosstalk on modern synthetic strategies, biodistribution profiles with a mechanistic view on the therapeutics loading and release modeling are dealt in detail. The manuscript also converses the challenges associated with CSNPs, regulatory hurdles, and their current market position.
Collapse
|
75
|
Aayanifard Z, Alebrahim T, Pourmadadi M, Yazdian F, Dinani HS, Rashedi H, Omidi M. Ultra pH-sensitive detection of total and free prostate-specific antigen using electrochemical aptasensor based on reduced graphene oxide/gold nanoparticles emphasis on TiO 2/carbon quantum dots as a redox probe. Eng Life Sci 2021; 21:739-752. [PMID: 34764826 PMCID: PMC8576073 DOI: 10.1002/elsc.202000118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/30/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The development of a rapid, sensitive, and straightforward detection method of prostate-specific antigen (PSA) is indispensable for the early diagnosis of prostate cancer (PCa). This work relates an electrochemical method using functionalized single-stranded DNA aptamer to diagnose PCa and benign prostate hyperplasia. The sensing platform relies on PSA recognition by aptamer/Au/GO-nanohybrid-modified glassy carbon electrode. Besides ferrocyanide TiO2/carbon quantum dots (CQDs) probe is used to investigate the effect of nanoparticle-containing electrolyte. Optimization of incubation time of aptamer/Au/GO-nanohybrid and volume fraction of nafion were done using Design Expert 10 software reporting 42.4 h and 0.095% V/V, respectively. In ferrocyanide medium, PSA detection as low as 3, 2.96, and 0.85 ng mL-1 was achieved with a dynamic range from 0.5 to 7 ng ml-1, in accord with clinical values, using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy, respectively. Moreover, this sensor exhibited conspicuous performance in TiO2/CQDs-containing medium with different pH values of 5.4 and 8 to distinguish total PSA and free PSA, resulting in very low limit of detections, 0.028, and 0.007 ng ml-1, respectively. The results manifested the proposed system as a forthcoming sensor in a clinical and point of care analysis of PSA.
Collapse
Affiliation(s)
- Zahra Aayanifard
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Talieh Alebrahim
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | | | - Fatemeh Yazdian
- Department of Life Science EngineeringFaculty of New Science and TechnologiesUniversity of TehranTehranIran
| | | | - Hamid Rashedi
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Meisam Omidi
- Protein Research CenterShahid Beheshti UniversityTehranIran
| |
Collapse
|
76
|
Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm 2021; 608:121094. [PMID: 34534631 DOI: 10.1016/j.ijpharm.2021.121094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023]
Abstract
The treatment effect of chemotherapeutics is often impeded by nonspecific biodistribution and limited biocompatibility. Polymeric core-shell nanocarriers (PCS NCs) composed of a polymer core and at least one shell have been widely applied for cancer therapy and have shown great potential in selectively delivering chemotherapeutic drugs to tumor sites. These PCS NCs can effectively ameliorate the delivery efficiency and therapeutic index of anticarcinogens by prolonging drug residence in the bloodstream, enhancing tumor tissue drug penetration, facilitating cellular drug uptake, controlling the spatiotemporal release of payloads, or codelivering two or more bioactive agents. This review summarizes recently published literature on using PCS NCs to transport chemotherapeutic drugs with poor aqueous solubility and discusses their design principles, structural features, functional properties, and potential limitations.
Collapse
|
77
|
Georgiev NI, Bryaskova RG, Ismail SR, Philipova ND, Uzunova VP, Bakov VV, Tzoneva RD, Bojinov VB. Aggregation induced emission in 1,8-naphthalimide embedded nanomicellar architecture as a platform for fluorescent ratiometric pH-probe with biomedical applications. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
78
|
Abbasi Kajani A, Haghjooy Javanmard S, Asadnia M, Razmjou A. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5908-5925. [PMID: 35006909 DOI: 10.1021/acsabm.1c00591] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is considered one of the leading causes of death, with a growing number of cases worldwide. However, the early diagnosis and efficient therapy of cancer have remained a critical challenge. The emergence of nanomedicine has opened up a promising window to address the drawbacks of cancer detection and treatment. A wide range of engineered nanomaterials and nanoplatforms with different shapes, sizes, and composition has been developed for various biomedical applications. Nanomaterials have been increasingly used in various applications in bioimaging, diagnosis, and therapy of cancers. Recently, numerous multifunctional and smart nanoparticles with the ability of simultaneous diagnosis and targeted cancer therapy have been reported. The multidisciplinary attempts led to the development of several exciting clinically approved nanotherapeutics. The nanobased materials and devices have also been used extensively to develop point-of-care and highly sensitive methods of cancer detection. In this review article, the most significant achievements and latest advances in the nanomaterials development for cancer nanomedicine are critically discussed. In addition, the future perspectives of this field are evaluated.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Asadnia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
79
|
Assessing Suitability of Co@Au Core/Shell Nanoparticle Geometry for Improved Theranostics in Colon Carcinoma. NANOMATERIALS 2021; 11:nano11082048. [PMID: 34443879 PMCID: PMC8401835 DOI: 10.3390/nano11082048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
The interactions between cells and nanomaterials at the nanoscale play a pivotal role in controlling cellular behavior and ample evidence links cell intercommunication to nanomaterial size. However, little is known about the effect of nanomaterial geometry on cell behavior. To elucidate this and to extend the application in cancer theranostics, we have engineered core–shell cobalt–gold nanoparticles with spherical (Co@Au NPs) and elliptical morphology (Co@Au NEs). Our results show that owing to superparamagnetism, Co@Au NPs can generate hyperthermia upon magnetic field stimulation. In contrast, due to the geometric difference, Co@Au NEs can be optically excited to generate hyperthermia upon photostimulation and elevate the medium temperature to 45 °C. Both nanomaterial geometries can be employed as prospective contrast agents; however, at identical concentration, Co@Au NPs exhibited 4-fold higher cytotoxicity to L929 fibroblasts as compared to Co@Au NEs, confirming the effect of nanomaterial geometry on cell fate. Furthermore, photostimulation-generated hyperthermia prompted detachment of anti-cancer drug, Methotrexate (MTX), from Co@Au NEs-MTX complex and which triggered 90% decrease in SW620 colon carcinoma cell viability, confirming their application in cancer theranostics. The geometry-based perturbation of cell fate can have a profound impact on our understanding of interactions at nano-bio interface which can be exploited for engineering materials with optimized geometries for superior theranostic applications.
Collapse
|
80
|
Singh R, Bhateria R. Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2459-2482. [PMID: 33161517 DOI: 10.1007/s10653-020-00766-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
With the pace of time, synthesis of nanomaterials has paved paths to blend two or more materials having different properties into hybrid nanoparticles. Therefore, it has become possible to combine two different functionalities in a single nanoparticle and their properties can be enhanced or modified by coupling of two different components. Core-shell technology has now represented a new trend in analytical sciences. Core-shell nanostructures are in demand due to their specific design and geometry. They have internal core of one component (metal or biomolecules) surrounded by a shell of another component. Core-shell nanoparticles have great importance due to their high thermal stability, high solubility and lower toxicity. In this review, recent progress in development of new and sophisticated core-shell nanostructures has been explored. The first section covers introduction throwing light on basics of core-shell nanoparticles. Following section classifies core-shell nanostructures into single core/shell, multicore/single shell, single core/multishell and multicore/multishell nanostructures. Next main section gives a brief description on types of core-shell nanomaterials followed by processes for the synthesis of core-shell nanostructures. Ultimately, the final section focuses on the application areas such as drug delivery, bioimaging, solar cell applications etc.
Collapse
Affiliation(s)
- Rimmy Singh
- Department of Environmental Sciences, MDU, Rohtak, India
| | | |
Collapse
|
81
|
Enzyme-responsive polysaccharide supramolecular nanoassembly for enhanced DNA encapsulation and controlled release. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
82
|
Tian Y, Luo W, Wang Y, Yu Y, Huang W, Tang H, Zheng Y, Liu Z. Ultrasound-assisted fast encapsulation of metal microparticles in SiO 2 via an interface-confined sol-gel method. ULTRASONICS SONOCHEMISTRY 2021; 73:105484. [PMID: 33578276 PMCID: PMC7881267 DOI: 10.1016/j.ultsonch.2021.105484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Although the traditional Stoˇber process-based methods are widely used for encapsulation of metal nanoparticles in SiO2, these time-consuming methods are not effective for coating metal microparticles with a uniform SiO2 layer of desired thickness. Herein, an ultrasound-assisted, interface-confined sol-gel method is proposed for fast encapsulation of metal microparticles in SiO2, and the encapsulation of Sn microparticles is chosen as an example to illustrate its feasibility. The proposed method involves covering metal microparticles with liquid films that contain water, alcohol, surfactant (Span-80) and catalyst (NH4F) and then ultrasonically dispersing these particles into cyclohexane, where tetraethylorthosilicate (TEOS) is added. To ensure the hydrolysis-condensation reactions of TEOS occurring at the particle-cyclohexane interface so that the formed SiO2 is coated on the particles, the microparticles should be well dispersed into cyclohexane with the liquid films being not broken away from their surfaces. It is found that the assistance of probe sonication and the addition of surfactant are crucial to achievement of a good dispersion of metal microparticles in cyclohexane. And using high-viscosity alcohol (namely glycerol), controlling the volume ratio of water to alcohol and the amount of water, and choosing a suitable ultrasonic power are essential for preventing the formation of free SiO2 (namely SiO2 that is not coated on the particles), which is a result that the liquid films escape from the particle surfaces under ultrasonic cavitation. Our results have also revealed that the thickness of SiO2 layer can be adjusted by changing the reaction time or the total amount of water. In particular, the thickness of SiO2 layer can be easily raised by simply repeating the encapsulation procedure. Compared with the traditional Stoˇber process-based methods, the proposed method is time-saving (reaction time: about 30 min vs. more than 12 h) and extremely effective for coating microparticles with a continuous, uniform SiO2 layer of desired thickness.
Collapse
Affiliation(s)
- Youwen Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, PR China
| | - Wei Luo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, PR China
| | - Yedan Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, PR China
| | - Yun Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, PR China
| | - Wanzhen Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, PR China
| | - Haodong Tang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, PR China
| | - Yifan Zheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, PR China
| | - Zongjian Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 300014, PR China.
| |
Collapse
|
83
|
Aminolroayaei F, Shahbazi‐Gahrouei D, Shahbazi‐Gahrouei S, Rasouli N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol 2021; 15:247-256. [PMID: 34694670 PMCID: PMC8675832 DOI: 10.1049/nbt2.12021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Nanotheranostics has attracted much attention due to its widespread application in molecular imaging and cancer therapy. Molecular imaging using nanoparticles has attracted special attention in the diagnosis of cancer at early stages. With the progress made in nanotheranostics, studying drug release, accumulation in the target tissue, biodistribution, and treatment effectiveness are other important factors. However, according to the studies conducted in this regard, each nanoparticle has some advantages and limitations that should be examined and then used in clinical applications. The main goal of this review is to explore the recent advancements in nanotheranostics for cancer therapy and diagnosis. Then, it is attempted to present recent studies on nanotheranostics used as a contrast agent in various imaging modalities and a platform for cancer therapy.
Collapse
Affiliation(s)
- Fahimeh Aminolroayaei
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | | | | | - Naser Rasouli
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
84
|
Nematollahi E, Pourmadadi M, Yazdian F, Fatoorehchi H, Rashedi H, Nigjeh MN. Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-Alumina as a pH-sensitive carrier for controlled release of quercetin. Int J Biol Macromol 2021; 183:600-613. [PMID: 33932424 DOI: 10.1016/j.ijbiomac.2021.04.160] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/04/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
pH-sensitive drug delivery systems based on amphiphilic copolymers constitute a promising strategy to overcome some challenges to cancer treatment. In the present study, quercetin-loaded chitosan/polyvinylpyrrolidone/γ-Alumina nanocomposite was fabricated through a double oil in water emulsification method for the first time. γ-Alumina was incorporated to improve the drug loading efficiency and release behavior of polyvinylpyrrolidone and chitosan copolymeric hydrogel. γ-Alumina nanoparticles were obtained by the sol-gel method with a nanoporous structure, high surface area, and hydroxyl-rich surface. Quercetin, a natural anticancer agent, was loaded into the nanocomposite as a drug model. XRD and FTIR analyses confirmed the crystalline properties and chemical bonding of the prepared nanocomposite. The size of drug-loaded nanocomposites was 141 nm with monodisperse particle distribution, having a spherical shape approved by DLS analysis and FE-SEM, respectively. Incorporating γ-Alumina nanoparticles improved the encapsulation efficiency up to 95%. Besides, swelling study and the quercetin release profile demonstrated that γ-Alumina ameliorated pH sensitivity of nanocomposite and a targeted controlled release was obtained. Various release kinetic models were applied to the experimental release data to study the mechanism of drug release. Through MTT assay and flow cytometry, the quercetin-loaded nanocomposite showed significant cytotoxicity on MCF-7 breast cancer cells. Also, the enhanced apoptotic cell death confirmed the anticancer activity of γ-Alumina. These results suggest that the chitosan/polyvinylpyrrolidone/γ-Alumina nanocomposite is a novel pH-sensitive drug delivery system for anticancer applications.
Collapse
Affiliation(s)
- Elnaz Nematollahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hooman Fatoorehchi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Navaei Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
85
|
Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties. NANOMATERIALS 2021; 11:nano11040950. [PMID: 33917921 PMCID: PMC8068263 DOI: 10.3390/nano11040950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Hybrid nanoparticles composed of an efficient nonlinear optical core and a gold shell can enhance and tune the nonlinear optical emission thanks to the plasmonic effect. However the influence of an incomplete gold shell, i.e., isolated gold nano-islands, is still not well studied. Here LiNbO3 (LN) core nanoparticles of 45 nm were coated with various densities of gold nano-seeds (AuSeeds). As both LN and AuSeeds bear negative surface charge, a positively-charged polymer was first coated onto LN. The number of polymer chains per LN was evaluated at 1210 by XPS and confirmed by fluorescence titration. Then, the surface coverage percentage of AuSeeds onto LN was estimated to a maximum of 30% using ICP-AES. The addition of AuSeeds was also accompanied with surface charge reversal, the negative charge increasing with the higher amount of AuSeeds. Finally, the first hyperpolarizability decreased with the increase of AuSeeds density while depolarization values for Au-seeded LN were close to the one of bare LN, showing a predominance of the second harmonic volumic contribution.
Collapse
|
86
|
|
87
|
Dhiman S, Yadav A, Debnath N, Das S. Application of Core/Shell Nanoparticles in Smart Farming: A Paradigm Shift for Making the Agriculture Sector More Sustainable. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3267-3283. [PMID: 33719438 DOI: 10.1021/acs.jafc.0c05403] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modern agriculture has entered an era of technological plateau where intervention of smarter technology like nanotechnology is imminently required for making this sector economically and environmentally sustainable. Throughout the world, researchers are trying to exploit the novel properties of several nanomaterials to make agricultural practices more efficient. Core/shell nanoparticles (CSNs) have attracted much attention because of their multiple attractive novel features like high catalytic, optical, and electronic properties for which they are being widely used in sensing, imaging, and medical applications. Though it also has the promise to solve a number of issues related to agriculture, its full potential still remains mostly unexplored. This review provides a panoramic view on application of CSNs in solving several problems related to crop production and precision farming practices where the wastage of resources can be minimized. This review also summarizes different classes of CSNs and their synthesis techniques. It emphasizes and analyzes the probable potential applications of CSNs in the field of crop improvement and crop protection, detection of plant diseases and agrochemical residues, and augmentation of chloroplast mediated photosynthesis. In a nutshell, there is enormous scope to formulate and design CSN-based smart tools for applications in agriculture, making this sector more sustainable.
Collapse
Affiliation(s)
- Shikha Dhiman
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Annu Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Nitai Debnath
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Sumistha Das
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
88
|
Chen MZ, Chu CY, Mansel BW, Chang PC. Hierarchical structure in poly(N-vinyl carbazole)/Fe 3O 4 nanocomposites and the relevant magnetic coercivity. SOFT MATTER 2021; 17:3055-3067. [PMID: 33623943 DOI: 10.1039/d0sm02275f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we report the dependence of the nanoparticle dispersion on the zero-conversion initiator efficiency in the nanocomposites formed by poly(N-vinyl carbazole) (PNVK) and acrylic acid-modified iron oxide (AA-Fe3O4) nanoparticles via free radical solution polymerization of the precursor solution, that is, a thorough mixture of 28.5 wt% AA-Fe3O4 nanoparticles and the N-vinyl carbazole (NVK) monomer with the solvent dimethylformamide and azobisisobutyronitrile as an initiator. Here three different types of the dispersion state of AA-Fe3O4 nanoparticles in the PNVK matrix have been distinguished by a combined approach of transmission electron microscopy and small-angle X-ray scattering coupled with real-space models of the nanoparticle assemblies. When the polymerization proceeded with a higher zero-conversion initiator efficiency (f°) by pre-polymerization at 115 °C, the generation of a large amount of free radicals could efficiently induce the dominant surface-initiated polymerization of the NVK monomer with the vinyl groups of tethered acrylic acids; in this case, the constitution of "shorter multiple grafted PNVK chains" threaded AA-Fe3O4 nanoparticles to form particle branches and the branches were joined together from branching points along each branch, thereby forming the network structure. However, once the polymerization was conducted at a lower f° by pre-polymerization at 75 °C, a significant reduction in the generation of free radicals likely greatly reduced the efficiency in the occurrence of surface-initiated polymerization at particle surfaces; nevertheless, the self-polymerization of the NVK monomer could still take place to induce a local demixing between the polymerizing longer PNVK chains and AA-Fe3O4 nanoparticles via the attractive depletion mechanism, thus locally leading to the formation of small aggregates. While if the f° was controlled to be intermediate by polymerization at 100 °C, an optimal balance between the rates of the surface-initiated polymerization and the self-polymerization induced a collective construction built from the network and aggregate structures, exhibiting the structural characteristics of large aggregates. Furthermore, the magnetic coercivity of PNVK/AA-Fe3O4 nanocomposites was found to depend on the dispersion state of the AA-Fe3O4 nanoparticles, presenting a tendency towards enhanced coercivity as the dispersion state changed from large aggregates to small aggregates to network structure.
Collapse
Affiliation(s)
- Meng Z Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | | | | | | |
Collapse
|
89
|
Eren ED, Moradi MA, Friedrich H, de With G. Building Reversible Nanoraspberries. NANO LETTERS 2021; 21:2232-2239. [PMID: 33600190 PMCID: PMC8031639 DOI: 10.1021/acs.nanolett.0c05059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Indexed: 06/12/2023]
Abstract
The adsorption mechanism of small positively charged silica nanoparticles (SiO2 NPs) onto larger polystyrene latex nanoparticles (PSL NPs) forming hybrid particles was studied. CryoTEM showed the morphology of these supraparticles to be raspberry-like. After surface modification of the SiO2 NPs, the optimum pH regime to initiate the formation of nanoraspberries was determined. Thereafter, their size evolution was evaluated by dynamic light scattering for different surface charge densities. Reversibility of nanoraspberry formation was shown by cycling the pH of the mixture to make interparticle forces either attractive or repulsive, while their stability was confirmed experimentally. The number of SiO2 NPs on the PSL NPs as determined with cryoTEM matched the theoretically expected maximum number. Understanding and controlling the relevant parameters, such as size and charge of the individual particles and the Debye length, will pave the way to better control of the formation of nanoraspberries and higher-order assemblies thereof.
Collapse
Affiliation(s)
- E. Deniz Eren
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Mohammad-Amin Moradi
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - Gijsbertus de With
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
90
|
Sivasankari S, Kalaivizhi R, Gowriboy N. Cellulose Acetate (CA) Membrane Tailored with Fe
3
O
4
@ZnO Core Shell Nanoparticles: Fabrication, Structural analysis and Its Adsorption Analysis. ChemistrySelect 2021. [DOI: 10.1002/slct.202004689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Selvam Sivasankari
- Department of Chemistry SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 Tamilnadu India
| | - Rajappan Kalaivizhi
- Department of Chemistry SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 Tamilnadu India
| | - Natesan Gowriboy
- Department of Chemistry SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 Tamilnadu India
| |
Collapse
|
91
|
Farmanbordar H, Amini-Fazl MS, Mohammadi R. pH-Sensitive silica-based core–shell nanogel prepared via RAFT polymerization: investigation of the core size effect on the release profile of doxorubicin. NEW J CHEM 2021. [DOI: 10.1039/d1nj03304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novelty of this work is the synthesis of a core–shell nanogel that is based on silica nanoparticles as the core with different sizes via RAFT polymerization and its application to drug delivery.
Collapse
Affiliation(s)
- Hassan Farmanbordar
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
92
|
Leitner NS, Schroffenegger M, Reimhult E. Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin. ACS APPLIED BIO MATERIALS 2020; 4:795-806. [PMID: 33490885 PMCID: PMC7818653 DOI: 10.1021/acsabm.0c01355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
Abstract
![]()
Nanoparticles
find increasing applications in life science and
biomedicine. The fate of nanoparticles in a biological system is determined
by their protein corona, as remodeling of their surface properties
through protein adsorption triggers specific recognition such as cell
uptake and immune system clearance and nonspecific processes such
as aggregation and precipitation. The corona is a result of nanoparticle–protein
and protein–protein interactions and is influenced by particle
design. The state-of-the-art design of biomedical nanoparticles is
the core–shell structure exemplified by superparamagnetic iron
oxide nanoparticles (SPIONs) grafted with dense, well-hydrated polymer
shells used for biomedical magnetic imaging and therapy. Densely grafted
polymer chains form a polymer brush, yielding a highly repulsive barrier
to the formation of a protein corona via nonspecific
particle–protein interactions. However, recent studies showed
that the abundant blood serum protein albumin interacts with dense
polymer brush-grafted SPIONs. Herein, we use isothermal titration
calorimetry to characterize the nonspecific interactions between human
serum albumin, human serum immunoglobulin G, human transferrin, and
hen egg lysozyme with monodisperse poly(2-alkyl-2-oxazoline)-grafted
SPIONs with different grafting densities and core sizes. These particles
show similar protein interactions despite their different “stealth”
capabilities in cell culture. The SPIONs resist attractive interactions
with lysozymes and transferrins, but they both show a significant
exothermic enthalpic and low exothermic entropic interaction with
low stoichiometry for albumin and immunoglobulin G. Our results highlight
that protein size, flexibility, and charge are important to predict
protein corona formation on polymer brush-stabilized nanoparticles.
Collapse
Affiliation(s)
- Nikolaus Simon Leitner
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| | - Martina Schroffenegger
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| |
Collapse
|
93
|
Solin K, Beaumont M, Rosenfeldt S, Orelma H, Borghei M, Bacher M, Opietnik M, Rojas OJ. Self-Assembly of Soft Cellulose Nanospheres into Colloidal Gel Layers with Enhanced Protein Adsorption Capability for Next-Generation Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004702. [PMID: 33215868 DOI: 10.1002/smll.202004702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Soft cationic core/shell cellulose nanospheres can deform and interpenetrate allowing their self-assembly into densely packed colloidal nanogel layers. Taking advantage of their water-swelling capacity and molecular accessibility, the nanogels are proposed as a new and promising type of coating material to immobilize bioactive molecules on thin films and paper. The specific and nonspecific interactions between the cellulosic nanogel and human immunoglobulin G as well as bovine serum albumin (BSA) are investigated. Confocal microscopy, electroacoustic microgravimetry, and surface plasmon resonance are used to access information about the adsorption behavior and viscoelastic properties of self-assembled nanogels. A significant BSA adsorption capacity on nanogel layers (17 mg m-2 ) is measured, 300% higher compared to typical polymer coatings. This high protein affinity further confirms the promise of the introduced colloidal gel layer, in increasing sensitivity and advancing a new generation of substrates for a variety of applications, including immunoassays, as demonstrated in this work.
Collapse
Affiliation(s)
- Katariina Solin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
| | - Marco Beaumont
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
- Department of Chemistry, Institute of Chemistry for Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln, A-3430, Austria
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Hannes Orelma
- VTT - Technical Research Centre of Finland, Tietotie 4E, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Maryam Borghei
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
| | - Markus Bacher
- Department of Chemistry, Institute of Chemistry for Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln, A-3430, Austria
| | | | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
- The Bioproducts Institute, Department of Chemical and Biological Engineering, and Department of Chemistry and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
94
|
Resende G, Dutra GVS, Neta MSB, Araújo OA, Chaves SB, Machado F. Well Defined Poly(Methyl Methacrylate)-Fe 3O 4/Poly(Vinyl Pivalate) Core-Shell Superparamagnetic Nanoparticles: Design and Evaluation of In Vitro Cytotoxicity Activity Against Cancer Cells. Polymers (Basel) 2020; 12:E2868. [PMID: 33266092 PMCID: PMC7760038 DOI: 10.3390/polym12122868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of this work is to develop and characterize polymeric nanoparticles with core-shell morphology through miniemulsion polymerization combined with seeded emulsion polymerization, aiming at the application in the treatment of vascular tumors via intravascular embolization. The synthesis of the core-shell nanocomposites was divided into two main steps: (i) Formation of the core structure, consisting of poly(methyl methacrylate)/magnetic oxide coated with oleic acid (OM-OA) via miniemulsion and (ii) shell structure produced through seeded emulsion polymerization of vinyl pivalate. Nanocomposites containing about 8 wt.% of OM-OA showed high colloidal stability, mean diameter of 216.8 nm, spherical morphology, saturation magnetization (Ms) of 4.65 emu·g-1 (57.41 emu·g-1 of Fe3O4), preserved superparamagnetic behavior and glass transition temperature (Tg) of 111.8 °C. TEM micrographs confirmed the obtaining of uniformly dispersed magnetic nanoparticles in the PMMA and that the core-shell structure was obtained by seeded emulsion with Ms of 1.35 emu·g-1 (56.25 emu·g-1 of Fe3O4) and Tg of 114.7 °C. In vitro cytotoxicity assays against murine tumor of melanoma (B16F10) and human Keratinocytes (HaCaT) cell lines were carried out showing that the core-shell magnetic polymeric materials (a core, consisting of poly(methyl methacrylate)/Fe3O4 and, a shell, formed by poly(vinyl pivalate)) presented high cell viabilities for both murine melanoma tumor cell lines, B16F10, and human keratinocyte cells, HaCaT.
Collapse
Affiliation(s)
- Graciane Resende
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (G.R.); (G.V.S.D.)
| | - Gabriel V. S. Dutra
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (G.R.); (G.V.S.D.)
| | - Maria S. B. Neta
- Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (M.S.B.N.); (S.B.C.)
| | - Olacir A. Araújo
- Universidade Estadual de Goiás, Campus Central—Ciências Exatas e Tecnológicas, CP 459, CEP 75132-903 Anápolis, GO, Brazil;
| | - Sacha B. Chaves
- Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (M.S.B.N.); (S.B.C.)
| | - Fabricio Machado
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (G.R.); (G.V.S.D.)
| |
Collapse
|
95
|
Talone A, Ruggiero L, Slimani S, Imperatori P, Barucca G, Ricci MA, Sodo A, Peddis D. Magnetic mesoporous silica nanostructures: investigation of magnetic properties. NANOTECHNOLOGY 2020; 31:465707. [PMID: 32877370 DOI: 10.1088/1361-6528/abac7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic mesoporous silica (MS) nanocomposites provide the possibility of generating multi-functional objects for application in different technological areas. This paper focuses on the magnetic properties of nanocomposites constituted by spinel iron oxide nanoparticles (magnetic nanoparticles (MNPs), < D > ≈ 8-9 nm) embedded in an MS matrix. The mesoporous structure of the silica matrix and the presence of the nanoparticles inside clearly emerge from transmission electron microscopy (TEM) measurements. Low temperature (5 K) field-dependent magnetization measurements reveal saturation magnetization (MS ) close to bulk value (M S bulk ∼ 90 emu g-1) for both MNPs and MNP/MS nanocomposites, indicating that the presence of silica does not affect the magnetic features of the single MNPs. Moreover, the dependence of the remanent magnetization on field (i.e. δM plots) at low temperature has shown a small but evident decrease of interaction in an MNP/MS sample with respect to MNP samples A m2 Kg-1. Finally, a partial orientation of the easy axis is observed when the MNPs are embedded in the silica matrix.
Collapse
Affiliation(s)
- A Talone
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Monterotondo Scalo (RM), Italy. Dipartimento di Scienze, Università degli Studi 'Roma Tre', Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Prabha S, Durgalakshmi D, Rajendran S, Lichtfouse E. Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:1667-1691. [PMID: 33199978 PMCID: PMC7658439 DOI: 10.1007/s10311-020-01123-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/17/2020] [Indexed: 05/05/2023]
Abstract
Silica nanoparticles have rapidly found applications in medicine, supercapacitors, batteries, optical fibers and concrete materials, because silica nanoparticles have tunable physical, chemical, optical and mechanical properties. In most applications, high-purity silica comes from synthetic organic precursors, yet this approach could be costly, polluting and non-biocompatible. Alternatively, natural silica sources from biomass are often cheap and abundant, yet they contain impurities. Silica can be extracted from corn cob, coffee husk, rice husk, sugarcane bagasse and wheat husk wastes, which are often disposed of in rivers, lands and ponds. These wastes can be used to prepare homogenous silica nanoparticles. Here we review properties, preparation and applications of silica nanoparticles. Preparation includes chemical and biomass methods. Applications include biosensors, bioimaging, drug delivery and supercapacitors. In particular, to fight the COVID-19 pandemic, recent research has shown that silver nanocluster/silica deposited on a mask reduces SARS-Cov-2 infectivity to zero.
Collapse
Affiliation(s)
- S. Prabha
- Department of Medical Physics, Anna University, Chennai, 600025 India
| | - D. Durgalakshmi
- Department of Medical Physics, Anna University, Chennai, 600025 India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775 Arica, Chile
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Avenue Louis Philibert, 13100 Aix en Provence, France
- International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
97
|
Wu M, Li X, Guo Q, Li J, Xu G, Li G, Wang J, Zhang X. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102330. [PMID: 33171287 DOI: 10.1016/j.nano.2020.102330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
Active foamy macrophage enrichment drives atherosclerotic plaque initiation and evolution, and is the prominent target for precisely identifying vulnerable plaque. Precise imaging of high-risk plaque allows promotion of treatment and prevention of vascular pathema. However, current iron oxide (IO) nanoparticles-based magnetic resonance (MR) imaging of plaque is often limited by insufficient perfusion and nonspecific accumulation of peri-aortic lymph nodes. Besides that, intrinsic defects of MR also impede its use for accurately identifying plaque details. Herein, by conjugating with PP1 peptide, a novel magnetic mesoporous silica nanoparticle (PIMI) loaded with near-infrared fluorescence (NIRF) dye (IR820) was fabricated to specifically target and quantify macrophage enrichment of atherosclerotic plaque in ApoE-/- mice using dual MR/NIRF imaging. Biocompatibility experiments ulteriorly confirmed the high safety of PIMI nanoparticles in vivo, which lays the foundation of next-generation contrast agent for recognizing macrophage-rich plaque in the near future.
Collapse
Affiliation(s)
- Menglin Wu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China.
| | - Qi Guo
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Jiang Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Guoping Xu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Guilai Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Jiahui Wang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China.
| |
Collapse
|
98
|
Xie R, Batchelor‐McAuley C, Rauwel E, Rauwel P, Compton RG. Electrochemical Characterisation of Co@Co(OH)
2
Core‐Shell Nanoparticles and their Aggregation in Solution. ChemElectroChem 2020. [DOI: 10.1002/celc.202001199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruo‐Chen Xie
- Department of Chemistry Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Christopher Batchelor‐McAuley
- Department of Chemistry Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Erwan Rauwel
- Institute of Technology Estonian University of Life Sciences Kreutzwaldi 1 51014 T artu Estonia
- School of Engineering Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Protima Rauwel
- Institute of Technology Estonian University of Life Sciences Kreutzwaldi 1 51014 T artu Estonia
| | - Richard G. Compton
- Department of Chemistry Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
99
|
Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J Inorg Biochem 2020; 213:111271. [PMID: 33069945 DOI: 10.1016/j.jinorgbio.2020.111271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
Abstract
Targeted tissue drug delivery is a challenge in contemporary nanotechnologically driven therapeutic approaches, with the interplay interactions between nanohost and encapsulated drug shaping the ultimate properties of transport, release and efficacy of the drug at its destination. Prompted by the need to pursue the synthesis of such hybrid systems, a family of modified magnetic core-shell mesoporous silica nano-formulations was synthesized with encapsulated quercetin, a natural flavonoid with proven bioactivity. The new nanocarriers were produced via the sol-gel process, using tetraethoxysilane as a precursor and bearing a magnetic core of surface-modified monodispersed magnetite colloidal superparamagnetic nanoparticles, subsequently surface-modified with polyethylene glycol 3000 (PEG3k). The arising nano-formulations were evaluated for their textural and structural properties, exhibiting enhanced solubility and stability in physiological media, as evidenced by the loading capacity, entrapment efficiency results and in vitro release studies of their load. Guided by the increased bioavailability of quercetin in its encapsulated form, further evaluation of the biological activity of the magnetic as well as non-magnetic core-shell nanoparticles, pertaining to their anti-amyloid and antioxidant potential, revealed interference with the aggregation of β-amyloid peptide (Aβ) in Alzheimer's disease, reduction of Aβ cellular toxicity and minimization of Aβ-induced Reactive Oxygen Species (ROS) generation. The data indicate that the biological properties of released quercetin are maintained in the presence of the host nanocarriers. Collectively, the findings suggest that the emerging hybrid nano-formulations can function as efficient nanocarriers of hydrophobic natural flavonoids in the development of multifunctional nanomaterials toward therapeutic applications.
Collapse
|
100
|
Hsieh TL, Hung PS, Wang CJ, Tso KC, Wang HY, Cheng CT, Lin YC, Chung RJ, Wei KH, Wu PW, Chen PC. Synthesis of IrO 2 decorated core-shell PS@PPyNH 2 microspheres for bio-interface application. NANOTECHNOLOGY 2020; 31:375605. [PMID: 32454465 DOI: 10.1088/1361-6528/ab9678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, an effective approach is demonstrated for the fabrication of IrO2-decorated polystyrene@functionalized polypyrrole (core@shell; PS@PPyNH2) microspheres. The synthesis begins with the preparation of monodispersive PS microspheres with a diameter of 490 nm, by a process of emulsifier-free emulsion polymerization, followed by a copolymerization process involving pyrrole and PyNH2 monomers in a PS microsphere aqueous suspension, to produce uniform PS@PPyNH2 microspheres with a diameter of 536 nm. The loading of 2 nm IrO2 nanoparticles onto the PS@PPyNH2 microspheres can be easily adjusted by tuning the pH value of the IrO2 colloidal solution and the PS@PPyNH2 suspension. At pH 4, we successfully obtain IrO2-decorated PS@PPyNH2 microspheres via electrostatic attraction and hydrogen bonding simultaneously between the negatively-charged IrO2 nanoparticles and the positively-charged PS@PPyNH2 microspheres. These IrO2-decorated PS@PPyNH2 microspheres exhibit a characteristic cyclic voltammetric profile, similar to that of an IrO2 thin film. The charge storage capacity is 5.19 mA cm-2, a value almost five times greater than that of PS@PPyNH2 microspheres. In addition, these IrO2-decorated PS@PPyNH2 microspheres exhibit excellent cell viability and biocompatibility.
Collapse
Affiliation(s)
- Tsung-Lin Hsieh
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|