51
|
Transient inhibition of the cerebellum impairs change-detection processes: Cerebellar contributions to sensorimotor integration. Behav Brain Res 2020; 378:112273. [DOI: 10.1016/j.bbr.2019.112273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022]
|
52
|
Koch G, Bonnì S, Casula EP, Iosa M, Paolucci S, Pellicciari MC, Cinnera AM, Ponzo V, Maiella M, Picazio S, Sallustio F, Caltagirone C. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients With Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurol 2019; 76:170-178. [PMID: 30476999 DOI: 10.1001/jamaneurol.2018.3639] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance Gait and balance impairment is associated with poorer functional recovery after stroke. The cerebellum is known to be strongly implicated in the functional reorganization of motor networks in patients with stroke, especially for gait and balance functions. Objective To determine whether cerebellar intermittent θ-burst stimulation (CRB-iTBS) can improve balance and gait functions in patients with hemiparesis due to stroke. Design, Setting, Participants This randomized, double-blind, sham-controlled phase IIa trial investigated efficacy and safety of a 3-week treatment of CRB-iTBS coupled with physiotherapy in promoting gait and balance recovery in patients with stroke. Thirty-six patients with consecutive ischemic chronic stroke in the territory of the contralateral middle cerebral artery with hemiparesis were recruited from a neuro-rehabilitation hospital. Participants were screened and enrolled from March 2013 to June 2017. Intention-to-treat analysis was performed. Interventions Patients were randomly assigned to treatment with CRB-iTBS or sham iTBS applied over the cerebellar hemisphere ipsilateral to the affected body side immediately before physiotherapy daily during 3 weeks. Main Outcomes and Measures The primary outcome was the between-group difference in change from baseline in the Berg Balance Scale. Secondary exploratory measures included the between-group difference in change from baseline in Fugl-Meyer Assessment scale, Barthel Index, and locomotion assessment with gait analysis and cortical activity measured by transcranial magnetic stimulation in combination with electroencephalogram. Results A total of 34 patients (mean [SD] age, 64 [11.3] years; 13 women [38.2%]) completed the study. Patients treated with CRB-iTBS, but not with sham iTBS, showed an improvement of gait and balance functions, as revealed by a pronounced increase in the mean (SE) Berg Balance Scale score (baseline: 34.5 [3.4]; 3 weeks after treatment: 43.4 [2.6]; 3 weeks after the end of treatment: 47.5 [1.8]; P < .001). No overall treatment-associated differences were noted in the Fugl-Meyer Assessment (mean [SE], baseline: 163.8 [6.8]; 3 weeks after treatment: 171.1 [7.2]; 3 weeks after the end of treatment: 173.5 [6.9]; P > .05) and Barthel Index scores (mean [SE], baseline: 71.1 [4.92]; 3 weeks after treatment: 88.8 [2.1]; 3 weeks after the end of treatment: 92.2 [2.4]; P > .05). Patients treated with CRB-iTBS, but not sham iTBS, showed a reduction of step width at the gait analysis (mean [SE], baseline: 16.8 [4.8] cm; 3 weeks after treatment: 14.3 [6.2] cm; P < .05) and an increase of neural activity over the posterior parietal cortex. Conclusions and Relevance Cerebellar intermittent θ-burst stimulation promotes gait and balance recovery in patients with stroke by acting on cerebello-cortical plasticity. These results are important to increase the level of independent walking and reduce the risk of falling. Trial Registration ClinicalTrials.gov Identifier: NCT03456362.
Collapse
Affiliation(s)
- Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Stroke Unit, Department of Neuroscience, Tor Vergata Policlinic, Rome, Italy
| | - Sonia Bonnì
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Elias Paolo Casula
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Marco Iosa
- Clinical Laboratory of Experimental Neurorehabilitation, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Stefano Paolucci
- Clinical Laboratory of Experimental Neurorehabilitation, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Maria Concetta Pellicciari
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Alex Martino Cinnera
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Viviana Ponzo
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Michele Maiella
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Silvia Picazio
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Fabrizio Sallustio
- Stroke Unit, Department of Neuroscience, Tor Vergata Policlinic, Rome, Italy
| | - Carlo Caltagirone
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
53
|
Olfati N, Shoeibi A, Abdollahian E, Ahmadi H, Hoseini A, Akhlaghi S, Vakili V, Foroughipour M, Rezaeitalab F, Farzadfard MT, Layegh P, Naseri S. Cerebellar repetitive transcranial magnetic stimulation (rTMS) for essential tremor: A double-blind, sham-controlled, crossover, add-on clinical trial. Brain Stimul 2019; 13:190-196. [PMID: 31624048 DOI: 10.1016/j.brs.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There is controversial evidence about the effect of cerebellar low-frequency stimulation in patients with essential tremor (ET). OBJECTIVES In this study we assessed safety and effectiveness of 1 Hz (low-frequency) cerebellar repetitive transcranial magnetic stimulation (rTMS) on tremor severity in patients with essential tremor in a sham-controlled crossover trial. METHODS A total of 23 patients assigned into two groups to receive either sham (n = 10) or rTMS (n = 13) treatment, with crossing over after a two-month washout period. Intervention consisted of 900 pulses of 1 Hz rTMS at 90% resting motor threshold or the same protocol of sham stimulation over each cerebellar hemisphere for 5 consecutive days. Tremor severity was assessed by Fahn-Tolosa-Marin (FTM) scale at baseline and at days 5, 12 and 30 after intervention. The FTM consists of 3 subscales including tremor severity rating, performance of motor tasks, and functional disability. Carry-over and treatment effects were analyzed using independent samples t-test. RESULTS There was no significant improvement in the total FTM scores in rTMS compared to the sham stimulation on day 5 (p = 0.132), day 12 (p = 0.574), or day 30 (p = 0.382). Similarly, FTM subscales, including tremor severity rating, motor tasks, and functional disability did not improve significantly after rTMS treatment. Mild headache and local pain were the most frequent adverse events. CONCLUSION Although cerebellar rTMS seems to have acceptable safety when used in ET patients, this study could not prove any efficacy for it in reduction of tremor in these patients. Larger studies are needed to evaluate efficacy of this therapeutic intervention and to provide evidence about the optimal stimulation parameters.
Collapse
Affiliation(s)
- Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Ebrahim Abdollahian
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Psychiatry and Behavioral Sciences Research Center, Ibn-Sina Medical Center, Mashhad, Iran.
| | - Hamideh Ahmadi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Alireza Hoseini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saeed Akhlaghi
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Psychiatry and Behavioral Sciences Research Center, Ibn-Sina Medical Center, Mashhad, Iran.
| | - Vida Vakili
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Foroughipour
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Fariborz Rezaeitalab
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Mohammad-Taghi Farzadfard
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Parvaneh Layegh
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Quaem Medical Center, Mashhad, Iran.
| | - Shahrokh Naseri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
54
|
Naro A, Marra A, Billeri L, Portaro S, De Luca R, Maresca G, La Rosa G, Lauria P, Bramanti P, Calabrò RS. New Horizons in Early Dementia Diagnosis: Can Cerebellar Stimulation Untangle the Knot? J Clin Med 2019; 8:E1470. [PMID: 31527392 PMCID: PMC6780127 DOI: 10.3390/jcm8091470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022] Open
Abstract
Differentiating Mild Cognitive Impairment (MCI) from dementia and estimating the risk of MCI-to-dementia conversion (MDC) are challenging tasks. Thus, objective tools are mandatory to get early diagnosis and prognosis. About that, there is a growing interest on the role of cerebellum-cerebrum connectivity (CCC). The aim of this study was to differentiate patients with an early diagnosis of dementia and MCI depending on the effects of a transcranial magnetic stimulation protocol (intermittent theta-burst stimulation -iTBS) delivered on the cerebellum able to modify cortico-cortical connectivity. Indeed, the risk of MDC is related to the response to iTBS, being higher in non-responder individuals. All patients with MCI, but eight (labelled as MCI-), showed preserved iTBS aftereffect. Contrariwise, none of the patients with dementia showed iTBS aftereffects. None of the patients showed EEG aftereffects following a sham TBS protocol. Five among the MCI- patients converted to dementia at 6-month follow-up. Our data suggest that cerebellar stimulation by means of iTBS may support the differential diagnosis between MCI and dementia and potentially identify the individuals with MCI who may be at risk of MDC. These findings may help clinicians to adopt a better prevention/follow-up strategy in such patients.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Angela Marra
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Giuseppa Maresca
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Gianluca La Rosa
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Paola Lauria
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| |
Collapse
|
55
|
Both 50 and 30 Hz continuous theta burst transcranial magnetic stimulation depresses the cerebellum. THE CEREBELLUM 2019; 18:157-165. [PMID: 30117122 DOI: 10.1007/s12311-018-0971-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The cerebellum is implicated in the pathophysiology of numerous movement disorders, which makes it an attractive target for noninvasive neurostimulation. Continuous theta burst stimulation (cTBS) can induce long lasting plastic changes in human brain; however, the efficacy of different simulation protocols has not been investigated at the cerebellum. Here, we compare a traditional 50-Hz and a modified 30-Hz cTBS protocols at modulating cerebellar activity in healthy subjects. Seventeen healthy adults participated in two testing sessions where they received either 50-Hz (cTBS50) or 30-Hz (cTBS30) cerebellar cTBS. Cerebellar brain inhibition (CBI), a measure of cerebello-thalamocortical pathway strength, and motor evoked potentials (MEP) were measured in the dominant first dorsal interosseous muscle before and after (up to ~ 40 min) cerebellar cTBS. Both cTBS protocols induced cerebellar depression, indicated by significant reductions in CBI (P < 0.001). No differences were found between protocols (cTBS50 and cTBS30) at any time point (P = 0.983). MEP amplitudes were not significantly different following either cTBS protocol (P = 0.130). The findings show cerebellar excitability to be equally depressed by 50-Hz and 30-Hz cTBS in heathy adults and support future work to explore the efficacy of different cerebellar cTBS protocols in movement disorder patients where cerebellar depression could provide therapeutic benefits.
Collapse
|
56
|
Lucena MFG, Teixeira PEP, Bonin Pinto C, Fregni F. Top 100 cited noninvasive neuromodulation clinical trials. Expert Rev Med Devices 2019; 16:451-466. [PMID: 31092060 DOI: 10.1080/17434440.2019.1615440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Introduction: Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are noninvasive neuromodulation techniques used as therapeutic and research tools for several neuropsychiatric conditions. Given the exponential scientific growth of this field, we aimed to systematically review the most cited clinical trials using TMS or tDCS. AREAS COVERED A de-novo keyword search strategy identified and characterized the 100 most-cited trials. Total citation count for the most cited trials was 13,204. Articles were published between 2008 and 2014 in 50 different journals with a median impact factor of 6.52 (IQR 3.37). Almost half of the top cited papers were investigating mechanisms of action in healthy subjects. Most studies were feasibility trials and only five were pivotal trials, including the ones used for recent FDA approval. Seven articles were interlinked with another article by at least 25 citations and eight authors had collaborated with at least one other author. EXPERT OPINION Although there has been a significant increase in interest for rTMS and tDCS, most of the cited clinical trials are still small feasibility studies, what reinforced the need for more robust clinical trials (larger samples sizes and effects sizes) to better define clinical effectiveness.
Collapse
Affiliation(s)
- Mariana F G Lucena
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Physics and Rehabilitation Department , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA USA
| | - Paulo E P Teixeira
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Physics and Rehabilitation Department , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA USA.,b Research and Education Center , Wilson Mello Institute , Campinas, Sao Paulo , Brazil
| | - Camila Bonin Pinto
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Physics and Rehabilitation Department , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA USA.,c Department of Neuroscience and Behavior, Psychology Institute , University of Sao Paulo , Sao Paulo , Brazil
| | - Felipe Fregni
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Physics and Rehabilitation Department , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA USA
| |
Collapse
|
57
|
Gilligan TM, Rafal RD. An Opponent Process Cerebellar Asymmetry for Regulating Word Association Priming. THE CEREBELLUM 2019; 18:47-55. [PMID: 29949097 PMCID: PMC6351516 DOI: 10.1007/s12311-018-0949-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A consensus has emerged that the cerebellum makes important contributions to a spectrum of linguistic processes, but that the psychobiology of these contributions remains enigmatic (Mariën et al., Cerebellum 13(3):386–410, 2014). One aspect of this enigma arises from the fact that, although the language-dominant left cerebral hemisphere is connected to the right cerebellum, distinctive contributions of the left cerebellar hemisphere have been documented (Murdoch and Whelan, Folia Phoniatr Logop 59:184–9, 2007), but remain poorly understood. Here, we report that neurodisruption of the left and right cerebellar hemispheres have opposite effects on associative word priming in a lexical decision task. Reaction time was measured for decisions on whether a target letter string constituted a word (e.g. bread) or, with equal probability, a pronounceable non-word (e.g. dreab). A prime word was presented for 150 ms before the target and could either, and with equal probability, be related (e.g. BUTTER) or unrelated (TRACTOR). Associative word priming was computed as the reduction in lexical decision RT on trials with related primes. Left cerebellar hemisphere continuous theta-burst transcranial magnetic stimulation (TMS) decreased, and right hemisphere stimulation increased, priming. The results suggest that the cerebellum contributes to predictive sequential processing, in this case language, through an opponent process mechanism coordinated by both cerebellar hemispheres.
Collapse
Affiliation(s)
| | - Robert D Rafal
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
58
|
Behrangrad S, Zoghi M, Kidgell D, Jaberzadeh S. Does cerebellar non-invasive brain stimulation affect corticospinal excitability in healthy individuals? A systematic review of literature and meta-analysis. Neurosci Lett 2019; 706:128-139. [PMID: 31102706 DOI: 10.1016/j.neulet.2019.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Numerous studies have indicated that non-invasive brain stimulation (NIBS) of the cerebellum could modulate corticospinal excitability (CSE) in young healthy individuals. However, there is no systematic review and meta-analysis that clarifies the effects of cerebellar NIBS on CSE. The aim of this study was to provide a meta-analytic summary of the effects of cerebellar NIBS on CSE. Seven search engines were used to identify any trial evaluating CSE before and after one session of cerebellar NIBS in healthy individuals up to June 2018. Twenty-six studies investigating the corticospinal responses following cerebellar NIBS were included. Meta-analysis was used to pool the findings from included studies. Effects were expressed as mean differences (MD) and the standard deviation (SD). Risk of bias was assessed with the Cochrane tool. Meta-analysis found that paired associative stimulation (PAS) with 2 ms interval, a combination of PAS with 21.5 ms interval and anodal transcranial direct current stimulation, and repetitive transcranial magnetic stimulation with a frequency of < 5 Hz increase CSE (P PAS2 < 0.00001, P PAS21.5 +a-tDCS = 0.02, P rTMS = 0.04). However, continuous theta burst stimulation, a combination of PAS with 25 ms interval and anodal transcranial direct current stimulation, and PAS with a 6 ms interval decreased CSE (P PAS6 < 0.00001, P cTBS < 0.00001, P PAS25 +a-tDCS = 0.003). The results of this review show that cerebellar NIBS techniques are a promising tool for increasing CSE.
Collapse
Affiliation(s)
- Shabnam Behrangrad
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia.
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| | - Dawson Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia
| |
Collapse
|
59
|
Odorfer TM, Homola GA, Reich MM, Volkmann J, Zeller D. Increased Finger-Tapping Related Cerebellar Activation in Cervical Dystonia, Enhanced by Transcranial Stimulation: An Indicator of Compensation? Front Neurol 2019; 10:231. [PMID: 30930842 PMCID: PMC6428698 DOI: 10.3389/fneur.2019.00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/22/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Cervical dystonia is a movement disorder causing abnormal postures and movements of the head. While the exact pathophysiology of cervical dystonia has not yet been fully elucidated, a growing body of evidence points to the cerebellum as an important node. Methods: Here, we examined the impact of cerebellar interference by transcranial magnetic stimulation on finger-tapping related brain activation and neurophysiological measures of cortical excitability and inhibition in cervical dystonia and controls. Bilateral continuous theta-burst stimulation was used to modulate cerebellar cortical excitability in 16 patients and matched healthy controls. In a functional magnetic resonance imaging arm, data were acquired during simple finger tapping before and after cerebellar stimulation. In a neurophysiological arm, assessment comprised motor-evoked potentials amplitude and cortical silent period duration. Theta-burst stimulation over the dorsal premotor cortex and sham stimulation (neurophysiological arm only) served as control conditions. Results: At baseline, finger tapping was associated with increased activation in the ipsilateral cerebellum in patients compared to controls. Following cerebellar theta-burst stimulation, this pattern was even more pronounced, along with an additional movement-related activation in the contralateral somatosensory region and angular gyrus. Baseline motor-evoked potential amplitudes were higher and cortical silent period duration shorter in patients compared to controls. After cerebellar theta-burst stimulation, cortical silent period duration increased significantly in dystonia patients. Conclusion: We conclude that in cervical dystonia, finger movements—though clinically non-dystonic—are associated with increased activation of the lateral cerebellum, possibly pointing to general motor disorganization, which remains subclinical in most body regions. Enhancement of this activation together with an increase of silent period duration by cerebellar continuous theta-burst stimulation may indicate predominant disinhibitory effects on Purkinje cells, eventually resulting in an inhibition of cerebello-thalamocortical circuits.
Collapse
Affiliation(s)
| | - György A Homola
- Department of Neuroradiology, University of Würzburg, Würzburg, Germany
| | - Martin M Reich
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
60
|
Porcacchia P, Álvarez de Toledo P, Rodríguez-Baena A, Martín-Rodríguez JF, Palomar FJ, Vargas-González L, Jesús S, Koch G, Mir P. Abnormal cerebellar connectivity and plasticity in isolated cervical dystonia. PLoS One 2019; 14:e0211367. [PMID: 30682155 PMCID: PMC6347195 DOI: 10.1371/journal.pone.0211367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/12/2019] [Indexed: 11/29/2022] Open
Abstract
There is increasing evidence that supports the role of the cerebellum in the pathophysiology of dystonia. We used transcranial magnetic stimulation to test the hypothesis that patients with cervical dystonia may have a disrupted cerebellar cortical connectivity at rest, and that cerebellar plasticity is altered too. We enrolled 12 patients with isolated cervical dystonia and 13 controls. A paired-pulse transcranial magnetic stimulation protocol was applied over the right cerebellum and the left primary motor area. Changes in the amplitude of motor evoked potentials were analysed. Continuous and intermittent Theta Burst Stimulation over the cerebellum was also applied. The effects of these repetitive protocols on cortical excitability, on intra-cortical circuits and on cerebellar cortical inhibition were analysed. In healthy subjects, but not in dystonic patients, a conditioning stimulus over the cerebellum was able to inhibit the amplitude of the motor evoked potentials from primary motor cortex. In healthy subjects continuous and intermittent cerebellar Theta Burst Stimulation were able to decrease and increase respectively motor cortex excitability. Continuous Theta Burst Stimulation was able to abolish the cerebellar cortical inhibition observed in basal condition. These effects were not observed in patients with cervical dystonia. Cerebellar cortical connectivity and cerebellar plasticity is altered at rest in patients with cervical dystonia.
Collapse
Affiliation(s)
- Paolo Porcacchia
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Unidad de Neurofisiología Clínica, Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Paloma Álvarez de Toledo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Rodríguez-Baena
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Francisco J. Palomar
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Unidad de Neurofisiología Clínica, Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Laura Vargas-González
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Giacomo Koch
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Rome, Italy
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
- * E-mail:
| |
Collapse
|
61
|
Fečíková A, Jech R, Čejka V, Čapek V, Šťastná D, Štětkářová I, Mueller K, Schroeter ML, Růžička F, Urgošík D. Benefits of pallidal stimulation in dystonia are linked to cerebellar volume and cortical inhibition. Sci Rep 2018; 8:17218. [PMID: 30464181 PMCID: PMC6249276 DOI: 10.1038/s41598-018-34880-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 10/26/2018] [Indexed: 11/18/2022] Open
Abstract
Clinical benefits of pallidal deep brain stimulation (GPi DBS) in dystonia increase relatively slowly suggesting slow plastic processes in the motor network. Twenty-two patients with dystonia of various distribution and etiology treated by chronic GPi DBS and 22 healthy subjects were examined for short-latency intracortical inhibition of the motor cortex elicited by paired transcranial magnetic stimulation. The relationships between grey matter volume and intracortical inhibition considering the long-term clinical outcome and states of the GPi DBS were analysed. The acute effects of GPi DBS were associated with a shortening of the motor response whereas the grey matter of chronically treated patients with a better clinical outcome showed hypertrophy of the supplementary motor area and cerebellar vermis. In addition, the volume of the cerebellar hemispheres of patients correlated with the improvement of intracortical inhibition which was generally less effective in patients than in controls regardless of the DBS states. Importantly, good responders to GPi DBS showed a similar level of short-latency intracortical inhibition in the motor cortex as healthy controls whereas non-responders were unable to increase it. All these results support the multilevel impact of effective DBS on the motor networks in dystonia and suggest potential biomarkers of responsiveness to this treatment.
Collapse
Affiliation(s)
- Anna Fečíková
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.
| | - Václav Čejka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.,Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Václav Čapek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Daniela Šťastná
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital, Leipzig, Germany
| | - Filip Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Dušan Urgošík
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
62
|
Cerebellar Theta-Burst Stimulation Impairs Memory Consolidation in Eyeblink Classical Conditioning. Neural Plast 2018; 2018:6856475. [PMID: 30402087 PMCID: PMC6198564 DOI: 10.1155/2018/6856475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/29/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Associative learning of sensorimotor contingences, as it occurs in eyeblink classical conditioning (EBCC), is known to involve the cerebellum, but its mechanism remains controversial. EBCC involves a sequence of learning processes which are thought to occur in the cerebellar cortex and deep cerebellar nuclei. Recently, the extinction phase of EBCC has been shown to be modulated after one week by cerebellar continuous theta-burst stimulation (cTBS). Here, we asked whether cerebellar cTBS could affect retention and reacquisition of conditioned responses (CRs) tested immediately after conditioning. We also investigated a possible lateralized cerebellar control of EBCC by applying cTBS on both the right and left cerebellar hemispheres. Both right and left cerebellar cTBSs induced a statistically significant impairment in retention and new acquisition of conditioned responses (CRs), the disruption effect being marginally more effective when the left cerebellar hemisphere was stimulated. These data support a model in which cTBS impairs retention and reacquisition of CR in the cerebellum, possibly by interfering with the transfer of memory to the deep cerebellar nuclei.
Collapse
|
63
|
The role of the human cerebellum in linguistic prediction, word generation and verbal working memory: evidence from brain imaging, non-invasive cerebellar stimulation and lesion studies. Neuropsychologia 2018. [DOI: 10.1016/j.neuropsychologia.2018.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
64
|
Agnew ZK, Banissy MJ, McGettigan C, Walsh V, Scott SK. Investigating the Neural Basis of Theta Burst Stimulation to Premotor Cortex on Emotional Vocalization Perception: A Combined TMS-fMRI Study. Front Hum Neurosci 2018; 12:150. [PMID: 29867402 PMCID: PMC5962765 DOI: 10.3389/fnhum.2018.00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/04/2018] [Indexed: 12/01/2022] Open
Abstract
Previous studies have established a role for premotor cortex in the processing of auditory emotional vocalizations. Inhibitory continuous theta burst transcranial magnetic stimulation (cTBS) applied to right premotor cortex selectively increases the reaction time to a same-different task, implying a causal role for right ventral premotor cortex (PMv) in the processing of emotional sounds. However, little is known about the functional networks to which PMv contribute across the cortical hemispheres. In light of these data, the present study aimed to investigate how and where in the brain cTBS affects activity during the processing of auditory emotional vocalizations. Using functional neuroimaging, we report that inhibitory cTBS applied to the right premotor cortex (compared to vertex control site) results in three distinct response profiles: following stimulation of PMv, widespread frontoparietal cortices, including a site close to the target site, and parahippocampal gyrus displayed an increase in activity, whereas the reverse response profile was apparent in a set of midline structures and right IFG. A third response profile was seen in left supramarginal gyrus in which activity was greater post-stimulation at both stimulation sites. Finally, whilst previous studies have shown a condition specific behavioral effect following cTBS to premotor cortex, we did not find a condition specific neural change in BOLD response. These data demonstrate a complex relationship between cTBS and activity in widespread neural networks and are discussed in relation to both emotional processing and the neural basis of cTBS.
Collapse
Affiliation(s)
- Zarinah K Agnew
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Otolaryngology-Head & Neck Surgery Clinic, University of California, San Francisco, San Francisco, CA, United States
| | - Michael J Banissy
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | | | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
65
|
Ates MP, Alaydin HC, Cengiz B. The effect of the anodal transcranial direct current stimulation over the cerebellum on the motor cortex excitability. Brain Res Bull 2018; 140:114-119. [PMID: 29704512 DOI: 10.1016/j.brainresbull.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
This study was designed to investigate whether the cerebellum has an inhibitory effect on motor cortical excitability. Sixteen healthy adults (age range, 25-50 years, five female) participated in the study. Anodal cerebellar transcranial direct current stimulation (a-cTDCS) was used to modulate cerebellar excitability. A-cTDCS was given for 20 min at 1 mA intensity. The automatic threshold tracking method was used to investigate cortical excitability. Resting motor threshold (RMT), short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), intracortical facilitation (ICF), and the input output curve (I-O curve) were motor cortical excitability parameters. a-cTDCS caused a reduction in overall SICI and the reduced SICF for interstimulus intervals (ISIs) to 2.4-4.4 ms. a-cTDCS has no effect on ICF, RMT, and the I-O curve. There were no significant changes in any of these cortical excitability parameters after sham cTDCS. Results of the study indicate that a-cTDCS has a dual (both inhibitory and excitatory) effect on motor cortical excitability, rather than a simple inhibitory effect. The cerebellum modulates both the inhibitory and facilitatory activities of motor cortex (M1) and suggest that cerebello-cerebral motor connectivity is more complex than solely inhibitory or facilitatory connections.
Collapse
Affiliation(s)
- Mehlika Panpalli Ates
- Department of Neurology, University of Health Sciences, Diskapi Yildirim Beyazit Educational and Research Hospital, Ankara, Turkey.
| | - Halil Can Alaydin
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Bulent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey; Motor Control Laboratory, The Clinical Neurophysiology Division of the Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
66
|
Allen-Walker LST, Bracewell RM, Thierry G, Mari-Beffa P. Facilitation of Fast Backward Priming After Left Cerebellar Continuous Theta-Burst Stimulation. CEREBELLUM (LONDON, ENGLAND) 2018; 17:132-142. [PMID: 28875335 PMCID: PMC5849638 DOI: 10.1007/s12311-017-0881-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional theories of backward priming account only for the priming effects found at long stimulus onset asynchronies (SOAs). Here, we suggest that the presence of backward priming at short SOAs may be related to the integrative role of the cerebellum. Previous research has shown that the right cerebellum is involved in forward associative priming. Functional magnetic resonance imaging reveals some activation of the left cerebellar hemisphere during backward priming; but what this activation represents is unclear. Here we explore this issue using continuous theta-burst transcranial magnetic stimulation (cTBS) and associative priming in a lexical decision task. We tested the hypothesis that the left cerebellum plays a role in backward priming and that this is dissociated from the role of the right cerebellum in forward priming. Before and after cTBS was applied to their left and right cerebellar hemispheres, participants completed a lexical decision task. Although we did not replicate the forward priming effect reported in the literature, we did find a significant increase in backward priming after left relative to right cerebellar cTBS. We consider how theories of cerebellar function in the motor domain can be extended to language and cognitive models of backward priming.
Collapse
Affiliation(s)
| | - R Martyn Bracewell
- School of Psychology, Bangor University, Bangor, LL57 2AS, UK
- School of Medical Sciences, Bangor University, Bangor, LL57 2AS, UK
| | | | | |
Collapse
|
67
|
Abstract
Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.
Collapse
|
68
|
Non-invasive Cerebellar Stimulation: a Promising Approach for Stroke Recovery? THE CEREBELLUM 2017; 17:359-371. [DOI: 10.1007/s12311-017-0906-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
69
|
Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): A systematic review. Neurosci Biobehav Rev 2017; 86:176-206. [PMID: 29208533 DOI: 10.1016/j.neubiorev.2017.11.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/25/2017] [Indexed: 12/24/2022]
Abstract
The inhibitory tone that the cerebellum exerts on the primary motor cortex (M1) is known as cerebellar brain inhibition (CBI). Studies show CBI to be relevant to several motor functions, including adaptive motor learning and muscle control. CBI can be assessed noninvasively via transcranial magnetic stimulation (TMS) using a double-coil protocol. Variability in parameter choice and controversy surrounding the protocol's ability to isolate the cerebellothalamocortical pathway casts doubt over its validity in neuroscience research. This justifies a systematic review of both the protocol, and its application. The following review examines studies using the double-coil protocol to assess CBI in healthy adults. Parameters and CBI in relation to task-based studies, other non-invasive protocols, over different muscles, and in clinical samples are reviewed. Of the 1398 studies identified, 24 met selection criteria. It was found that methodological design and selection of parameters in several studies may have reduced the validity of outcomes. Further systematic testing of CBI protocols is warranted, both from a parameter and task-based perspective.
Collapse
Affiliation(s)
- Lara Fernandez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia.
| | - Brendan P Major
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, 3220, Australia
| | - Linda K Byrne
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia; Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| |
Collapse
|
70
|
França C, de Andrade DC, Teixeira MJ, Galhardoni R, Silva V, Barbosa ER, Cury RG. Effects of cerebellar neuromodulation in movement disorders: A systematic review. Brain Stimul 2017; 11:249-260. [PMID: 29191439 DOI: 10.1016/j.brs.2017.11.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND The cerebellum is involved in the pathophysiology of many movement disorders and its importance in the field of neuromodulation is growing. OBJECTIVES To review the current evidence for cerebellar modulation in movement disorders and its safety profile. METHODS Eligible studies were identified after a systematic literature review of the effects of cerebellar modulation in cerebellar ataxia, Parkinson's disease (PD), essential tremor (ET), dystonia and progressive supranuclear palsy (PSP). Neuromodulation techniques included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS). The changes in motor scores and the incidence of adverse events after the stimulation were reviewed. RESULTS Thirty-four studies were included in the systematic review, comprising 431 patients. The evaluation after stimulation ranged from immediately after to 12 months after. Neuromodulation techniques improved cerebellar ataxia due to vascular or degenerative etiologies (TMS, tDCS and DBS), dyskinesias in PD patients (TMS), gross upper limb movement in PD patients (tDCS), tremor in ET (TMS and tDCS), cervical dystonia (TMS and tDCS) and dysarthria in PSP patients (TMS). All the neuromodulation techniques were safe, since only three studies reported the existence of side effects (slight headache after TMS, local skin erythema after tDCS and infectious complication after DBS). Eleven studies did not mention if adverse events occurred. CONCLUSIONS Cerebellar modulation can improve specific symptoms in some movement disorders and is a safe and well-tolerated procedure. Further studies are needed to lay the groundwork for new researches in this promising target.
Collapse
Affiliation(s)
- Carina França
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil; Transcranial Magnetic Stimulation Laboratories, Psychiatry Institute, University of São Paulo, São Paulo, Brazil.
| | - Daniel Ciampi de Andrade
- Transcranial Magnetic Stimulation Laboratories, Psychiatry Institute, University of São Paulo, São Paulo, Brazil; Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Manoel Jacobsen Teixeira
- Transcranial Magnetic Stimulation Laboratories, Psychiatry Institute, University of São Paulo, São Paulo, Brazil; Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil; Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Ricardo Galhardoni
- Transcranial Magnetic Stimulation Laboratories, Psychiatry Institute, University of São Paulo, São Paulo, Brazil; Pain Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Valquiria Silva
- Transcranial Magnetic Stimulation Laboratories, Psychiatry Institute, University of São Paulo, São Paulo, Brazil.
| | - Egberto Reis Barbosa
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
71
|
Suppa A, Quartarone A, Siebner H, Chen R, Di Lazzaro V, Del Giudice P, Paulus W, Rothwell J, Ziemann U, Classen J. The associative brain at work: Evidence from paired associative stimulation studies in humans. Clin Neurophysiol 2017; 128:2140-2164. [DOI: 10.1016/j.clinph.2017.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022]
|
72
|
Lam CK, Staines WR, Tokuno CD, Bent LR. The medium latency muscle response to a vestibular perturbation is increased after depression of the cerebellar vermis. Brain Behav 2017; 7:e00782. [PMID: 29075558 PMCID: PMC5651382 DOI: 10.1002/brb3.782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Galvanic vestibular stimulation (GVS) is able to evoke distinct responses in the muscles used for balance. These reflexes, termed the short (SL) and medium latency (ML) responses, can be altered by sensory input; decreasing in size when additional sensory cues are available. Although much is known about these responses, the origin and role of the responses are still not fully understood. It has been suggested that the cerebellum, a structure that is involved in postural control and sensory integration, may play a role in the modulation of these reflexes. METHODS The cerebellar vermis was temporarily depressed using continuous theta burst stimulation and SL, ML and overall vestibular electromyographic and force plate shear response amplitudes were compared before and after cerebellar depression. RESULTS There were no changes in force plate shear amplitude and a non-significant increase for the SL muscle response (p = .071), however, we did find significant increases in the ML and overall vestibular muscle response amplitudes after cerebellar depression (p = .026 and p = .016, respectively). No changes were evoked when a SHAM stimulus was used. DISCUSSION These results suggest that the cerebellar vermis plays a role in the modulation of vestibular muscle reflex responses to GVS.
Collapse
|
73
|
Colnaghi S, Honeine JL, Sozzi S, Schieppati M. Body Sway Increases After Functional Inactivation of the Cerebellar Vermis by cTBS. THE CEREBELLUM 2017; 16:1-14. [PMID: 26780373 PMCID: PMC5243877 DOI: 10.1007/s12311-015-0758-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Balance stability correlates with cerebellar vermis volume. Furthermore, the cerebellum is involved in precise timing of motor processes by fine-tuning the sensorimotor integration. We tested the hypothesis that any cerebellar action in stance control and in timing of visuomotor integration for balance is impaired by continuous theta-burst stimulation (cTBS) of the vermis. Ten subjects stood quietly and underwent six sequences of 10-min acquisition of center of foot pressure (CoP) data after cTBS, sham stimulation, and no stimulation. Visual shifts from eyes closed (EC) to eyes open (EO) and vice versa were presented via electronic goggles. Mean anteroposterior and mediolateral CoP position and oscillation, and the time delay at which body sway changed after visual shift were calculated. CoP position under both EC and EO condition was not modified after cTBS. Sway path length was greater with EC than EO and increased in both visual conditions after cTBS. CoP oscillation was also larger with EC and increased under both visual conditions after cTBS. The delay at which body oscillation changed after visual shift was longer after EC to EO than EO to EC, but unaffected by cTBS. The time constant of decrease or increase of oscillation was longer in EC to EO shifts, but unaffected by cTBS. Functional inactivation of the cerebellar vermis is associated with increased sway. Despite this, cTBS does not detectably modify onset and time course of the sensorimotor integration process of adaptation to visual shifts. Cerebellar vermis normally controls oscillation, but not timing of adaptation to abrupt changes in stabilizing information.
Collapse
Affiliation(s)
- Silvia Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia, Italy.
| | - Jean-Louis Honeine
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia, Italy
| | - Stefania Sozzi
- Centro Studi Attività Motorie, Fondazione Salvatore Maugeri (IRCCS), Pavia, Italy
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia, Italy
- Centro Studi Attività Motorie, Fondazione Salvatore Maugeri (IRCCS), Pavia, Italy
| |
Collapse
|
74
|
Picazio S, Ponzo V, Koch G. Cerebellar Control on Prefrontal-Motor Connectivity During Movement Inhibition. THE CEREBELLUM 2017; 15:680-687. [PMID: 26481247 DOI: 10.1007/s12311-015-0731-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Converging evidence suggests a crucial role of right inferior frontal gyrus (r-IFG) and right pre-supplementary motor area (r-preSMA) in movement inhibition control. The present work was aimed to investigate how the effective connectivity between these prefrontal areas and the primary motor cortex could change depending on the activity of the cerebellar cortex. Paired transcranial magnetic stimulation (TMS) was delivered in healthy subjects over the r-IFG/left primary motor area (l-M1) and over r-preSMA/l-M1 before (100 ms after the fixation cross onset) and 50, 75, 100, 125, and 150 ms after the presentation of a Go/NoGo visual cue establishing the specific time course and the causal interactions of these regions in relation to l-M1 as measured by motor evoked potentials (MEPs). The same paired-pulse protocol was applied following sham or real cerebellar continuous theta burst stimulation (cTBS). Following sham cTBS, for NoGo trials only, MEPs collected showed the expected pattern of activation for both r-IFG-l-M1 and r-preSMA-l-M1 connectivity, characterized by peaks of increased and decreased MEP amplitude regularly repeated every 50 ms. Following cerebellar cTBS, this pattern of activation related to NoGo trials was modified selectively for the r-IFG-M1 but not for r-preSMA-M1 connection. A common monitoring action of r-IFG and r-preSMA in inhibitory control was confirmed. The effects of cerebellar cTBS showed a specific interaction between cerebellum and r-IFG activity during the inhibitory process.
Collapse
Affiliation(s)
- Silvia Picazio
- Non-Invasive Brain Stimulation Unit, Clinical and Behavioral Neurology Department, IRCCS Santa Lucia Foundation, 00179, Rome, Italy.
| | - Viviana Ponzo
- Non-Invasive Brain Stimulation Unit, Clinical and Behavioral Neurology Department, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Clinical and Behavioral Neurology Department, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
- Stroke Unit, Department of Neuroscience, Policlinic Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
75
|
Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 2017; 128:2125-2139. [PMID: 28938143 DOI: 10.1016/j.clinph.2017.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain.
Collapse
Affiliation(s)
- Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Riccardo Di Iorio
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy
| | - Paolo Maria Rossini
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy; Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Jung E Park
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Robert Chen
- Krembil Research Institute, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Canada
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, USA
| | - Antonio P Strafella
- Krembil Research Institute, University of Toronto, Toronto, Canada; Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | | | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| |
Collapse
|
76
|
Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A, Ghahremani A, Downar J, Chen J, Chen R. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. Neuroimage 2017; 158:48-57. [DOI: 10.1016/j.neuroimage.2017.06.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/27/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
|
77
|
Vallence AM, Smalley E, Drummond PD, Hammond GR. Long-interval intracortical inhibition is asymmetric in young but not older adults. J Neurophysiol 2017. [PMID: 28637819 DOI: 10.1152/jn.00794.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging is typically accompanied by a decline in manual dexterity and handedness; the dominant hand executes tasks of manual dexterity more quickly and accurately than the nondominant hand in younger adults, but this advantage typically declines with age. Age-related changes in intracortical inhibitory processes might play a role in the age-related decline in manual dexterity. Long-interval intracortical inhibition (LICI) is asymmetric in young adults, with more sensitive and more powerful LICI circuits in the dominant hemisphere than in the nondominant hemisphere. Here we investigated whether the hemispheric asymmetry in LICI in younger adults persists in healthy older adults. Paired-pulse transcranial magnetic stimulation was used to measure LICI in the dominant and nondominant hemispheres of younger and older adults; LICI stimulus-response curves were obtained by varying conditioning stimulus intensity at two different interstimulus intervals [100 ms (LICI100) and 150 ms]. We have replicated the finding that LICI100 circuits are more sensitive and more powerful in the dominant than the nondominant hemisphere of young adults and extend this finding to show that the hemispheric asymmetry in LICI100 is lost with age. In the context of behavioral observations showing that dominant hand movements in younger adults are more fluent than nondominant hand movements in younger adults and dominant hand movements in older adults, we speculate a role of LICI100 in the age-related decline in manual dexterity.NEW & NOTEWORTHY In younger adults, more sensitive and more powerful long-interval intracortical inhibitory circuits are evident in the hemisphere controlling the more dexterous hand; this is not the case in older adults, for whom long-interval intracortical inhibitory circuits are symmetric and more variable than in younger adults. We speculate that the highly sensitive and powerful long-interval intracortical inhibition circuits in the dominant hemisphere play a role in manual dexterity.
Collapse
Affiliation(s)
- A-M Vallence
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Australia; and
| | - E Smalley
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Australia; and
| | - P D Drummond
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Australia; and
| | - G R Hammond
- School of Psychology, The University of Western Australia, Crawley, Australia
| |
Collapse
|
78
|
Lu MK, Chen JC, Chen CM, Duann JR, Ziemann U, Tsai CH. Impaired Cerebellum to Primary Motor Cortex Associative Plasticity in Parkinson's Disease and Spinocerebellar Ataxia Type 3. Front Neurol 2017; 8:445. [PMID: 28900413 PMCID: PMC5581840 DOI: 10.3389/fneur.2017.00445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Background Functional perturbation of the cerebellum (CB)–motor cortex (M1) interactions may underlie pathophysiology of movement disorders, such as Parkinson’s disease (PD) and spinocerebellar ataxia type 3 (SCA3). Recently, M1 motor excitability can be bidirectionally modulated in young subjects by corticocortical paired associative stimulation (PAS) on CB and contralateral M1 with transcranial magnetic stimulation (TMS), probably through the cerebello–dentato–thalamo–cortical (CDTC) circuit. In this study, we investigated the CB to M1-associative plasticity in healthy elderly PD and SCA3. Methods Ten right-handed PD patients, nine gene-confirmed SCA3 patients, and 10 age-matched healthy controls (HC) were studied. One hundred and twenty pairs of TMS of the left M1 preceded by right lateral CB TMS at an interstimulus interval of 2 (CB → M1 PAS2ms) and 6 ms (CB → M1 PAS6ms) were, respectively, applied with at least 1-week interval. M1 excitability was assessed by motor-evoked potential (MEP) amplitude, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and cerebellar inhibition (CBI) at the first dorsal interosseous muscle of the right hand before and after the CB → M1 PAS. Results The M1 excitability represented by MEP amplitude was significantly facilitated and suppressed in the HC group by CB → M1 PAS2ms and CB → M1 PAS6ms, respectively. The bidirectional modulation on MEP amplitude was absent in the PD and SCA3 groups. SICI and the baseline CBI were significantly reduced in the SCA3 group compared to those of the HC group irrespective of the CB → M1 PAS protocols. There was a significant reduction of CBI immediately and 60 min after the CB → M1 PAS protocols in the HC group but not in the patient groups. No significant change of ICF was found. Conclusion Corticocortical CB → M1 PAS can induce bidirectional motor cortical plasticity in M1 for healthy aged subjects. The modulation may be independent of the inhibitory neurocircuits, such as SICI and CBI, and the facilitatory mechanism like ICF. Both patients with PD and SCA3 showed impairment of such plasticity, suggesting significant functional perturbation of the CDTC circuit.
Collapse
Affiliation(s)
- Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, Medical College, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jui-Cheng Chen
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, Medical College, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chun-Ming Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Zhongli, Taiwan.,Institute for Neural Computation, University of California San Diego, San Diego, CA, United States
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, Medical College, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
79
|
Esterman M, Thai M, Okabe H, DeGutis J, Saad E, Laganiere SE, Halko MA. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. Neuroimage 2017; 156:190-198. [PMID: 28495634 PMCID: PMC5973536 DOI: 10.1016/j.neuroimage.2017.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 11/22/2022] Open
Abstract
Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurological and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications of TMS and theoretical models of functional connectivity.
Collapse
Affiliation(s)
- Michael Esterman
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, United States; Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States; Geriatric Research Education and Clinical Center (GRECC), Boston Division VA Healthcare System, United States; Department of Psychiatry, Boston University School of Medicine, United States.
| | - Michelle Thai
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States
| | - Hidefusa Okabe
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States; Department of Psychiatry, Harvard Medical School, United States
| | - Elyana Saad
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States; Department of Psychiatry, Harvard Medical School, United States
| | - Simon E Laganiere
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, United States
| | - Mark A Halko
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, United States
| |
Collapse
|
80
|
Bologna M, Berardelli A. Cerebellum: An explanation for dystonia? CEREBELLUM & ATAXIAS 2017; 4:6. [PMID: 28515949 PMCID: PMC5429509 DOI: 10.1186/s40673-017-0064-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Abstract
Dystonia is a movement disorder that is characterized by involuntary muscle contractions, abnormal movements and postures, as well as by non-motor symptoms, and is due to abnormalities in different brain areas. In this article, we focus on the growing number of experimental studies aimed at explaining the pathophysiological role of the cerebellum in dystonia. Lastly, we highlight gaps in current knowledge and issues that future research studies should focus on as well as some of the potential applications of this research avenue. Clarifying the pathophysiological role of cerebellum in dystonia is an important concern given the increasing availability of invasive and non-invasive stimulation techniques and their potential therapeutic role in this condition.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry and Neuromed Institute, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.,Neuromed Institute IRCCS, Pozzilli, IS Italy
| |
Collapse
|
81
|
Colnaghi S, Colagiorgio P, Versino M, Koch G, D'Angelo E, Ramat S. A role for NMDAR-dependent cerebellar plasticity in adaptive control of saccades in humans. Brain Stimul 2017; 10:817-827. [PMID: 28501325 DOI: 10.1016/j.brs.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Saccade pulse amplitude adaptation is mediated by the dorsal cerebellar vermis and fastigial nucleus. Long-term depression at the parallel fibre-Purkinjie cell synapses has been suggested to provide a cellular mechanism for the corresponding learning process. The mechanisms and sites of this plasticity, however, are still debated. OBJECTIVE To test the role of cerebellar plasticity phenomena on adaptive saccade control. METHODS We evaluated the effect of continuous theta burst stimulation (cTBS) over the posterior vermis on saccade amplitude adaptation and spontaneous recovery of the initial response. To further identify the substrate of synaptic plasticity responsible for the observed adaptation impairment, subjects were pre-treated with memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist. RESULTS Amplitude adaptation was altered by cTBS, suggesting that cTBS interferes with cerebellar plasticity involved in saccade adaptation. Amplitude adaptation and spontaneous recovery were not affected by cTBS when recordings were preceded by memantine administration. CONCLUSION The effects of cTBS are NMDAR-dependent and are likely to involve long-term potentiation or long-term depression at specific synaptic connections of the granular and molecular layer, which could effectively take part in cerebellar motor learning.
Collapse
Affiliation(s)
- S Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy; Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy.
| | - P Colagiorgio
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - M Versino
- Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy
| | - G Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione S. Lucia IRCCS, via Ardeatina 306, 00179 Rome, Italy; Dipartimento di Neurologia, Policlinico Tor Vergata, viale Oxford 81, 00133 Rome, Italy
| | - E D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy
| | - S Ramat
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
82
|
After Effects of Cerebellar Continuous Theta Burst Stimulation on Reflexive Saccades and Smooth Pursuit in Humans. THE CEREBELLUM 2017; 16:764-771. [DOI: 10.1007/s12311-017-0852-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
83
|
Gilat M, Bell PT, Ehgoetz Martens KA, Georgiades MJ, Hall JM, Walton CC, Lewis SJG, Shine JM. Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease. Neuroimage 2017; 152:207-220. [PMID: 28263926 DOI: 10.1016/j.neuroimage.2017.02.073] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022] Open
Abstract
Impairments in motor automaticity cause patients with Parkinson's disease to rely on attentional resources during gait, resulting in greater motor variability and a higher risk of falls. Although dopaminergic circuitry is known to play an important role in motor automaticity, little evidence exists on the neural mechanisms underlying the breakdown of locomotor automaticity in Parkinson's disease. This impedes clinical management and is in great part due to mobility restrictions that accompany the neuroimaging of gait. This study therefore utilized a virtual reality gait paradigm in conjunction with functional MRI to investigate the role of dopaminergic medication on lower limb motor automaticity in 23 patients with Parkinson's disease that were measured both on and off dopaminergic medication. Participants either operated foot pedals to navigate a corridor ('walk' condition) or watched the screen while a researcher operated the paradigm from outside the scanner ('watch' condition), a setting that controlled for the non-motor aspects of the task. Step time variability during walk was used as a surrogate measure for motor automaticity (where higher variability equates to reduced automaticity), and patients demonstrated a predicted increase in step time variability during the dopaminergic "off" state. During the "off" state, subjects showed an increased blood oxygen level-dependent response in the bilateral orbitofrontal cortices (walk>watch). To estimate step time variability, a parametric modulator was designed that allowed for the examination of brain regions associated with periods of decreased automaticity. This analysis showed that patients on dopaminergic medication recruited the cerebellum during periods of increasing variability, whereas patients off medication instead relied upon cortical regions implicated in cognitive control. Finally, a task-based functional connectivity analysis was conducted to examine the manner in which dopamine modulates large-scale network interactions during gait. A main effect of medication was found for functional connectivity within an attentional motor network and a significant condition by medication interaction for functional connectivity was found within the striatum. Furthermore, functional connectivity within the striatum correlated strongly with increasing step time variability during walk in the off state (r=0.616, p=0.002), but not in the on state (r=-0.233, p=0.284). Post-hoc analyses revealed that functional connectivity in the dopamine depleted state within an orbitofrontal-striatal limbic circuit was correlated with worse step time variability (r=0.653, p<0.001). Overall, this study demonstrates that dopamine ameliorates gait automaticity in Parkinson's disease by altering striatal, limbic and cerebellar processing, thereby informing future therapeutic avenues for gait and falls prevention.
Collapse
Affiliation(s)
- Moran Gilat
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Peter T Bell
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Kaylena A Ehgoetz Martens
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Georgiades
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Julie M Hall
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Courtney C Walton
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - James M Shine
- Department of Psychology, Stanford University, Stanford, CA, United States of America; Neuroscience Research Australia, Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
84
|
Naro A, Bramanti A, Leo A, Manuli A, Sciarrone F, Russo M, Bramanti P, Calabrò RS. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct Funct 2017; 222:2891-2906. [PMID: 28064346 DOI: 10.1007/s00429-016-1355-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
The cerebellum regulates several motor functions through two main mechanisms, the cerebellum-brain inhibition (CBI) and the motor surround inhibition (MSI). Although the exact cerebellar structures and functions involved in such processes are partially known, Purkinje cells (PC) and their surrounding interneuronal networks may play a pivotal role concerning CBI and MSI. Cerebellar transcranial alternating current stimulation (tACS) has been proven to shape specific cerebellar components in a feasible, safe, effective, and non-invasive manner. The aim of our study was to characterize the cerebellar structures and functions subtending CBI and MSI using a tACS approach. Fifteen healthy individuals underwent a cerebellar tACS protocol at 10, 50, and 300 Hz, or a sham-tACS over the right cerebellar hemisphere. We measured the tACS aftereffects on motor-evoked potential (MEP) amplitude, CBI induced by tACS (tiCBI) at different frequencies, MSI, and hand motor task performance. None of the participants had any side effect related to tACS. After 50-Hz tACS, we observed a clear tiCBI-50Hz weakening (about +30%, p < 0.001) paralleled by a MEP amplitude increase (about +30%, p = 0.001) and a reduction of the time required to complete some motor task (about -20%, p = 0.01), lasting up to 30 min. The 300-Hz tACS induced a selective, specific tiCBI-300Hz and tiCBI-50Hz modulation in surrounding muscles (about -15%, p = 0.01) and MSI potentiation (about +40%, p < 0.001). The 10-Hz tACS and the sham-tACS were ineffective (p > 0.6). Our preliminary data suggest that PC may represent the last mediator of tiCBI and that the surrounding interneuronal network may have an important role in updating MSI, tiCBI, and M1 excitability during tonic muscle contraction, by acting onto the PC. The knowledge of these neurophysiological issues offers new cues to design innovative, non-invasive neuromodulation protocols to shape cerebellar-cerebral functions.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Antonino Leo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Alfredo Manuli
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Francesca Sciarrone
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Margherita Russo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy.
| |
Collapse
|
85
|
Opie GM, Rogasch NC, Goldsworthy MR, Ridding MC, Semmler JG. Investigating TMS–EEG Indices of Long-Interval Intracortical Inhibition at Different Interstimulus Intervals. Brain Stimul 2017; 10:65-74. [DOI: 10.1016/j.brs.2016.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022] Open
|
86
|
De Vidovich GZ, Muffatti R, Monaco J, Caramia N, Broglia D, Caverzasi E, Barale F, D'Angelo E. Repetitive TMS on Left Cerebellum Affects Impulsivity in Borderline Personality Disorder: A Pilot Study. Front Hum Neurosci 2016; 10:582. [PMID: 27994543 PMCID: PMC5136542 DOI: 10.3389/fnhum.2016.00582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
The borderline personality disorder (BPD) is characterized by a severe pattern of instability in emotional regulation, interpersonal relationships, identity and impulse control. These functions are related to the prefrontal cortex (PFC), and since PFC shows a rich anatomical connectivity with the cerebellum, the functionality of the cerebellar-PFC axis may impact on BPD. In this study, we investigated the potential involvement of cerebello-thalamo-cortical connections in impulsive reactions through a pre/post stimulation design. BPD patients (n = 8) and healthy controls (HC; n = 9) performed an Affective Go/No-Go task (AGN) assessing information processing biases for positive and negative stimuli before and after repetitive transcranial magnetic stimulation (rTMS; 1 Hz/10 min, 80% resting motor threshold (RMT) over the left lateral cerebellum. The AGN task consisted of four blocks requiring associative capacities of increasing complexity. BPD patients performed significantly worse than the HC, especially when cognitive demands were high (third and fourth block), but their performance approached that of HC after rTMS (rTMS was almost ineffective in HC). The more evident effect of rTMS in complex associative tasks might have occurred since the cerebellum is deeply involved in integration and coordination of different stimuli. We hypothesize that in BPD patients, cerebello-thalamo-cortical communication is altered, resulting in emotional dysregulation and disturbed impulse control. The rTMS over the left cerebellum might have interfered with existing functional connections exerting a facilitating effect on PFC control.
Collapse
Affiliation(s)
- Giulia Zelda De Vidovich
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Psychiatry Unit, Santi Paolo e Carlo Hospital of MilanMilan, Italy; Interdepartmental Center for Research on Personality Disorders, University of PaviaPavia, Italy
| | | | - Jessica Monaco
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Nicoletta Caramia
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Davide Broglia
- Interdepartmental Center for Research on Personality Disorders, University of Pavia Pavia, Italy
| | - Edgardo Caverzasi
- Interdepartmental Center for Research on Personality Disorders, University of Pavia Pavia, Italy
| | - Francesco Barale
- Interdepartmental Center for Research on Personality Disorders, University of Pavia Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| |
Collapse
|
87
|
Abstract
Currently available therapies for essential tremor (ET) provide sufficient control only for less than a half of patients and many unmet needs exist. This is in part due to the empiric nature of existing treatment options and persisting uncertainties about the pathogenesis of ET. The emerging concept of ET as a possible neurodegenerative disorder, better understanding of associated biochemical changes, including alterations in the γ-aminobutyric acid (GABA)-ergic system and gap junctions, and the identification of the role of the leucine-rich repeat and immunoglobulin-like domain-containing 1 (LINGO-1) gene in ET pathogenesis suggest new avenues for more targeted therapies. Here we review the most promising new approaches to treating ET, including allosteric modulation of GABA receptors and modifications of the LINGO-1 pathway. Medically refractory tremor can be successfully treated by high-frequency deep brain stimulation (DBS) of the ventral intermediate nucleus, but surgical therapies are also fraught with limitations due to adverse effects of stimulation and the loss of therapeutic response. The selection of additional thalamic and extrathalamic targets for electrode placements and the development of a closed-loop DBS system enabling automatic adjustment of stimulation parameters in response to changes in electrophysiologic brain activity are also reviewed. Tremor cancellation methods using exoskeleton and external hand-held devices are also briefly discussed.
Collapse
Affiliation(s)
- Peter Hedera
- Department of Neurology, Vanderbilt University, 465 21st Avenue South, 6140 MRB III, Nashville, TN 37240, USA
| |
Collapse
|
88
|
Cerebellar Intermittent Theta-Burst Stimulation and Motor Control Training in Individuals with Cervical Dystonia. Brain Sci 2016; 6:brainsci6040056. [PMID: 27886079 PMCID: PMC5187570 DOI: 10.3390/brainsci6040056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022] Open
Abstract
Background: There is emerging evidence that cervical dystonia is a neural network disorder with the cerebellum as a key node. The cerebellum may provide a target for neuromodulation as a therapeutic intervention in cervical dystonia. Objective: This study aimed to assess effects of intermittent theta-burst stimulation of the cerebellum on dystonia symptoms, quality of life, hand motor dexterity and cortical neurophysiology using transcranial magnetic stimulation. Methods: Sixteen participants with cervical dystonia were randomised into real or sham stimulation groups. Cerebellar neuromodulation was combined with motor training for the neck and an implicit learning task. The intervention was delivered over 10 working days. Outcome measures included dystonia severity and pain, quality of life, hand dexterity, and motor-evoked potentials and cortical silent periods recorded from upper trapezius muscles. Assessments were taken at baseline and after 5 and 10 days, with quality of life also measured 4 and 12 weeks later. Results: Intermittent theta-burst stimulation improved dystonia severity (Day 5, −5.44 points; p = 0.012; Day 10, −4.6 points; p = 0.025), however, effect sizes were small. Quality of life also improved (Day 5, −10.6 points, p = 0.012; Day 10, −8.6 points, p = 0.036; Week 4, −12.5 points, p = 0.036; Week 12, −12.4 points, p = 0.025), with medium or large effect sizes. There was a reduction in time to complete the pegboard task pre to post intervention (both p < 0.008). Cortical neurophysiology was unchanged by cerebellar neuromodulation. Conclusion: Intermittent theta-burst stimulation of the cerebellum may improve cervical dystonia symptoms, upper limb motor control and quality of life. The mechanism likely involves promoting neuroplasticity in the cerebellum although the neurophysiology remains to be elucidated. Cerebellar neuromodulation may have potential as a novel treatment intervention for cervical dystonia, although larger confirmatory studies are required.
Collapse
|
89
|
Tremblay S, Austin D, Hannah R, Rothwell JC. Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans. CEREBELLUM & ATAXIAS 2016; 3:19. [PMID: 27895926 PMCID: PMC5111316 DOI: 10.1186/s40673-016-0057-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022]
Abstract
The recent development of non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) has allowed the non-invasive assessment of cerebellar function in humans. Early studies showed that cerebellar activity, as reflected in the excitability of the dentate-thalamo-cortical pathway, can be assessed with paired stimulation of the cerebellum and the primary motor cortex (M1) (cerebellar inhibition of motor cortex, CBI). Following this, many attempts have been made, using techniques such as repetitive TMS and transcranial electrical stimulation (TES), to modulate the activity of the cerebellum and the dentate-thalamo-cortical output, and measure their impact on M1 activity. The present article reviews literature concerned with the impact of non-invasive stimulation of cerebellum on M1 measures of excitability and "plasticity" in both healthy and clinical populations. The main conclusion from the 27 reviewed articles is that the effects of cerebellar "plasticity" protocols on M1 activity are generally inconsistent. Nevertheless, two measurements showed relatively reproducible effects in healthy individuals: reduced response of M1 to sensorimotor "plasticity" (paired-associative stimulation, PAS) and reduced CBI following repetitive TMS and TES. We discuss current challenges, such as the low power of reviewed studies, variability in stimulation parameters employed and lack of understanding of physiological mechanisms underlying CBI.
Collapse
Affiliation(s)
- Sara Tremblay
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Duncan Austin
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Ricci Hannah
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG UK
| |
Collapse
|
90
|
Casula EP, Pellicciari MC, Ponzo V, Stampanoni Bassi M, Veniero D, Caltagirone C, Koch G. Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci Rep 2016; 6:36191. [PMID: 27796359 PMCID: PMC5086958 DOI: 10.1038/srep36191] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Voluntary movement control and execution are regulated by the influence of the cerebellar output over different interconnected cortical areas, through dentato-thalamo connections. In the present study we applied transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess the effects of cerebellar theta-burst stimulation (TBS) over the controlateral primary motor cortex (M1) and posterior parietal cortex (PPC) in a group of healthy volunteers. We found a TBS-dependent bidirectional modulation over TMS-evoked activity; specifically, cTBS increased whereas iTBS decreased activity between 100 and 200 ms after TMS, in a similar manner over both M1 and PPC areas. On the oscillatory domain, TBS induced specific changes over M1 natural frequencies of oscillation: TMS-evoked alpha activity was decreased by cTBS whereas beta activity was enhanced by iTBS. No effects were observed after sham stimulation. Our data provide novel evidence showing that the cerebellum exerts its control on the cortex likely by impinging on specific set of interneurons dependent on GABA-ergic activity. We show that cerebellar TBS modulates cortical excitability of distant interconnected cortical areas by acting through common temporal, spatial and frequency domains.
Collapse
Affiliation(s)
- Elias Paolo Casula
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Maria Concetta Pellicciari
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Viviana Ponzo
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Domenica Veniero
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Tor Vergata Policlinic, Rome, Italy
| |
Collapse
|
91
|
Bologna M, Paparella G, Fabbrini A, Leodori G, Rocchi L, Hallett M, Berardelli A. Effects of cerebellar theta-burst stimulation on arm and neck movement kinematics in patients with focal dystonia. Clin Neurophysiol 2016; 127:3472-3479. [PMID: 27721106 DOI: 10.1016/j.clinph.2016.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/11/2016] [Accepted: 09/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the cerebellar inhibitory influence on the primary motor cortex in patients with focal dystonia using a cerebellar continuous theta-burst stimulation protocol (cTBS) and to evaluate any relationship with movement abnormalities. METHODS Thirteen patients with focal hand dystonia, 13 patients with cervical dystonia and 13 healthy subjects underwent two sessions: (i) cTBS over the cerebellar hemisphere (real cTBS) and (ii) cTBS over the neck muscles (sham cTBS). The effects of cerebellar cTBS were quantified as excitability changes in the contralateral primary motor cortex, as well as possible changes in arm and neck movements in patients. RESULTS Real cerebellar cTBS reduced the excitability in the contralateral primary motor cortex in healthy subjects and in patients with cervical dystonia, though not in patients with focal hand dystonia. There was no correlation between changes in primary motor cortex excitability and arm and neck movement kinematics in patients. There were no changes in clinical scores or in kinematic measures, after either real or sham cerebellar cTBS in patients. CONCLUSIONS The reduced cerebellar inhibitory modulation of primary motor cortex excitability in focal dystonia may be related to the body areas affected by dystonia as opposed to being a widespread pathophysiological abnormality. SIGNIFICANCE The present study yields information on the differential role played by the cerebellum in the pathophysiology of different focal dystonias.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli (IS), Italy
| | - Giulia Paparella
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Andrea Fabbrini
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Giorgio Leodori
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke - NINDS, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli (IS), Italy.
| |
Collapse
|
92
|
Lam CK, Tokuno CD, Staines WR, Bent LR. The direction of the postural response to a vestibular perturbation is mediated by the cerebellar vermis. Exp Brain Res 2016; 234:3689-3697. [DOI: 10.1007/s00221-016-4766-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
|
93
|
Schirinzi T, Di Lorenzo F, Ponzo V, Palmieri MG, Bentivoglio AR, Schillaci O, Pisani A, Koch G. Mild cerebello-thalamo-cortical impairment in patients with normal dopaminergic scans (SWEDD). Parkinsonism Relat Disord 2016; 28:23-8. [DOI: 10.1016/j.parkreldis.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/27/2016] [Accepted: 03/29/2016] [Indexed: 11/28/2022]
|
94
|
Suppa A, Huang YZ, Funke K, Ridding M, Cheeran B, Di Lazzaro V, Ziemann U, Rothwell J. Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Brain Stimul 2016; 9:323-335. [DOI: 10.1016/j.brs.2016.01.006] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 01/08/2023] Open
|
95
|
Farzan F, Pascual-Leone A, Schmahmann JD, Halko M. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation. Sci Rep 2016; 6:23599. [PMID: 27009405 PMCID: PMC4806366 DOI: 10.1038/srep23599] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/29/2016] [Indexed: 11/09/2022] Open
Abstract
Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, ON, M6J 1H4, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Mark Halko
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA
| |
Collapse
|
96
|
Harrington A, Hammond-Tooke GD. Theta Burst Stimulation of the Cerebellum Modifies the TMS-Evoked N100 Potential, a Marker of GABA Inhibition. PLoS One 2015; 10:e0141284. [PMID: 26529225 PMCID: PMC4631469 DOI: 10.1371/journal.pone.0141284] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023] Open
Abstract
Theta burst stimulation (TBS) of the cerebellum, a potential therapy for neurological disease, can modulate corticospinal excitability via the dentato-thalamo-cortical pathway, but it is uncertain whether its effects are mediated via inhibitory or facilitatory networks. The aim of this study was to investigate the effects of 30Hz cerebellar TBS on the N100 waveform of the TMS-evoked potential (TEP), a marker of intracortical GABAB-mediated inhibition. 16 healthy participants (aged 18–30 years; 13 right handed and 3 left handed) received 30Hz intermittent TBS (iTBS), continuous TBS (cTBS) or sham stimulation over the right cerebellum, in three separate sessions. The first 8 participants received TBS at a stimulus intensity of 80% of active motor threshold (AMT), while the remainder received 90% of AMT. Motor evoked potentials (MEP) and TEP were recorded before and after each treatment, by stimulating the first dorsal interosseus area of the left motor cortex. Analysis of the 13 right handed participants showed that iTBS at 90% of AMT increased the N100 amplitude compared to sham and cTBS, without significantly altering MEP amplitude. cTBS at 80% of active motor threshold decreased the N100 amplitude and cTBS overall reduced resting MEP amplitude. The study demonstrates effects of 30Hz cerebellar TBS on inhibitory cortical networks that may be useful for treatment of neurological conditions associated with dysfunctional intracortical inhibition.
Collapse
Affiliation(s)
| | - Graeme David Hammond-Tooke
- Department of Medicine, University of Otago, Dunedin, New Zealand
- Department of Neurology, Dunedin Hospital, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
97
|
Schulz R, Frey BM, Koch P, Zimerman M, Bönstrup M, Feldheim J, Timmermann JE, Schön G, Cheng B, Thomalla G, Gerloff C, Hummel FC. Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke. Cereb Cortex 2015; 27:635-645. [DOI: 10.1093/cercor/bhv251] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
98
|
Rastogi A, Ghahremani A, Cash R. Modulation of cerebello-cerebral resting state networks by site-specific stimulation. J Neurophysiol 2015; 114:2084-6. [DOI: 10.1152/jn.00977.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/10/2015] [Indexed: 12/21/2022] Open
Abstract
Converging evidence from neuroimaging and neuromodulation literature suggests that the cerebellum plays a broad role in motor as well as cognitive processes through its participation in resting-state networks. A recent study by Halko et al. ( J Neurosci 34: 12049–12056, 2014) demonstrates, for the first time, the ability to modulate functional connectivity of some of these distinct resting-state networks using site-specific repetitive transcranial magnetic stimulation (rTMS) of the cerebellum. In this Neuro Forum, we discuss and critically analyze this study, emphasizing important findings, potential therapeutic relevance, and areas worthy of further inquiry.
Collapse
Affiliation(s)
- Anuj Rastogi
- Institute of Medical Science, Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada; and
- Division of Brain, Imaging and Behavior-Systems Neuroscience, Toronto Western Research Institute, University of Toronto, Toronto, Canada
| | - Ayda Ghahremani
- Institute of Medical Science, Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada; and
- Division of Brain, Imaging and Behavior-Systems Neuroscience, Toronto Western Research Institute, University of Toronto, Toronto, Canada
| | - Robin Cash
- Division of Brain, Imaging and Behavior-Systems Neuroscience, Toronto Western Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
99
|
Bologna M, Di Biasio F, Conte A, Iezzi E, Modugno N, Berardelli A. Effects of cerebellar continuous theta burst stimulation on resting tremor in Parkinson's disease. Parkinsonism Relat Disord 2015; 21:1061-6. [DOI: 10.1016/j.parkreldis.2015.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
100
|
Benninger DH, Hallett M. Non-invasive brain stimulation for Parkinson’s disease: Current concepts and outlook 2015. NeuroRehabilitation 2015; 37:11-24. [DOI: 10.3233/nre-151237] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- David H. Benninger
- Service de Neurologie, Départment des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Mark Hallett
- Medical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|