51
|
Zhang D, Mohammed H, Ye Z, Rhodes MA, Thongda W, Zhao H, Jescovitch LN, Fuller SA, Davis DA, Peatman E. Transcriptomic profiles of Florida pompano (Trachinotus carolinus) gill following infection by the ectoparasite Amyloodiniumocellatum. FISH & SHELLFISH IMMUNOLOGY 2022; 125:171-179. [PMID: 35569776 DOI: 10.1016/j.fsi.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The dinoflagellate Amyloodinium ocellatum is an important pathogenic parasite infecting cultured marine and brackish water fishes worldwide. This includes cultured Florida pompano (Trachinotus carolinus), which is one of the most desirable marine food fish with high economic value in the USA. A. ocellatum infects fish gills and causes tissue damage, increased respiratory rate, reduced appetite, and mortality, especially in closed aquaculture systems. This study mimicked the natural infection of A. ocellatum in cultured pompano and conducted a transcriptomic comparison of gene expression in the gills of control and A. ocellatum infected fish to explore the molecular mechanisms of infection. RNA-seq data revealed 604 differentially expressed genes in the infected fish gills. The immunoglobulin genes (including IgM/T) augmentation and IL1 inflammation suppression were detected after infection. Genes involved in reactive oxygen species mediating parasite killing were also highly induced. However, excessive oxidants have been linked to oxidative tissue damage and apoptosis. Correspondingly, widespread down-regulation of collagen genes and growth factor deprivation indicated impaired tissue repair, and meanwhile the key executor of apoptosis, caspase-3 was highly expressed (25.02-fold) in infected fish. The infection also influenced the respiratory gas sensing and transport genes and established hypoxic conditions in the gill tissue. Additionally, food intake and lipid metabolism were also affected. Our work provides the transcriptome sequencing of Florida pompano and provides key insights into the acute pathogenesis of A. ocellatum. This information can be utilized for designing optimal disease surveillance strategies, future selection for host resistance, and development of novel therapeutic measures.
Collapse
Affiliation(s)
- Dongdong Zhang
- College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, PR China; School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Haitham Mohammed
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Melanie A Rhodes
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Honggang Zhao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren N Jescovitch
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - S Adam Fuller
- USDA, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, 2955 Highway 130 East, Stuttgart, AR, 72160, USA
| | - D Allen Davis
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
52
|
You W, Ke J, Chen Y, Cai Z, Huang ZP, Hu P, Wu X. SQLE, A Key Enzyme in Cholesterol Metabolism, Correlates With Tumor Immune Infiltration and Immunotherapy Outcome of Pancreatic Adenocarcinoma. Front Immunol 2022; 13:864244. [PMID: 35720314 PMCID: PMC9204319 DOI: 10.3389/fimmu.2022.864244] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a treatment-refractory cancer with poor prognosis. Accumulating evidence suggests that squalene epoxidase (SQLE) plays a pivotal role in the development and progression of several cancer types in humans. However, the function and underlying mechanism of SQLE in PAAD remain unclear. Methods SQLE expression data were downloaded from The Cancer Genome Atlas and the Genotype-Tissue Expression database. SQLE alterations were demonstrated based on the cBioPortal database. The upstream miRNAs regulating SQLE expression were predicted using starBase. The function of miRNA was validated by Western blotting and cell proliferation assay. The relationship between SQLE expression and biomarkers of the tumor immune microenvironment (TME) was analyzed using the TIMER and TISIDB databases. The correlation between SQLE and immunotherapy outcomes was assessed using Tumor Immune Dysfunction and Exclusion. The log-rank test was performed to compare prognosis between the high and low SQLE groups. Results We demonstrated a potential oncogenic role of SQLE. SQLE expression was upregulated in PAAD, and it predicted poor disease-free survival (DFS) and overall survival (OS) in patients with PAAD. "Amplification" was the dominant type of SQLE alteration. In addition, this alteration was closely associated with the OS, disease-specific survival, DFS, and progression-free survival of patients with PAAD. Subsequently, hsa-miR-363-3p was recognized as a critical microRNA regulating SQLE expression and thereby influencing PAAD patient outcome. In vitro experiments suggested that miR-363-3p could knock down the expression of SQLE and inhibit the proliferation of PANC-1. SQLE was significantly associated with tumor immune cell infiltration, immune checkpoints (including PD-1 and CTLA-4), and biomarkers of the TME. KEGG and GO analyses indicated that cholesterol metabolism-associated RNA functions are implicated in the mechanisms of SQLE. SQLE was inversely associated with cytotoxic lymphocytes and predicted immunotherapy outcomes. Conclusions Collectively, our results indicate that cholesterol metabolism-related overexpression of SQLE is strongly correlated with tumor immune infiltration and immunotherapy outcomes in patients with PAAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaojian Wu
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
53
|
Pereira FA, de Andrade VS, Souza EA, de Mattos MC, Oliveira DF. 2-Aminoselenazoles and 2-aminothiazoles: One-pot synthesis and control of the fungus Colletotrichum lindemuthianum in common beans. PEST MANAGEMENT SCIENCE 2022; 78:1665-1676. [PMID: 34994047 DOI: 10.1002/ps.6786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Anthracnose, caused by the fungus Colletotrichum lindemuthianum, increases losses in the production of common beans. As 1,3-diazoles can act against fungi by inhibiting the enzyme squalene epoxidase (SE), 2-aminoselenazoles and 2-aminothiazoles were synthesized and subjected to tests with the fungus. In addition, the interactions of the most promising substances with the enzyme SE were investigated in silico. RESULTS Seventeen compounds (eight new) were prepared by a one-pot methodology. In vitro antifungal activities of these compounds against C. lindemuthianum were determined by the minimum inhibitory concentration (MIC) method. Most treatments differed from the control (water), and six azoles with the lowest MIC values underwent an assay employing common bean plants inoculated with the fungus. Among the best results were those from 2-(3-fluorophenyl)amino-4-phenyl-1,3-thiazole (16; 2857 μg mL-1 ), which reduced the severity of anthracnose in common beans to values statistically comparable to the commercial fungicide thiophanate-methyl (700 μg mL-1 ). The in silico affinity of compound 16 for SE was statistically equal to those calculated for several inhibitors of this enzyme. CONCLUSIONS The results suggested that 2-(3-fluorophenyl)amino-4-phenyl-1,3-thiazole (16) could be considered a potential fungicidal lead compound for further structural optimization, which according to the in silico study acts via SE inhibition. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Vitor Sc de Andrade
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine A Souza
- Department of Biology, Federal University of Lavras, Lavras, Brazil
| | - Marcio Cs de Mattos
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
54
|
Shi Q, Chen J, Zou X, Tang X. Intracellular Cholesterol Synthesis and Transport. Front Cell Dev Biol 2022; 10:819281. [PMID: 35386193 PMCID: PMC8978673 DOI: 10.3389/fcell.2022.819281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Cholesterol homeostasis is related to multiple diseases in humans, including cardiovascular disease, cancer, and neurodegenerative and hepatic diseases. The cholesterol levels in cells are balanced dynamically by uptake, biosynthesis, transport, distribution, esterification, and export. In this review, we focus on de novo cholesterol synthesis, cholesterol synthesis regulation, and intracellular cholesterol trafficking. In addition, the progression of lipid transfer proteins (LTPs) at multiple contact sites between organelles is considered.
Collapse
Affiliation(s)
- Qingyang Shi
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, The First Hospital, Jilin University, Changchun, China
| | - Jiahuan Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
- *Correspondence: Xiaochun Tang,
| |
Collapse
|
55
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
56
|
Wall CTJ, Lefebvre G, Metairon S, Descombes P, Wiederkehr A, Santo-Domingo J. Mitochondrial respiratory chain dysfunction alters ER sterol sensing and mevalonate pathway activity. J Biol Chem 2022; 298:101652. [PMID: 35101444 PMCID: PMC8892029 DOI: 10.1016/j.jbc.2022.101652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction induces a strong adaptive retrograde signaling response; however, many of the downstream effectors of this response remain to be discovered. Here, we studied the shared transcriptional responses to three different mitochondrial respiratory chain inhibitors in human primary skin fibroblasts using QuantSeq 3′-RNA-sequencing. We found that genes involved in the mevalonate pathway were concurrently downregulated, irrespective of the respiratory chain complex affected. Targeted metabolomics demonstrated that impaired mitochondrial respiration at any of the three affected complexes also had functional consequences on the mevalonate pathway, reducing levels of cholesterol precursor metabolites. A deeper study of complex I inhibition showed a reduced activity of endoplasmic reticulum–bound sterol-sensing enzymes through impaired processing of the transcription factor Sterol Regulatory Element-Binding Protein 2 and accelerated degradation of the endoplasmic reticulum cholesterol-sensors squalene epoxidase and HMG-CoA reductase. These adaptations of mevalonate pathway activity affected neither total intracellular cholesterol levels nor the cellular free (nonesterified) cholesterol pool. Finally, measurement of intracellular cholesterol using the fluorescent cholesterol binding dye filipin revealed that complex I inhibition elevated cholesterol on intracellular compartments. Taken together, our study shows that mitochondrial respiratory chain dysfunction elevates intracellular free cholesterol levels and therefore attenuates the expression of mevalonate pathway enzymes, which lowers endogenous cholesterol biosynthesis, disrupting the metabolic output of the mevalonate pathway. We conclude that intracellular disturbances in cholesterol homeostasis may alter systemic cholesterol management in diseases associated with declining mitochondrial function.
Collapse
Affiliation(s)
- Christopher Tadhg James Wall
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; Institute of Bioengineering, Life Science Faculty, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gregory Lefebvre
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; Institute of Bioengineering, Life Science Faculty, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Jaime Santo-Domingo
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and CSIC, Valladolid, Spain.
| |
Collapse
|
57
|
Rau EM, Bartosova Z, Kristiansen KA, Aasen IM, Bruheim P, Ertesvåg H. Overexpression of Two New Acyl-CoA:Diacylglycerol Acyltransferase 2-Like Acyl-CoA:Sterol Acyltransferases Enhanced Squalene Accumulation in Aurantiochytrium limacinum. Front Microbiol 2022; 13:822254. [PMID: 35145505 PMCID: PMC8821962 DOI: 10.3389/fmicb.2022.822254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thraustochytrids are heterotrophic marine eukaryotes known to accumulate large amounts of triacylglycerols, and they also synthesize terpenoids like carotenoids and squalene, which all have an increasing market demand. However, a more extensive knowledge of the lipid metabolism is needed to develop thraustochytrids for profitable biomanufacturing. In this study, two putative type-2 Acyl-CoA:diacylglycerol acyltransferases (DGAT2) genes of Aurantiochytrium sp. T66, T66ASATa, and T66ASATb, and their homologs in Aurantiochytrium limacinum SR21, AlASATa and AlASATb, were characterized. In A. limacinum SR21, genomic knockout of AlASATb reduced the amount of the steryl esters of palmitic acid, SE (16:0), and docosahexaenoic acid, SE (22:6). The double mutant of AlASATa and AlASATb produced even less of these steryl esters. The expression and overexpression of T66ASATb and AlASATb, respectively, enhanced SE (16:0) and SE (22:6) production more significantly than those of T66ASATa and AlASATa. In contrast, these mutations did not significantly change the level of triacylglycerols or other lipid classes. The results suggest that the four genes encoded proteins possessing acyl-CoA:sterol acyltransferase (ASAT) activity synthesizing both SE (16:0) and SE (22:6), but with the contribution from AlASATb and T66ASATb being more important than that of AlASATa and T66ASATa. Furthermore, the expression and overexpression of T66ASATb and AlASATb enhanced squalene accumulation in SR21 by up to 88%. The discovery highlights the functional diversity of DGAT2-like proteins and provides valuable information on steryl ester and squalene synthesis in thraustochytrids, paving the way to enhance squalene production through metabolic engineering.
Collapse
Affiliation(s)
- E-Ming Rau
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kåre Andre Kristiansen
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Inga Marie Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Helga Ertesvåg,
| |
Collapse
|
58
|
Karpale M, Hukkanen J, Hakkola J. Nuclear Receptor PXR in Drug-Induced Hypercholesterolemia. Cells 2022; 11:cells11030313. [PMID: 35159123 PMCID: PMC8833906 DOI: 10.3390/cells11030313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a major global health concern. The central modifiable risk factors and causative agents of the disease are high total and low-density lipoprotein (LDL) cholesterol. To reduce morbidity and mortality, a thorough understanding of the factors that influence an individual’s cholesterol status during the decades when the arteria-narrowing arteriosclerotic plaques are forming is critical. Several drugs are known to increase cholesterol levels; however, the mechanisms are poorly understood. Activation of pregnane X receptor (PXR), the major regulator of drug metabolism and molecular mediator of clinically significant drug–drug interactions, has been shown to induce hypercholesterolemia. As a major sensor of the chemical environment, PXR may in part mediate hypercholesterolemic effects of drug treatment. This review compiles the current knowledge of PXR in cholesterol homeostasis and discusses the role of PXR in drug-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Mikko Karpale
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Janne Hukkanen
- Research Unit of Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Jukka Hakkola
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
- Correspondence:
| |
Collapse
|
59
|
Mc Auley MT. Modeling cholesterol metabolism and atherosclerosis. WIREs Mech Dis 2021; 14:e1546. [PMID: 34931487 DOI: 10.1002/wsbm.1546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality among Western populations. Many risk factors have been identified for ASCVD; however, elevated low-density lipoprotein cholesterol (LDL-C) remains the gold standard. Cholesterol metabolism at the cellular and whole-body level is maintained by an array of interacting components. These regulatory mechanisms have complex behavior. Likewise, the mechanisms which underpin atherogenesis are nontrivial and multifaceted. To help overcome the challenge of investigating these processes mathematical modeling, which is a core constituent of the systems biology paradigm has played a pivotal role in deciphering their dynamics. In so doing models have revealed new insights about the key drivers of ASCVD. The aim of this review is fourfold; to provide an overview of cholesterol metabolism and atherosclerosis, to briefly introduce mathematical approaches used in this field, to critically discuss models of cholesterol metabolism and atherosclerosis, and to highlight areas where mathematical modeling could help to investigate in the future. This article is categorized under: Cardiovascular Diseases > Computational Models.
Collapse
|
60
|
Zhou F, Sun X. Cholesterol Metabolism: A Double-Edged Sword in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:762828. [PMID: 34869352 PMCID: PMC8635701 DOI: 10.3389/fcell.2021.762828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a leading cause of cancer-related deaths globally. The rising incidence of metabolic syndrome and its hepatic manifestation, nonalcoholic fatty liver disease (NAFLD), have emerged as the fastest-growing cause of HCC in recent years. Cholesterol, a major lipid component of the cell membrane and lipoprotein particles, is primarily produced and metabolized by the liver. Numerous studies have revealed an increased cholesterol biosynthesis and uptake, reduced cholesterol exportation and excretion in HCC, which all contribute to lipotoxicity, inflammation, and fibrosis, known HCC risk factors. In contrast, some clinical studies have shown that higher cholesterol is associated with a reduced risk of HCC. These contradictory observations imply that the relationship between cholesterol and HCC is far more complex than initially anticipated. Understanding the role of cholesterol and deciphering the underlying molecular events in HCC development is highly relevant to developing new therapies. Here, we discuss the current understanding of cholesterol metabolism in the pathogenesis of NAFLD-associated HCC, and the underlying mechanisms, including the roles of cholesterol in the disruption of normal function of specific cell types and signaling transduction. We also review the clinical progression in evaluating the association of cholesterol with HCC. The therapeutic effects of lowering cholesterol will also be summarized. We also interpret reasons for the contradictory observations from different preclinical and human studies of the roles of cholesterol in HCC, aiming to provide a critical assessment of the potential of cholesterol as a therapeutic target.
Collapse
Affiliation(s)
- Fangli Zhou
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Sun
- Department of Pharmacology, Mays Cancer Center, Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
61
|
Yuan X, Minobe Y, Tanaka Y, Fukuda Y, Furukawa Y, Miyago M, Mizokami T, Tsai WT, Jiang Z, Tong LT, Akasaka T, Shirouchi B, Toyosawa Y, Kumamaru T, Sato M. α-globulin-rich rice cultivar, low glutelin content-1 (LGC-1), decreases serum cholesterol concentration in exogenously hypercholesterolemic rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6417-6423. [PMID: 33982308 DOI: 10.1002/jsfa.11312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Rice α-globulin has been reported to have serum cholesterol-lowering activity in rats. However, it is still unclear whether α-globulin exerts this effect when taken as one of the dietary components. In the present study, we investigated the effect of two cultivars of rice, low glutelin content (LGC)-1 and LGC-Jun, on reducing serum cholesterol in exogenously hypercholesterolemic (ExHC) rats. LGC-1 is enriched in α-globulin (10.6 mg g-1 rice flour, which is an approximately 1.5 times higher α-globulin content than in Koshihikari a predominant rice cultivar in Japan), whereas LGC-Jun is a globulin-negative cultivar. METHODS ExHC rats, the model strain of diet-induced hypercholesterolemia, were fed 50% LGC-1 or LGC-Jun and 0.5% cholesterol-containing diets for 2 weeks, followed by measurement of cholesterol metabolism parameters in serum and tissues. RESULTS Serum cholesterol and non-high-density lipoprotein cholesterol levels were significantly lower in the LGC-1 group compared to the LGC-Jun group. Cholesterol intestinal absorption markers, hepatic and serum levels of campesterol and β-sitosterol, and lymphatic cholesterol transport were not different between the two groups. Levels of 7α-hydroxycholesterol, an intermediate of bile acid synthesis, showed a downward trend in the livers of rats that were fed LGC-1 (P = 0.098). There was a significant decrease in the hepatic mRNA expression of Cyp7a1 (a synthetic enzyme for 7α-hydroxycholesterol) in the LGC-1 group compared to the LGC-Jun group. CONCLUSION Dietary LGC-1 significantly decreased serum cholesterol levels in ExHC rats. The possible mechanism for the cholesterol-lowering activity of LGC-1 is partial inhibition of bile acid and cholesterol synthesis in the liver. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingyu Yuan
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yutaro Minobe
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yasutake Tanaka
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yumi Fukuda
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yumiko Furukawa
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Motonori Miyago
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Takuya Mizokami
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Wei-Ting Tsai
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Zhe Jiang
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Li-Tao Tong
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Taiki Akasaka
- Center for Advanced Instrumental and Educational Supports, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Bungo Shirouchi
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yoshiko Toyosawa
- Laboratory of Plant Genetic Resources, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kumamaru
- Laboratory of Plant Genetic Resources, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masao Sato
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| |
Collapse
|
62
|
He J, Siu MKY, Ngan HYS, Chan KKL. Aberrant Cholesterol Metabolism in Ovarian Cancer: Identification of Novel Therapeutic Targets. Front Oncol 2021; 11:738177. [PMID: 34820325 PMCID: PMC8606538 DOI: 10.3389/fonc.2021.738177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023] Open
Abstract
Cholesterol is an essential substance in mammalian cells, and cholesterol metabolism plays crucial roles in multiple biological functions. Dysregulated cholesterol metabolism is a metabolic hallmark in several cancers, beyond the Warburg effect. Reprogrammed cholesterol metabolism has been reported to enhance tumorigenesis, metastasis and chemoresistance in multiple cancer types, including ovarian cancer. Ovarian cancer is one of the most aggressive malignancies worldwide. Alterations in metabolic pathways are characteristic features of ovarian cancer; however, the specific role of cholesterol metabolism remains to be established. In this report, we provide an overview of the key proteins involved in cholesterol metabolism in ovarian cancer, including the rate-limiting enzymes in cholesterol biosynthesis, and the proteins involved in cholesterol uptake, storage and trafficking. Also, we review the roles of cholesterol and its derivatives in ovarian cancer and the tumor microenvironment, and discuss promising related therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Jiangnan He
- Departments of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR China
| | - Michelle K Y Siu
- Departments of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR China
| | - Hextan Y S Ngan
- Departments of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR China
| | - Karen K L Chan
- Departments of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR China
| |
Collapse
|
63
|
Zang T, Wang S, Su S, Gao M, Chen Q, Liang C, Jing J, Zhang R, Zhang X. Off-On Squalene Epoxidase-Specific Fluorescent Probe for Fast Imaging in Living Cells. Anal Chem 2021; 93:14716-14721. [PMID: 34702029 DOI: 10.1021/acs.analchem.1c03168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SQLE (squalene epoxidase) is a cell membrane-bound enzyme. It is a target of fungicides and may become a new target for cancer therapy. Therefore, monitoring the content and distribution of the key enzyme in living cells is very challenging. To achieve this goal, tetraphenyl ethylene-Ter (TPE-Ter) was first designed as a new fluorescent probe to SQLE based on its active cavity. Spectral experiments discovered that SQLE/TPE-Ter shows stronger emission with fast response time and low interference from other analytes. Molecular dynamics simulation clearly confirmed the complex structure of SQLE/TPE-Ter, and the key residues contribute to restriction of TPE-Ter single-molecular motion in the cavity. TPE-Ter-specific response to SQLE is successfully demonstrated in living cells such as LO2, HepG2, and fungi. Imaging of TPE-Ter-treated fungi indicates that it can be used to rapidly assess antifungal drug susceptibility (30 min at least). The present work provides a powerful tool to detect content and distribution of SQLE in living cells.
Collapse
Affiliation(s)
- Tienan Zang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shudong Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Sa Su
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Mengxu Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qianqian Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chenlu Liang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Rubo Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
64
|
Sun H, Li L, Li W, Yang F, Zhang Z, Liu Z, Du W. p53 transcriptionally regulates SQLE to repress cholesterol synthesis and tumor growth. EMBO Rep 2021; 22:e52537. [PMID: 34459531 DOI: 10.15252/embr.202152537] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cholesterol is essential for membrane biogenesis, cell proliferation, and differentiation. The role of cholesterol in cancer development and the regulation of cholesterol synthesis are still under active investigation. Here we show that under normal-sterol conditions, p53 directly represses the expression of SQLE, a rate-limiting and the first oxygenation enzyme in cholesterol synthesis, in a SREBP2-independent manner. Through transcriptional downregulation of SQLE, p53 represses cholesterol production in vivo and in vitro, leading to tumor growth suppression. Inhibition of SQLE using small interfering RNA (siRNA) or terbinafine (a SQLE inhibitor) reverses the increased cell proliferation caused by p53 deficiency. Conversely, SQLE overexpression or cholesterol addition promotes cell proliferation, particularly in p53 wild-type cells. More importantly, pharmacological inhibition or shRNA-mediated silencing of SQLE restricts nonalcoholic fatty liver disease (NAFLD)-induced liver tumorigenesis in p53 knockout mice. Therefore, our findings reveal a role for p53 in regulating SQLE and cholesterol biosynthesis, and further demonstrate that downregulation of SQLE is critical for p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Huishan Sun
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Li
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Li
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fan Yang
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhenxi Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zizhao Liu
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
65
|
Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med 2021; 218:211616. [PMID: 33601415 PMCID: PMC7754673 DOI: 10.1084/jem.20201606] [Citation(s) in RCA: 398] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Dysregulation in lipid metabolism is among the most prominent metabolic alterations in cancer. Cancer cells harness lipid metabolism to obtain energy, components for biological membranes, and signaling molecules needed for proliferation, survival, invasion, metastasis, and response to the tumor microenvironment impact and cancer therapy. Here, we summarize and discuss current knowledge about the advances made in understanding the regulation of lipid metabolism in cancer cells and introduce different approaches that have been clinically used to disrupt lipid metabolism in cancer therapy.
Collapse
Affiliation(s)
- Xueli Bian
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongming Xing
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
66
|
Transcriptome analysis reveals that high temperatures alter modes of lipid metabolism in juvenile turbot (Scophthalmus maximus) liver. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100887. [PMID: 34428713 DOI: 10.1016/j.cbd.2021.100887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
With the increase in farming density and the continuously high summer temperatures against the background of global warming, high temperature stress has become a major challenge in fish farming. In this study, we simulated the high temperature environments (20 °C, 24 °C, and 28 °C) that may occur during turbot culture. High-throughput sequencing was used to investigate the lipid metabolism response patterns in juvenile turbot liver under high temperature stress. A total of 2067 differentially expressed genes (DEGs) were identified. KEGG analysis revealed that the DEGs were mainly associated with glycerophospholipid metabolism, steroid biosynthesis, glycerolipid metabolism, fatty acid metabolic pathways, and the PPAR signaling pathway. A regulatory network was constructed to further elucidate the transcriptional regulation of lipid metabolism. We speculated that high temperature activates PPAR signaling pathway through interaction with ligands such as fatty acids. On the one hand, the HMGCS1 gene in this pathway can inhibit sterol synthesis by down-regulating the expression of key genes in steroid biosynthesis pathway (SQLE, EBP, and DHCR24). On the other hand, the expression of ACSL1 in this pathway is significantly increased under high temperature, which may play an important role in regulating fatty acid metabolism. Moreover, we collected blood and detected changes in serum lipid parameters; the variation patterns were also consistent with our results. These findings reveal that lipid metabolism has an important regulatory role in stress resistance when turbot is exposed to high temperatures.
Collapse
|
67
|
Kalogirou C, Linxweiler J, Schmucker P, Snaebjornsson MT, Schmitz W, Wach S, Krebs M, Hartmann E, Puhr M, Müller A, Spahn M, Seitz AK, Frank T, Marouf H, Büchel G, Eckstein M, Kübler H, Eilers M, Saar M, Junker K, Röhrig F, Kneitz B, Rosenfeldt MT, Schulze A. MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nat Commun 2021; 12:5066. [PMID: 34417456 PMCID: PMC8379214 DOI: 10.1038/s41467-021-25325-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) shows strong dependence on the androgen receptor (AR) pathway. Here, we show that squalene epoxidase (SQLE), an enzyme of the cholesterol biosynthesis pathway, is overexpressed in advanced PCa and its expression correlates with poor survival. SQLE expression is controlled by micro-RNA 205 (miR-205), which is significantly downregulated in advanced PCa. Restoration of miR-205 expression or competitive inhibition of SQLE led to inhibition of de novo cholesterol biosynthesis. Furthermore, SQLE was essential for proliferation of AR-positive PCa cell lines, including abiraterone or enzalutamide resistant derivatives, and blocked transactivation of the AR pathway. Inhibition of SQLE with the FDA approved antifungal drug terbinafine also efficiently blocked orthotopic tumour growth in mice. Finally, terbinafine reduced levels of prostate specific antigen (PSA) in three out of four late-stage PCa patients. These results highlight SQLE as a therapeutic target for the treatment of advanced PCa.
Collapse
Affiliation(s)
- C Kalogirou
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - J Linxweiler
- Department of Urology, Saarland University, Homburg/Saar, Germany
| | - P Schmucker
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - M T Snaebjornsson
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Heidelberg, Germany
| | - W Schmitz
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - S Wach
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - M Krebs
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - E Hartmann
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - M Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - A Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University, Homburg/Saar, Germany
| | - M Spahn
- Center for Urology, Hirslanden Private Hospital Group, Zurich, Switzerland
| | - A K Seitz
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - T Frank
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - H Marouf
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - G Büchel
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - M Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - H Kübler
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - M Eilers
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - M Saar
- Department of Urology, Saarland University, Homburg/Saar, Germany
| | - K Junker
- Department of Urology, Saarland University, Homburg/Saar, Germany
| | - F Röhrig
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - B Kneitz
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - M T Rosenfeldt
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - A Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany.
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Heidelberg, Germany.
| |
Collapse
|
68
|
The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway: An Expanding Repertoire of Regulated Substrates. Biomolecules 2021; 11:biom11081185. [PMID: 34439852 PMCID: PMC8393694 DOI: 10.3390/biom11081185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
All proteins are subject to quality control processes during or soon after their synthesis, and these cellular quality control pathways play critical roles in maintaining homeostasis in the cell and in organism health. Protein quality control is particularly vital for those polypeptides that enter the endoplasmic reticulum (ER). Approximately one-quarter to one-third of all proteins synthesized in eukaryotic cells access the ER because they are destined for transport to the extracellular space, because they represent integral membrane proteins, or because they reside within one of the many compartments of the secretory pathway. However, proteins that mature inefficiently are subject to ER-associated degradation (ERAD), a multi-step pathway involving the chaperone-mediated selection, ubiquitination, and extraction (or “retrotranslocation”) of protein substrates from the ER. Ultimately, these substrates are degraded by the cytosolic proteasome. Interestingly, there is an increasing number of native enzymes and metabolite and solute transporters that are also targeted for ERAD. While some of these proteins may transiently misfold, the ERAD pathway also provides a route to rapidly and quantitatively downregulate the levels and thus the activities of a variety of proteins that mature or reside in the ER.
Collapse
|
69
|
Grunkemeyer TJ, Ghosh S, Patel AM, Sajja K, Windak J, Basrur V, Kim Y, Nesvizhskii AI, Kennedy RT, Marsh ENG. The antiviral enzyme viperin inhibits cholesterol biosynthesis. J Biol Chem 2021; 297:100824. [PMID: 34029588 PMCID: PMC8254119 DOI: 10.1016/j.jbc.2021.100824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023] Open
Abstract
Many enveloped viruses bud from cholesterol-rich lipid rafts on the cell membrane. Depleting cellular cholesterol impedes this process and results in viral particles with reduced viability. Viperin (Virus Inhibitory Protein, Endoplasmic Reticulum-associated, Interferon iNducible) is an endoplasmic reticulum membrane-associated enzyme that exerts broad-ranging antiviral effects, including inhibiting the budding of some enveloped viruses. However, the relationship between viperin expression and the retarded budding of virus particles from lipid rafts on the cell membrane is unclear. Here, we investigated the effect of viperin expression on cholesterol biosynthesis using transiently expressed genes in the human cell line human embryonic kidney 293T (HEK293T). We found that viperin expression reduces cholesterol levels by 20% to 30% in these cells. Following this observation, a proteomic screen of the viperin interactome identified several cholesterol biosynthetic enzymes among the top hits, including lanosterol synthase (LS) and squalene monooxygenase (SM), which are enzymes that catalyze key steps in establishing the sterol carbon skeleton. Coimmunoprecipitation experiments confirmed that viperin, LS, and SM form a complex at the endoplasmic reticulum membrane. While coexpression of viperin was found to significantly inhibit the specific activity of LS in HEK293T cell lysates, coexpression of viperin had no effect on the specific activity of SM, although did reduce SM protein levels by approximately 30%. Despite these inhibitory effects, the coexpression of neither LS nor SM was able to reverse the viperin-induced depletion of cellular cholesterol levels, possibly because viperin is highly expressed in transfected HEK293T cells. Our results establish a link between viperin expression and downregulation of cholesterol biosynthesis that helps explain viperin's antiviral effects against enveloped viruses.
Collapse
Affiliation(s)
| | - Soumi Ghosh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayesha M Patel
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Keerthi Sajja
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - James Windak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Youngsoo Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemisrty, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
70
|
Ortiz N, Delgado-Carazo JC, Díaz C. Importance of Mevalonate Pathway Lipids on the Growth and Survival of Primary and Metastatic Gastric Carcinoma Cells. Clin Exp Gastroenterol 2021; 14:217-228. [PMID: 34103960 PMCID: PMC8180305 DOI: 10.2147/ceg.s310235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose This preclinical study aims to determine the effect of drugs that alter isoprenoids and cholesterol metabolism in the homeostasis of gastric carcinoma cell lines in the search for new therapeutic targets for stomach cancer. Materials and Methods Primary (AGS) and metastatic (NCI-N87) gastric cancer cell lines were treated with simvastatin and terbinafine, two inhibitors of the mevalonate pathway, and avasimibe, an inhibitor of cholesterol esterification. Cell viability and growth were measured as well as cholesterol levels and the expression of the hydroxy methyl-glutaryl CoA reductase (HMGCR) and the LDL receptor (LDLR). Results Primary and metastatic gastric carcinoma cells show different sensitivity to drugs that affect isoprenoid synthesis and the metabolism and uptake of cholesterol. Isoprenoids are involved in the growth and viability of both types of cells, but the role of free and esterified cholesterol for metastatic gastric cell survival is not as evident as for primary gastric cancer cells. Differential expression of LDLR due to mevalonate pathway inhibition suggests variations in the regulation of cholesterol uptake between primary and metastatic cancer cells. Conclusion These results indicate that at least for primary gastric cancer, statins and avasimibe are promising candidates as potential novel antitumor drugs that target the metabolism of isoprenoids and cholesterol of gastric tumors.
Collapse
Affiliation(s)
- Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | | | - Cecilia Díaz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica.,Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
71
|
Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol 2021; 9:674103. [PMID: 34124059 PMCID: PMC8187772 DOI: 10.3389/fcell.2021.674103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
72
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
73
|
Coates HW, Capell-Hattam IM, Brown AJ. The mammalian cholesterol synthesis enzyme squalene monooxygenase is proteasomally truncated to a constitutively active form. J Biol Chem 2021; 296:100731. [PMID: 33933449 PMCID: PMC8166775 DOI: 10.1016/j.jbc.2021.100731] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Squalene monooxygenase (SM, also known as squalene epoxidase) is a rate-limiting enzyme of cholesterol synthesis that converts squalene to monooxidosqualene and is oncogenic in numerous cancer types. SM is subject to feedback regulation via cholesterol-induced proteasomal degradation, which depends on its lipid-sensing N-terminal regulatory domain. We previously identified an endogenous truncated form of SM with a similar abundance to full-length SM, but whether this truncated form is functional or subject to the same regulatory mechanisms as full-length SM is not known. Here, we show that truncated SM differs from full-length SM in two major ways: it is cholesterol resistant and adopts a peripheral rather than integral association with the endoplasmic reticulum membrane. However, truncated SM retains full SM activity and is therefore constitutively active. Truncation of SM occurs during its endoplasmic reticulum–associated degradation and requires the proteasome, which partially degrades the SM N-terminus and disrupts cholesterol-sensing elements within the regulatory domain. Furthermore, truncation relies on a ubiquitin signal that is distinct from that required for cholesterol-induced degradation. Using mutagenesis, we demonstrate that partial proteasomal degradation of SM depends on both an intrinsically disordered region near the truncation site and the stability of the adjacent catalytic domain, which escapes degradation. These findings uncover an additional layer of complexity in the post-translational regulation of cholesterol synthesis and establish SM as the first eukaryotic enzyme found to undergo proteasomal truncation.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
74
|
Peng Y, Li H, Liu Z, Zhang C, Li K, Gong Y, Geng L, Su J, Guan X, Liu L, Zhou R, Zhao Z, Guo J, Liang Q, Li X. Chromosome-level genome assembly of the Arctic fox (Vulpes lagopus) using PacBio sequencing and Hi-C technology. Mol Ecol Resour 2021; 21:2093-2108. [PMID: 33829635 DOI: 10.1111/1755-0998.13397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The Arctic fox (Vulpes lagopus) is the only fox species occurring in the Arctic and has adapted to its extreme climatic conditions. Currently, the molecular basis of its adaptation to the extreme climate has not been characterized. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first V. lagopus genome assembly, which is assembled into chromosome fragments. The genome assembly has a total length of 2.345 Gb with a contig N50 of 31.848 Mb and a scaffold N50 of 131.537 Mb, consisting of 25 pseudochromosomal scaffolds. The V. lagopus genome had approximately 32.33% repeat sequences. In total, 21,278 protein-coding genes were predicted, of which 99.14% were functionally annotated. Compared with 12 other mammals, V. lagopus was most closely related to V. Vulpes with an estimated divergence time of ~7.1 Ma. The expanded gene families and positively selected genes potentially play roles in the adaptation of V. lagopus to Arctic extreme environment. This high-quality assembled genome will not only promote future studies of genetic diversity and evolution in foxes and other canids but also provide important resources for conservation of Arctic species.
Collapse
Affiliation(s)
- Yongdong Peng
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Hong Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhengzhu Liu
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Chuansheng Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Keqiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Mathematics and Information Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuanfang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Liying Geng
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jingjing Su
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Xuemin Guan
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Lei Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai-an, China
| | - Ruihong Zhou
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Ziya Zhao
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jianxu Guo
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Xianglong Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
75
|
Sharpe LJ, Coates HW, Brown AJ. Post-translational control of the long and winding road to cholesterol. J Biol Chem 2021; 295:17549-17559. [PMID: 33453997 DOI: 10.1074/jbc.rev120.010723] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin-proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
76
|
Yang F, Kou J, Liu Z, Li W, Du W. MYC Enhances Cholesterol Biosynthesis and Supports Cell Proliferation Through SQLE. Front Cell Dev Biol 2021; 9:655889. [PMID: 33791309 PMCID: PMC8006431 DOI: 10.3389/fcell.2021.655889] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Oncogene c-Myc (referred in this report as MYC) promotes tumorigenesis in multiple human cancers. MYC regulates numerous cellular programs involved in cell growth and cell metabolism. Tumor cells exhibit obligatory dependence on cholesterol metabolism, which provides essential membrane components and metabolites to support cell growth. To date, how cholesterol biosynthesis is delicately regulated to promote tumorigenesis remains unclear. Here, we show that MYC enhances cholesterol biosynthesis and promotes cell proliferation. Through transcriptional upregulation of SQLE, a rate-limiting enzyme in cholesterol synthesis pathway, MYC increases cholesterol production and promotes tumor cell growth. SQLE overexpression restores the cellular cholesterol levels in MYC-knockdown cells. More importantly, in SQLE-depleted cells, enforced expression of MYC has no effect on cholesterol levels. Therefore, our findings reveal that SQLE is critical for MYC-mediated cholesterol synthesis, and further demonstrate that SQLE may be a potential therapeutic target in MYC-amplified cancers.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Junjie Kou
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zizhao Liu
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Li
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
77
|
The Degron Architecture of Squalene Monooxygenase and How Specific Lipids Calibrate Levels of This Key Cholesterol Synthesis Enzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 32979157 DOI: 10.1007/5584_2020_583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Cholesterol synthesis is a fundamental process that contributes to cellular cholesterol homeostasis. Cells execute transcriptional and post-translational mechanisms to control the abundance of enzymes of the cholesterol synthesis pathway, consequently affecting cholesterol production. One such highly tuned enzyme is squalene monooxygenase (SM), which catalyzes a rate-limiting step in the pathway. A well-characterized mechanism is the cholesterol-mediated degradation of SM. Notably, lipids (cholesterol, plasmalogens, squalene, and unsaturated fatty acids) can act as cellular signals that either promote or reduce SM degradation. The N-terminal region of SM consists of the shortest known cholesterol-responsive degron, characterized by atypical membrane anchoring structures, namely a re-entrant loop and an amphipathic helix. SM also undergoes non-canonical ubiquitination on serine, a relatively uncommon attachment site for ubiquitination. The structure of the catalytic domain of SM has been solved, providing insights into the catalytic mechanisms and modes of inhibition by well-known SM inhibitors, some of which have been effective in lowering cholesterol levels in animal models. Certain human cancers have been linked to dysregulation of SM levels and activity, further emphasizing the relevance of SM in health and disease.
Collapse
|
78
|
Jun SY, Brown AJ, Chua NK, Yoon JY, Lee JJ, Yang JO, Jang I, Jeon SJ, Choi TI, Kim CH, Kim NS. Reduction of Squalene Epoxidase by Cholesterol Accumulation Accelerates Colorectal Cancer Progression and Metastasis. Gastroenterology 2021; 160:1194-1207.e28. [PMID: 32946903 DOI: 10.1053/j.gastro.2020.09.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Squalene epoxidase (SQLE), a rate-limiting enzyme in cholesterol biosynthesis, is suggested as a proto-oncogene. Paradoxically, SQLE is degraded by excess cholesterol, and low SQLE is associated with aggressive colorectal cancer (CRC). Therefore, we studied the functional consequences of SQLE reduction in CRC progression. METHODS Gene and protein expression data and clinical features of CRCs were obtained from public databases and 293 human tissues, analyzed by immunohistochemistry. In vitro studies showed underlying mechanisms of CRC progression mediated by SQLE reduction. Mice were fed a 2% high-cholesterol or a control diet before and after cecum implantation of SQLE genetic knockdown/control CRC cells. Metastatic dissemination and circulating cancer stem cells were demonstrated by in vivo tracking and flow cytometry analysis, respectively. RESULTS In vitro studies showed that SQLE reduction helped cancer cells overcome constraints by inducing the epithelial-mesenchymal transition required to generate cancer stem cells. Surprisingly, SQLE interacted with GSK3β and p53. Active GSK3β contributes to the stability of SQLE, thereby increasing cell cholesterol content, whereas SQLE depletion disrupted the GSK3β/p53 complex, resulting in a metastatic phenotype. This was confirmed in a spontaneous CRC metastasis mice model, where SQLE reduction, by a high-cholesterol regimen or genetic knockdown, strikingly promoted CRC aggressiveness through the production of migratory cancer stem cells. CONCLUSIONS We showed that SQLE reduction caused by cholesterol accumulation aggravates CRC progression via the activation of the β-catenin oncogenic pathway and deactivation of the p53 tumor suppressor pathway. Our findings provide new insights into the link between cholesterol and CRC, identifying SQLE as a key regulator in CRC aggressiveness and a prognostic biomarker.
Collapse
Affiliation(s)
- Soo Young Jun
- Medical Genomics Research Center, Daejon, Korea; Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Jin Ok Yang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - InSu Jang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Su-Jin Jeon
- Medical Genomics Research Center, Daejon, Korea; Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Nam-Soon Kim
- Medical Genomics Research Center, Daejon, Korea; Functional Genomics, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
79
|
Rink JS, Lin AY, McMahon KM, Calvert AE, Yang S, Taxter T, Moreira J, Chadburn A, Behdad A, Karmali R, Thaxton CS, Gordon LI. Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis. J Biol Chem 2021; 296:100100. [PMID: 33208460 PMCID: PMC7949030 DOI: 10.1074/jbc.ra120.014888] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.
Collapse
Affiliation(s)
- Jonathan S Rink
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Adam Yuh Lin
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Kaylin M McMahon
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA; Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Andrea E Calvert
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA; Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Shuo Yang
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Tim Taxter
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan Moreira
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Amy Chadburn
- Department of Pathology, Weill Cornell Medical Center, New York, New York, USA
| | - Amir Behdad
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Reem Karmali
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - C Shad Thaxton
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA; Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, USA.
| | - Leo I Gordon
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
80
|
Overexpression of Key Sterol Pathway Enzymes in Two Model Marine Diatoms Alters Sterol Profiles in Phaeodactylum tricornutum. Pharmaceuticals (Basel) 2020; 13:ph13120481. [PMID: 33371196 PMCID: PMC7766473 DOI: 10.3390/ph13120481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Sterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase (HMGR) and squalene epoxidase (SQE) have been reported to be rate-limiting steps in sterol biosynthesis in other model eukaryotes; however, the extent to which these enzymes regulate triterpenoid production in diatoms is not known. To probe the role of these two metabolic nodes in the regulation of sterol metabolic flux in diatoms, we independently over-expressed two versions of the native HMGR and a conventional, heterologous SQE gene in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Overexpression of these key enzymes resulted in significant differential accumulation of downstream sterol pathway intermediates in P. tricornutum. HMGR-mVenus overexpression resulted in the accumulation of squalene, cycloartenol, and obtusifoliol, while cycloartenol and obtusifoliol accumulated in response to heterologous NoSQE-mVenus overexpression. In addition, accumulation of the end-point sterol 24-methylenecholesta-5,24(24’)-dien-3β-ol was observed in all P. tricornutum overexpression lines, and campesterol increased three-fold in P. tricornutum lines expressing NoSQE-mVenus. Minor differences in end-point sterol composition were also found in T. pseudonana, but no accumulation of sterol pathway intermediates was observed. Despite the successful manipulation of pathway intermediates and individual sterols in P. tricornutum, total sterol levels did not change significantly in transformed lines, suggesting the existence of tight pathway regulation to maintain total sterol content.
Collapse
|
81
|
Chae HS, Kim HJ, Ko HJ, Lee CH, Choi YH, Chin YW. Transcriptome Analysis Illuminates a Hub Role of SREBP2 in Cholesterol Metabolism by α-Mangostin. ACS OMEGA 2020; 5:31126-31136. [PMID: 33324821 PMCID: PMC7726933 DOI: 10.1021/acsomega.0c04282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 05/08/2023]
Abstract
Whole-transcriptome analysis of α-mangostin-treated HepG2 cells revealed that genes relevant to lipid and cholesterol metabolic processes responded to α-mangostin treatment. α-Mangostin downregulated a series of cholesterol biosynthetic genes, including SQLE, HMGCR, and LSS, and controlled specific cholesterol trafficking-associated genes such as ABCA1, SOAT1, and PCSK9. In particular, the downregulation of SREBP2 expression highlighted SREBP2 as a key transcriptional factor controlling lipid or cholesterol metabolic processes. Gene network analysis of SREBP2 and responses of its target proteins demonstrated that the effect of α-mangostin on HepG2 cells was mediated by the downregulation of SREBP2 expression, which was further supported by the reduction of the amount of SREBP2-SCAP complex. In the presence of exogenous cholesterols, α-mangostin downregulated SREBP2 expression and suppressed PCSK9 synthesis, which might contribute to the increased cholesterol uptake in cells, in part explaining the cholesterol-lowering effect of α-mangostin.
Collapse
Affiliation(s)
- Hee-Sung Chae
- College
of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hyun Ji Kim
- College
of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory
of Microbiology and Immunology, College of Pharmacy, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Chang Hoon Lee
- College
of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Young Hee Choi
- College
of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Young-Won Chin
- College
of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-lo, Gwanak-gu, Seoul 08826, Republic
of Korea
- E-mail: . Phone: +82 2 880 7859
| |
Collapse
|
82
|
Mahdavi A, Bagherniya M, Fakheran O, Reiner Ž, Xu S, Sahebkar A. Medicinal plants and bioactive natural compounds as inhibitors of HMG-CoA reductase: A literature review. Biofactors 2020; 46:906-926. [PMID: 33053603 DOI: 10.1002/biof.1684] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are one of the most important causes for mortality worldwide. Elevated levels of total cholesterol, and particularly LDL-cholesterol (LDL-C) are the main risk factor for acute myocardial infarction (AMI) and ischemic heart disease. The risk of CVDs could be reduced by decreasing the elevated cholesterol levels. β-hydroxy β-methylglutaryl-CoA reductase (HMGCoAR) is the primary and rate-limiting enzyme in the cholesterol biosynthesis pathway. Recently, the crucial role of nutraceuticals in maintaining normal physiological function was established. Nutraceuticals play an important role in preventing several non-communicable diseases such as obesity, CVDs, cancer, diabetes, and reducing hyperlipidemia. Although the effect of nutraceuticals and herbal medicine on CVDs and dyslipidemia was previously investigated thoroughly, the effect of these natural products on HMGCoAR as one of the important enzymes involved in CVDs etiopathogenesis has not yet been investigated. Therefore, the major aim of this paper was to review the effects of nutraceuticals and medicinal plants on HMGCoAR. Results indicate that different types of natural foods, isolated nutrients, herbal products, and dietary supplements as nutraceuticals decrease the expression and activity of HMGCoAR. This review shows that medicinal plants and nutraceuticals could be used to decrease HMGCoAR activity as accessible and convenient and economical natural compounds to prevent dyslipidemia and CVDs.
Collapse
Affiliation(s)
- Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Fakheran
- Dental research center, Department of Periodontics, Dental research institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
83
|
Feltrin S, Ravera F, Traversone N, Ferrando L, Bedognetti D, Ballestrero A, Zoppoli G. Sterol synthesis pathway inhibition as a target for cancer treatment. Cancer Lett 2020; 493:19-30. [DOI: 10.1016/j.canlet.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
|
84
|
Shen T, Lu Y, Zhang Q. High Squalene Epoxidase in Tumors Predicts Worse Survival in Patients With Hepatocellular Carcinoma: Integrated Bioinformatic Analysis on NAFLD and HCC. Cancer Control 2020; 27:1073274820914663. [PMID: 32216563 PMCID: PMC7137641 DOI: 10.1177/1073274820914663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aimed to identify candidate biomarkers for predicting outcomes in
nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC).
Using Gene Expression Omnibus and The Cancer Genome Atlas (TCGA) databases, we
identified common upregulated differential expressed genes (DEGs) in patients
with NAFLD/nonalcoholic steatohepatitis (NASH) and HCC and conducted survival
analysis of these upregulated DEGs with HCC outcomes. Two common upregulated
DEGs including squalene epoxidase (SQLE) and EPPK1 messenger RNA (mRNA) were
significantly upregulated in NAFLD, NASH, and HCC tissues, both in GSE45436
(P < .001) and TCGA profile (P <
.001). Both SQLE and EPPK1 mRNA were upregulated in 15.56% and 8.06% patients
with HCC in TCGA profile. Overexpression of SQLE in tumors was significantly
associated with worse overall survival (OS) and disease-free survival (DFS) in
patients with HCC (log-rank P = .027 and log-rank
P = .048, respectively), while no statistical significances
of OS and DFS were found in EPPK1 groups (both log-rank P >
.05). For validation, SQLE upregulation contributed to significantly worse OS in
patients wih HCC using Kaplan-Meier plotter analysis (hazard ratio = 1.43, 95%
confidence interval: 1.01-2.02, log-rank P = .043). In
addition, high level of SQLE significantly associated with advanced neoplasm
histologic grade, advanced AJCC stage, and α-fetoprotein elevation
(P = .036, .045, and .029, respectively). Squalene
epoxidase is associated with OS and DFS and serves as a novel prognostic
biomarker for patients with HCC.
Collapse
Affiliation(s)
- Tingting Shen
- Department of Infectious Disease, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunfei Lu
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qin Zhang
- Department of Infectious Disease, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
85
|
Scott NA, Sharpe LJ, Brown AJ. The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158837. [PMID: 33049405 DOI: 10.1016/j.bbalip.2020.158837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
MARCHF6 is a large multi-pass E3 ubiquitin ligase embedded in the membranes of the endoplasmic reticulum. It participates in endoplasmic reticulum associated degradation, including autoubiquitination, and many of its identified substrates are involved in sterol and lipid metabolism. Post-translationally, MARCHF6 expression is attuned to cholesterol status, with high cholesterol preventing its degradation and hence boosting MARCHF6 levels. By modulating MARCHF6 activity, cholesterol may regulate other aspects of cell metabolism beyond the known repertoire. Whilst we have learnt much about MARCHF6 in the past decade, there are still many more mysteries to be unravelled to fully understand its regulation, substrates, and role in human health and disease.
Collapse
Affiliation(s)
- Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
86
|
Ortiz N, Díaz C. Mevalonate pathway as a novel target for the treatment of metastatic gastric cancer. Oncol Lett 2020; 20:320. [PMID: 33093924 PMCID: PMC7573883 DOI: 10.3892/ol.2020.12183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric mucosa tumors may present as two distinct major entities: Diffuse and intestinal subtypes. There is no standard treatment for advanced or metastatic gastric cancer. The mevalonate pathway and cholesterol homeostasis are important processes in cancer cells that may be highly relevant in terms of cell growth, survival and metastatic potential. Two model cell lines representing intestinal (NCI-N87) and diffuse (Hs746T) metastatic gastric tumor histological subtypes were treated with different drugs that alter membrane lipid metabolism to determine whether cell proliferation, viability and migration were affected. The results indicated that the cells exhibited significant differences in proliferation when treated with the cholesterol-lowering drug simvastatin, but not with terbinafine, another compound that affects cholesterol synthesis. Only simvastatin affected migration in both cell lines. Reposition studies with mevalonolactone, farnesyl pyrophosphate and geranylgeranyl pyrophosphate in the presence of high and low FBS concentrations indicated that both isoprenoids and cholesterol reversed the antiproliferative effects of simvastatin in gastric cancer cells. The cell lines used in the present study had different sensitivities to several potential anti-neoplastic agents that affect the synthesis of membrane lipids. The diffuse gastric cancer cells were particularly sensitive to simvastatin, suggesting it as an option for combination treatment.
Collapse
Affiliation(s)
- Natalia Ortiz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| | - Cecilia Díaz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica.,Institute Clodomiro Picado, Faculty of Microbiology, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| |
Collapse
|
87
|
Zou X, Wang H, Zhou D, Liu Z, Wang Y, Deng G, Guan H. The Polymorphism rs2968 of LSS Gene Confers Susceptibility to Age-Related Cataract. DNA Cell Biol 2020; 39:1970-1975. [PMID: 32877255 DOI: 10.1089/dna.2020.5872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Research showed that lanosterol can decrease protein aggregation in lens and reduce cataract formation. Lanosterol synthase (LSS) and 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) are the limiting enzymes in the process of synthesis of lanosterol. We demonstrate to investigate the association between functional single-nucleotide polymorphisms (SNPs) of LSS and HMGCR genes and age-related cataract (ARC) risks in Han Chinese population from Jiangsu Eye Study. This is a case-control study. We collected participants' venous blood for DNA genotyping and lens capsule samples for RNA. The SNPs of the genes were assayed with TaqMan RT-PCR genotyping. The quantitative RT-PCR was used to detect the LSS mRNA levels of lens epithelial cells (LECs) in individuals. The chi-square test was used to compare differences between ARC groups and controls of each SNP and to calculate the odds ratio (OR). We found that LSS-rs2968 of ARCs was different from controls (p = 0.018), but the significance was lost after Bonferroni correction (p = 0.072). We then further performed stratification analysis and found that LSS-rs2968 A allele was associated with nuclear type of ARC risk in Chinese population (p = 0.012, OR = 0.68). Consequently, we found that the mRNA expression of LSS was lower in LECs of all subtypes of ARC group than that of control group (p < 0.05). LSS-rs2968 A allele might play a role in the formation and development of nuclear type of ARC risk in Chinese population.
Collapse
Affiliation(s)
- Xi Zou
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Changzhou, China
| | - Hao Wang
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Changzhou, China
| | - Dong Zhou
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Changzhou, China
| | - Zhinan Liu
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Changzhou, China
| | - Yong Wang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Guohua Deng
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Changzhou, China
| | - Huaijin Guan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
88
|
The MARCH6-SQLE Axis Controls Endothelial Cholesterol Homeostasis and Angiogenic Sprouting. Cell Rep 2020; 32:107944. [DOI: 10.1016/j.celrep.2020.107944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
|
89
|
Hajem N, Manzato L, Branchet MC, Herlin A, Hassanaly S, Huguet E, Himbert F, Bernard P, Dussert AS, Choulot JC, Boisnic S, Kéophiphath M. Purple tulip extract improves signs of skin aging through dermal structural modulation as shown by genomic, protein expression and skin appearance of volunteers studied. J Cosmet Dermatol 2020; 20:691-702. [PMID: 32613704 DOI: 10.1111/jocd.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/08/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Purple tulip extract is a rich source of flavonoids which are powerful antioxidants and can hence be considered as an ideal candidate for use in skin care products. AIMS We aimed to evaluate the effects of purple tulip extract on skin quality and to determine its molecular modes of interaction. METHODS A pangenomic study on human skin fibroblasts was carried out to analyze multiple changes in gene expression. Ex vivo studies of human skin explants exposed to ultraviolet (UV) irradiation or H2 O2 were performed to assess modulations of protein expression. Finally, a clinical assay was carried out to evaluate the efficacy of purple tulip extract on skin appearance and condition of aged women. RESULTS Genetic modulation analyses led us to infer the induction of many biological functions including cell differentiation, proliferation, migration, inflammatory responses, and matrix remodeling. The ex vivo studies revealed an enhancement of the collagen network and increased expression of glycosaminoglycans (GAG), fibronectin, and collagen VI. Finally, the clinical study highlighted the potential anti-aging properties of the purple tulip extract which decreased the relaxation of the oval face and improved skin elasticity after 28 days of treatment. Significant reductions of the length and depth of the nasolabial wrinkles were also observed. CONCLUSION Our genomics data on the effect of purple tulip extract on the ex vivo UV-challenged skin showed that genes responsible for, among others, the upkeep of the skin, such as collagen induction, immune cell proliferation, and epidermal repair, were all up-regulated. More importantly, the clinical study corroborated these data by the visible and measurable effects of the topical purple tulip extract on the aged skin of 22 women, further demonstrating the beneficial impact of the extract on aged skin.
Collapse
|
90
|
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res 2020; 79:101033. [DOI: 10.1016/j.plipres.2020.101033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
91
|
The cholesterol synthesis enzyme lanosterol 14α-demethylase is post-translationally regulated by the E3 ubiquitin ligase MARCH6. Biochem J 2020; 477:541-555. [PMID: 31904814 PMCID: PMC6993871 DOI: 10.1042/bcj20190647] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023]
Abstract
Cholesterol synthesis is a tightly controlled pathway, with over 20 enzymes involved. Each of these enzymes can be distinctly regulated, helping to fine-tune the production of cholesterol and its functional intermediates. Several enzymes are degraded in response to increased sterol levels, whilst others remain stable. We hypothesised that an enzyme at a key branch point in the pathway, lanosterol 14α-demethylase (LDM) may be post-translationally regulated. Here, we show that the preceding enzyme, lanosterol synthase is stable, whilst LDM is rapidly degraded. Surprisingly, this degradation is not triggered by sterols. However, the E3 ubiquitin ligase membrane-associated ring-CH-type finger 6 (MARCH6), known to control earlier rate-limiting steps in cholesterol synthesis, also control levels of LDM and the terminal cholesterol synthesis enzyme, 24-dehydrocholesterol reductase. Our work highlights MARCH6 as the first example of an E3 ubiquitin ligase that targets multiple steps in a biochemical pathway and indicates new facets in the control of cholesterol synthesis.
Collapse
|
92
|
Jaramillo-Madrid AC, Ashworth J, Fabris M, Ralph PJ. The unique sterol biosynthesis pathway of three model diatoms consists of a conserved core and diversified endpoints. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
93
|
Ouyang S, Mo Z, Sun S, Yin K, Lv Y. Emerging role of Insig-1 in lipid metabolism and lipid disorders. Clin Chim Acta 2020; 508:206-212. [PMID: 32461046 DOI: 10.1016/j.cca.2020.05.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/03/2023]
Abstract
Growing evidence has demonstrated that Insig-1 is intricately involved in lipid metabolism regulation and the progression of lipid disorders. Our review summarizes updated information on the role and underlying mechanisms of Insig-1 in lipid metabolism dyshomeostasis and lipid disorders. As a member of the insulin-induced gene family, insulin-induced gene 1 (Insig-1) is a six-span transmembrane protein embedded in the endoplasmic reticulum (ER) membrane. Insig-1 is widely involved in the maintenance of intracellular lipid metabolism homeostasis by controlling the activation of sterol regulatory element-binding proteins (SREBPs) and the degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Growing experimental and clinical data have identified that Insig-1 reduces lipid accumulation in hepatocytes to relieve the development of nonalcoholic fatty liver disease (NAFLD), downregulates the plasma level of free cholesterol and protects β cells against lipotoxicity to alleviate diabetic dyslipidemia. In addition, Insig-1 suppresses adipogenesis and inhibits the differentiation of preadipocytes to prevent the occurrence of obesity. Insig-1 is a key regulatory factor that maintains intracellular lipid metabolism homeostasis and is a promising therapeutic target for lipid disorders.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541000, Guangxi, China
| | - Sha Sun
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541000, Guangxi, China.
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541000, Guangxi, China.
| |
Collapse
|
94
|
Chua NK, Brown AJ. Lipid sensing tips the balance for a key cholesterol synthesis enzyme. J Lipid Res 2020; 61:1363. [PMID: 32371565 DOI: 10.1194/jlr.ilr120000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ngee Kiat Chua
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
95
|
Song Z, Lv S, Wu H, Qin L, Cao H, Zhang B, Ren S. Identification of foam cell biomarkers by microarray analysis. BMC Cardiovasc Disord 2020; 20:211. [PMID: 32375652 PMCID: PMC7201525 DOI: 10.1186/s12872-020-01495-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/23/2020] [Indexed: 01/12/2023] Open
Abstract
Background Lipid infiltration and inflammatory response run through the occurrence of atherosclerosis. Differentiation into macrophages and foam cell formation are the key steps of AS. Aim of this study was that the differential gene expression between foam cells and macrophages was analyzed to search the key links of foam cell generation, so as to explore the pathogenesis of atherosclerosis and provide targets for the early screening and prevention of coronary artery disease (CAD). Methods The gene expression profiles of GSE9874 were downloaded from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9874) on GPL96 [HG-U133A] Affymetrix Human Genome U133. A total of 22,383 genes were analyzed for differentially expression genes (DEGs) by Bayes package. GO enrichment analysis and KEGG pathway analysis for DEGs were performed using KOBAS 3.0 software (Peking University, Beijing, China). STRING software (STRING 10.0; European Molecular Biology Laboratory, Heidelberg, Germany) was used to analyze the protein-protein interaction (PPI) of DEGs. Results A total of 167 DEGs between macrophages and foam cells were identified. Compared with macrophages, 102 genes were significantly upregulated and 65 genes were significantly downregulated (P < 0.01, fold-change > 1) in foam cells. DEGs were mainly enrich in ‘sterol biosynthetic and metabolic process’, ‘cholesterol metabolic and biosynthetic process’ by GO enrichment analysis. The results of KEGG pathway analysis showed all differential genes are involved in biological processes through 143 KEGG pathways. A PPI network of the DEGs was constructed and 10 outstanding genes of the PPI network was identified by using Cytoscape, which include HMGCR, SREBF2, LDLR, HMGCS1, FDFT1, LPL, DHCR24, SQLE, ABCA1 and FDPS. Conclusion: Lipid metabolism related genes and molecular pathways were the key to the transformation of macrophages into foam cells. Therefore, lipid metabolism disorder is the key to turn macrophages into foam cells, which plays a major role in CAD.
Collapse
Affiliation(s)
- Zikai Song
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shijie Lv
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, Jilin Province, China
| | - Haidi Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling Qin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyan Cao
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Shuping Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
96
|
|
97
|
A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate. Proc Natl Acad Sci U S A 2020; 117:7150-7158. [PMID: 32170014 PMCID: PMC7132291 DOI: 10.1073/pnas.1915923117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cholesterol biosynthesis is a high-cost process and, therefore, tightly regulated by both transcriptional and posttranslational negative feedback mechanisms in response to the level of cellular cholesterol. Squalene monooxygenase (SM, also known as squalene epoxidase or SQLE) is a rate-limiting enzyme in the cholesterol biosynthetic pathway and catalyzes epoxidation of squalene. The stability of SM is negatively regulated by cholesterol via its N-terminal regulatory domain (SM-N100). In this study, using a SM-luciferase fusion reporter cell line, we performed a chemical genetics screen that identified inhibitors of SM itself as up-regulators of SM. This effect was mediated through the SM-N100 region, competed with cholesterol-accelerated degradation, and required the E3 ubiquitin ligase MARCH6. However, up-regulation was not observed with statins, well-established cholesterol biosynthesis inhibitors, and this pointed to the presence of another mechanism other than reduced cholesterol synthesis. Further analyses revealed that squalene accumulation upon treatment with the SM inhibitor was responsible for the up-regulatory effect. Using photoaffinity labeling, we demonstrated that squalene directly bound to the N100 region, thereby reducing interaction with and ubiquitination by MARCH6. Our findings suggest that SM senses squalene via its N100 domain to increase its metabolic capacity, highlighting squalene as a feedforward factor for the cholesterol biosynthetic pathway.
Collapse
|
98
|
Loregger A, Raaben M, Nieuwenhuis J, Tan JME, Jae LT, van den Hengel LG, Hendrix S, van den Berg M, Scheij S, Song JY, Huijbers IJ, Kroese LJ, Ottenhoff R, van Weeghel M, van de Sluis B, Brummelkamp T, Zelcer N. Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism. Nat Commun 2020; 11:1128. [PMID: 32111832 PMCID: PMC7048761 DOI: 10.1038/s41467-020-14811-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The sterol-regulatory element binding proteins (SREBP) are central transcriptional regulators of lipid metabolism. Using haploid genetic screens we identify the SREBP Regulating Gene (SPRING/C12ORF49) as a determinant of the SREBP pathway. SPRING is a glycosylated Golgi-resident membrane protein and its ablation in Hap1 cells, Hepa1-6 hepatoma cells, and primary murine hepatocytes reduces SREBP signaling. In mice, Spring deletion is embryonic lethal yet silencing of hepatic Spring expression also attenuates the SREBP response. Mechanistically, attenuated SREBP signaling in SPRINGKO cells results from reduced SREBP cleavage-activating protein (SCAP) and its mislocalization to the Golgi irrespective of the cellular sterol status. Consistent with limited functional SCAP in SPRINGKO cells, reintroducing SCAP restores SREBP-dependent signaling and function. Moreover, in line with the role of SREBP in tumor growth, a wide range of tumor cell lines display dependency on SPRING expression. In conclusion, we identify SPRING as a previously unrecognized modulator of SREBP signaling.
Collapse
Affiliation(s)
- Anke Loregger
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Matthijs Raaben
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Joppe Nieuwenhuis
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Josephine M E Tan
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Lucas T Jae
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.,Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen-Str. 25, 81377, Munich, Germany
| | - Lisa G van den Hengel
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Saskia Scheij
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Lona J Kroese
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory of Genetic and Metabolic Diseases and Core Facility Metabolomics, Academic Medical Center of the University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands.,iPSC/CRISPR Center Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Thijn Brummelkamp
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, A-1090, Vienna, Austria. .,Cancer Genomics Center, Amsterdam, The Netherlands.
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
99
|
Capell-Hattam IM, Sharpe LJ, Qian L, Hart-Smith G, Prabhu AV, Brown AJ. Twin enzymes, divergent control: The cholesterogenic enzymes DHCR14 and LBR are differentially regulated transcriptionally and post-translationally. J Biol Chem 2020; 295:2850-2865. [PMID: 31911440 PMCID: PMC7049974 DOI: 10.1074/jbc.ra119.011323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
Cholesterol synthesis is a tightly regulated process, both transcriptionally and post-translationally. Transcriptional control of cholesterol synthesis is relatively well-understood. However, of the ∼20 enzymes in cholesterol biosynthesis, post-translational regulation has only been examined for a small number. Three of the four sterol reductases in cholesterol production, 7-dehydrocholesterol reductase (DHCR7), 14-dehydrocholesterol reductase (DHCR14), and lamin-B receptor (LBR), share evolutionary ties with a high level of sequence homology and predicted structural homology. DHCR14 and LBR uniquely share the same Δ-14 reductase activity in cholesterol biosynthesis, yet little is known about their post-translational regulation. We have previously identified specific modes of post-translational control of DHCR7, but it is unknown whether these regulatory mechanisms are shared by DHCR14 and LBR. Using CHO-7 cells stably expressing epitope-tagged DHCR14 or LBR, we investigated the post-translational regulation of these enzymes. We found that DHCR14 and LBR undergo differential post-translational regulation, with DHCR14 being rapidly turned over, triggered by cholesterol and other sterol intermediates, whereas LBR remained stable. DHCR14 is degraded via the ubiquitin-proteasome system, and we identified several DHCR14 and DHCR7 putative interaction partners, including a number of E3 ligases that modulate DHCR14 levels. Interestingly, we found that gene expression across an array of human tissues showed a negative relationship between the C14-sterol reductases; one enzyme or the other tends to be predominantly expressed in each tissue. Overall, our findings indicate that whereas LBR tends to be the constitutively active C14-sterol reductase, DHCR14 levels are tunable, responding to the local cellular demands for cholesterol.
Collapse
Affiliation(s)
- Isabelle M Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Lydia Qian
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia; Department of Molecular Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
100
|
Yang J, Wang L, Jia R. Role of de novo cholesterol synthesis enzymes in cancer. J Cancer 2020; 11:1761-1767. [PMID: 32194787 PMCID: PMC7052851 DOI: 10.7150/jca.38598] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/30/2019] [Indexed: 12/23/2022] Open
Abstract
Despite extensive research in the cancer field, cancer remains one of the most prevalent diseases. There is an urgent need to identify specific targets that are safe and effective for the treatment of cancer. In recent years, cancer metabolism has come into the spotlight in cancer research. Lipid metabolism, especially cholesterol metabolism, plays a critical role in membrane synthesis as well as lipid signaling in cancer. This review focuses on the contribution of the de novo cholesterol synthesis pathway to tumorigenesis, cancer progression and metastasis. In conclusion, cholesterol metabolism could be an effective target for novel anticancer treatment.
Collapse
Affiliation(s)
- Jie Yang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lihua Wang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|