51
|
Di Bonito P, Petrone L, Casini G, Francolini I, Ammendolia MG, Accardi L, Piozzi A, D'Ilario L, Martinelli A. Amino-functionalized poly(L-lactide) lamellar single crystals as a valuable substrate for delivery of HPV16-E7 tumor antigen in vaccine development. Int J Nanomedicine 2015; 10:3447-58. [PMID: 26056443 PMCID: PMC4431504 DOI: 10.2147/ijn.s76023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Poly(l-lactide) (PLLA) is a biodegradable polymer currently used in many biomedical applications, including the production of resorbable surgical devices, porous scaffolds for tissue engineering, nanoparticles and microparticles for the controlled release of drugs or antigens. The surfaces of lamellar PLLA single crystals (PLLAsc) were provided with amino groups by reaction with a multifunctional amine and used to adsorb an Escherichia coli-produced human papillomavirus (HPV)16-E7 protein to evaluate its possible use in antigen delivery for vaccine development. Methods PLLA single crystals were made to react with tetraethylenepentamine to obtain amino-functionalized PLLA single crystals (APLLAsc). Pristine and amino-functionalized PLLAsc showed a two-dimensional microsized and one-dimensional nanosized lamellar morphology, with a lateral dimension of about 15–20 μm, a thickness of about 12 nm, and a surface specific area of about 130 m2/g. Both particles were characterized and loaded with HPV16-E7 before being administered to C57BL/6 mice for immunogenicity studies. The E7-specific humoral-mediated and cell-mediated immune response as well as tumor protective immunity were analyzed in mice challenged with TC-1 cancer cells. Results Pristine and amino-functionalized PLLAsc adsorbed similar amounts of E7 protein, but in protein-release experiments E7-PLLAsc released a higher amount of protein than E7-APLLAsc. When the complexes were dried for observation by scanning electron microscopy, both samples showed a compact layer, but E7-APLLAsc showed greater roughness than E7-PLLAsc. Immunization experiments in mice showed that E7-APLLAsc induced a stronger E7-specific immune response when compared with E7-PLLAsc. Immunoglobulin G isotyping and interferon gamma analysis suggested a mixed Th1/Th2 immune response in both E7-PLLAsc-immunized and E7-APLLAsc-immunized mice. However, only the mice receiving E7-APLLAsc were fully protected from TC-1 tumor growth after three doses of vaccine. Conclusion Our results show that APLLA single crystals improve the immunogenicity of HPV16-E7 and indicate that E7-APLLAsc could be used for development of an HPV16 therapeutic vaccine against HPV16-related tumors.
Collapse
Affiliation(s)
- Paola Di Bonito
- Department of Infectious, Parasitic and Immune-mediated Diseases, Italian National Institute of Health, Rome, Italy
| | - Linda Petrone
- Department of Infectious, Parasitic and Immune-mediated Diseases, Italian National Institute of Health, Rome, Italy
| | - Gabriele Casini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | | | - Luisa Accardi
- Department of Infectious, Parasitic and Immune-mediated Diseases, Italian National Institute of Health, Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Lucio D'Ilario
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
52
|
Preti M, Igidbashian S, Costa S, Cristoforoni P, Mariani L, Origoni M, Sandri MT, Boveri S, Spolti N, Spinaci L, Sanvito F, Preti EP, Falasca A, Radici G, Micheletti L. VIN usual type-from the past to the future. Ecancermedicalscience 2015; 9:531. [PMID: 25987900 PMCID: PMC4431399 DOI: 10.3332/ecancer.2015.531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 12/27/2022] Open
Abstract
Usual vulvar intraepithelial neoplasia (uVIN) is the most common VIN type, generally related to a human papillomavirus (HPV) infection, predominantly type 16. The incidence of uVIN has been increasing over the last decades, and a bimodal peak is observed at the age of 40–44 and over 55 years. Almost 40% of patients with uVIN have a past, concomitant or future HPV-associated lesion of the lower genital tract. HPV-related malignancies are associated with a persistent HPV infection. The host immune response is of crucial importance in determining clearance or persistence of both HPV infections and HPV-related VIN. About 60% of the patients present with symptoms. Clinical features of uVIN vary in site, number, size, shape, colour, and thickness of lesions. Multicentric disease is often present. Most uVIN lesions are positive at immunohistochemistry to p16ink4a and p14arf, but negative to p53. Irrespective of surgical treatment used, uVIN recurrence rates are high. Positive margins do not predict the development of invasive disease and the need to re-excide the tissue around the scare remains to be demonstrated. Therefore, considering the low progression rate of uVIN and psycosexual sequelae, treatments should be as conservative as possible. Medical treatments available are mainly based on immunotherapy to induce normalisation of immune cell count in uVIN. None are approved by the food and drug administration (FDA) for the treatment of uVIN. If medical treatment is performed, adequate biopsies are required to reduce the risk of unrecognised invasive disease. Some studies suggest that failure to respond to immunotherapy might be related to a local immunosuppressive microenvironment, but knowledge of the uVIN microenvironment is limited. Moreover, our knowledge of the potential mechanisms involved in the escape of HPV-induced lesions from the immune system has many gaps. HPV vaccines have been demonstrated to be effective in preventing uVIN, with 94.9% efficacy in the HPV-naive population, while studies on therapeutic vaccines are limited. The low incidence of VIN requires large multicentre studies to determine the best way to manage affected patients and to investigate the immunological characteristics of the ‘vulvar microenviroment’ which leads to the persistence of HPV.
Collapse
Affiliation(s)
- Mario Preti
- Preventive Gynecology Unit, European Institute of Oncology, Milano 20100, Italy ; The Italian HPV Study Group (IHSG)
| | - Sarah Igidbashian
- Preventive Gynecology Unit, European Institute of Oncology, Milano 20100, Italy
| | - Silvano Costa
- M.F. Toniolo Hospital, Bologna 40100, Italy ; The Italian HPV Study Group (IHSG)
| | - Paolo Cristoforoni
- Villa Montallegro, Genova 16100, Italy ; The Italian HPV Study Group (IHSG)
| | - Luciano Mariani
- HPV-Unit Gynecologic Oncology, Regina Elena National Cancer Institute of Rome, Rome 00100, Italy ; The Italian HPV Study Group (IHSG)
| | - Massimo Origoni
- Department of Obstetrics and Gynecology, Vita Salute San Raffaele University School of Medicine, Milano 20100, Italy ; The Italian HPV Study Group (IHSG)
| | - Maria T Sandri
- Division of Laboratory Medicine, European Institute of Oncology, Milano 20100, Italy ; The Italian HPV Study Group (IHSG)
| | - Sara Boveri
- Preventive Gynecology Unit, European Institute of Oncology, Milano 20100, Italy
| | - Noemi Spolti
- Preventive Gynecology Unit, European Institute of Oncology, Milano 20100, Italy
| | - Laura Spinaci
- Preventive Gynecology Unit, European Institute of Oncology, Milano 20100, Italy
| | - Francesca Sanvito
- Preventive Gynecology Unit, European Institute of Oncology, Milano 20100, Italy
| | - Eleonora P Preti
- Preventive Gynecology Unit, European Institute of Oncology, Milano 20100, Italy
| | - Adriana Falasca
- Preventive Gynecology Unit, European Institute of Oncology, Milano 20100, Italy
| | - Gianluigi Radici
- Preventive Gynecology Unit, European Institute of Oncology, Milano 20100, Italy
| | - Leonardo Micheletti
- Department of Obstetrics and Gynecology, University of Torino, Torino 10100, Italy
| |
Collapse
|
53
|
Tummers B, Goedemans R, Pelascini LPL, Jordanova ES, van Esch EMG, Meyers C, Melief CJM, Boer JM, van der Burg SH. The interferon-related developmental regulator 1 is used by human papillomavirus to suppress NFκB activation. Nat Commun 2015; 6:6537. [PMID: 26055519 PMCID: PMC4382698 DOI: 10.1038/ncomms7537] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/05/2015] [Indexed: 12/26/2022] Open
Abstract
High-risk human papillomaviruses (hrHPVs) infect keratinocytes and successfully evade host immunity despite the fact that keratinocytes are well equipped to respond to innate and adaptive immune signals. Using non-infected and freshly established or persistent hrHPV-infected keratinocytes we show that hrHPV impairs the acetylation of NFκB/RelA K310 in keratinocytes. As a consequence, keratinocytes display a decreased pro-inflammatory cytokine production and immune cell attraction in response to stimuli of the innate or adaptive immune pathways. HPV accomplishes this by augmenting the expression of interferon-related developmental regulator 1 (IFRD1) in an EGFR-dependent manner. Restoration of NFκB/RelA acetylation by IFRD1 shRNA, cetuximab treatment or the HDAC1/3 inhibitor entinostat increases basal and induced cytokine expression. Similar observations are made in IFRD1-overexpressing HPV-induced cancer cells. Thus, our study reveals an EGFR–IFRD1-mediated viral immune evasion mechanism, which can also be exploited by cancer cells. Human papillomavirus employs immune evasion strategies to establish a long-term infection. Here the authors show that the virus in the EGFR-dependent manner induces IFRD1, which blocks NFκB activating acetylation, and that this process can be suppressed by the EGFR inhibitor cetuximab.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Renske Goedemans
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Laetitia P L Pelascini
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Ekaterina S Jordanova
- Center for Gynaecological Oncology, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Edith M G van Esch
- Department of Gynaecology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Judith M Boer
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
54
|
[HPV (Human Papilloma Virus) implication in other cancers than gynaecological]. Rev Med Interne 2015; 36:540-7. [PMID: 25661671 DOI: 10.1016/j.revmed.2015.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 01/26/2023]
Abstract
Worldwide, approximately 5 to 10% of the population is infected by a Human Papilloma Virus (HPV). Some of these viruses, with a high oncogenic risk (HPV HR), are responsible for about 5% of cancer. It is now accepted that almost all carcinomas of the cervix and the vulva are due to an HPV HR (HPV16 and 18) infection. However, these viruses are known to be involved in the carcinogenesis of many other cancers (head and neck [SCCHN], penis, anus). For head and neck cancer, HPV infection is considered as a good prognostic factor. The role of HPV HR in anal cancer is also extensively studied in high-risk patient's population. The role of HPV infection in the carcinogenesis of esophageal, bladder, lung, breast or skin cancers is still debated. Given the multiple possible locations of HPV HR infection, the question of optimizing the management of patients with a HPV+ cancer arises in the implementation of a comprehensive clinical and biological monitoring. It is the same in therapeutics with the existence of a preventive vaccination, for example.
Collapse
|
55
|
Mészner Z, Jankovics I, Nagy A, Gerlinger I, Katona G. Recurrent laryngeal papillomatosis with oesophageal involvement in a 2 year old boy: successful treatment with the quadrivalent human papillomatosis vaccine. Int J Pediatr Otorhinolaryngol 2015; 79:262-6. [PMID: 25496821 DOI: 10.1016/j.ijporl.2014.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022]
Abstract
Authors present a case report of a 2-year-old boy with recurrent laryngeal papillomatosis with oesophageal involvement due to human papilloma virus types 6 and 11, who needed surgical treatment every 4-6 weeks, altogether 11 times. After detailed immunological evaluation of basic immunological parameters, and in vitro detection of good responses to routine childhood immunization, a therapeutic vaccination has been decided with a 4-valent HPV vaccine. Following the third vaccine dose both laryngeal and oesophageal lesions disappeared completely, and for 2 years follow-up no papillomas could be detected. Vaccination could be a promising method in the treatment of RRP in children.
Collapse
Affiliation(s)
- Zsófia Mészner
- National Centre for Immunization at Szent László Hospital for Infectious Diseases, National Institute of Child Health, Budapest, Hungary
| | - István Jankovics
- National Centre for Epidemiology, Department of Virology, Budapest, Hungary
| | - Anikó Nagy
- Heim Pál Children's Hospital, Endoscopy Laboratory, Budapest, Hungary
| | - Imre Gerlinger
- Pécs University, Ear-Nose-Throat-, Head-Neck Surgery Department University of Pécs, Hungary
| | - Gábor Katona
- Heim Pál Children's Hospital, Ear-Nose-Throat Department, Budapest, Hungary.
| |
Collapse
|
56
|
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer, the third most common cancer in women. The development of prophylactic HPV vaccines Gardasil® and Cervarix® targeting the major oncogenic HPV types is now the frontline of cervical cancer prevention. Both vaccines have been proven to be highly effective and safe although there are still open questions about their target population, cross-protection, and long-term efficacy. The main limitation for a worldwide implementation of Gardasil® and Cervarix® is their high cost. To develop more affordable vaccines research groups are concentrated in new formulations with different antigens including capsomeres, the minor capsid protein L2 and DNA. In this article we describe the vaccines' impact on HPV-associated disease, the main open questions about the marketed vaccines, and current efforts for the development of second-generation vaccines.
Collapse
|
57
|
van Esch EMG, van Poelgeest MIE, Trimbos JBMZ, Fleuren GJ, Jordanova ES, van der Burg SH. Intraepithelial macrophage infiltration is related to a high number of regulatory T cells and promotes a progressive course of HPV-induced vulvar neoplasia. Int J Cancer 2014; 136:E85-94. [PMID: 25220265 DOI: 10.1002/ijc.29173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/11/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
Human papilloma virus (HPV)-induced usual-type vulvar intraepithelial neoplasia (uVIN) is infiltrated by myeloid cells but the type and role of these cells is unclear. We used triple immunofluorescent confocal microscopy to locate, identify and quantify myeloid cells based on their staining pattern for CD14, CD33 and CD163 in a cohort of 43 primary and 20 recurrent uVIN lesions, 21 carcinomas and 26 normal vulvar tissues. The progressive course of uVIN is characterized by an increase in both intraepithelial and stromal mature M1 and M2 macrophages. While the M2 macrophages outnumber M1 macrophages in healthy controls and uVIN, they are matched in number by M1 macrophages in cancer. Importantly, uVIN patients with a dense intraepithelial infiltration with mature CD14+ macrophages (irrespective of M1 or M2 type) displayed approximately a six times higher risk to develop a recurrence and a high number of these cells constituted an independent prognostic factor for recurrence. In addition, a dense intraepithelial CD14+ cell infiltration was associated with high numbers of intraepithelial CD4+ Tregs and low numbers of stromal CD8+TIM3+ T cells. Patients with low numbers of intraepithelial CD14+ cells and high numbers of stromal CD8+TIM3+ cells showed the best recurrence-free survival. These data clearly show the importance of the local immune response in HPV-induced vulvar neoplasia and may be of help in predicting the prognosis of patients or their response to immunotherapy.
Collapse
Affiliation(s)
- Edith M G van Esch
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
58
|
van Esch EMG, van Poelgeest MIE, Kouwenberg S, Osse EM, Trimbos JBMZ, Fleuren GJ, Jordanova ES, van der Burg SH. Expression of coinhibitory receptors on T cells in the microenvironment of usual vulvar intraepithelial neoplasia is related to proinflammatory effector T cells and an increased recurrence-free survival. Int J Cancer 2014; 136:E95-106. [PMID: 25220367 DOI: 10.1002/ijc.29174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/11/2014] [Accepted: 08/04/2014] [Indexed: 02/04/2023]
Abstract
Human papillomavirus-induced usual-type vulvar intraepithelial neoplasia (uVIN) are infiltrated by immune cells but apparently not cleared. A potential explanation for this is an impaired T cell effector function by an immunesuppressive milieu, coinfiltrating regulatory T cells or the expression of coinhibitory molecules. Here, the role of these potential inhibitory mechanisms was evaluated by a detailed immunohistochemical analysis of T cell infiltration in the context of FoxP3, Tbet, indoleamine 2,3-dioxygenase, programmed cell death 1, T cell immunoglobulin mucin 3 (TIM3), natural killer cell lectin-like receptor A (NKG2A) and galectins-1, -3 and -9. Paraffin-embedded tissues of primary uVIN lesions (n=43), recurrent uVIN lesions (n=20), vulvar carcinoma (n=21) and healthy vulvar tissue (n=26) were studied. We show that the vulva constitutes an area intensely surveyed by CD8+, CD4+, Tbet+ and regulatory T cell populations, parts of which express the examined coinhibitory molecules. In uVIN especially, the number of regulatory T cells and TIM3+ T cells increased. The expression of the coinhibitory markers TIM3 and NKG2A probably reflected a higher degree of T cell activation as a dense infiltration with stromal CD8+TIM3+ T cells and CD3+NKG2A+ T cells was related to the absence of recurrences and/or a prolonged recurrence-free survival. A dense coinfiltrate with regulatory T cells was negatively associated with the time to recurrence, most dominantly when the stromal CD8+TIM3+ infiltration was limited. This notion was sustained in vulvar carcinoma's where the numbers of regulatory T cells progressively increased to outnumber coinfiltrating CD8+TIM3+ T cells and CD3+NKG2A+ T cells.
Collapse
Affiliation(s)
- Edith M G van Esch
- Department of Gynaecology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Kim S, Chung HW, Lee KR, Lim JB. Identification of novel epitopes from human papillomavirus type 18 E7 that can sensitize PBMCs of multiple HLA class I against human cervical cancer. J Transl Med 2014; 12:229. [PMID: 25141788 PMCID: PMC4145224 DOI: 10.1186/s12967-014-0229-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background To identify the novel epitopes from the human papillomavirus type 18 E7 which can sensitize PBMCs of four different major HLA class I A allele. Methods Twenty-four synthetic overlapping 15-amino acid peptides were screened by measuring the frequency of CD8+ cytotoxic T lymphocytes (CTLs)-producing interferon-γ (IFN-γ) by using flow cytometry and ELISpot assays and selected peptides were validated for cytolytic activity by using the 51Cr release assay. Truncated peptides in the selected epitopes were tested to determine the important residues using ELISpot and 51Cr release assay. Results Among 24 peptides, E781-95DDLRAFQQLFLNTLS (#21) and E789-103LFLNTLSFVCPWCAS (#23) induced significantly higher Th 1 response including IFN-γ production and in vitro cytotoxicity of PBMCs of four different HLA-A alleles against cervical cancer cells than that of other peptides and the negative control (no peptide sensitization). In E781–95 (#21), amino acid position 81, 82 (N-terminus) and 92, 94, 95 (C-terminus) for HLA-A*02:02 and 24:02, and 81, 82 (N-terminus) and 92, 95 (C-terminus) for HLA-A*11:01 and 33:03 were important to elicit Th1 response of PBMCS. In E789–103 (#23), residue 100 and103 (C-terminus) were important to elicit the CD8+ CTL response in HLA-A*02:01, 11:01 and 33:03 and 100, 101, and 103 (C-terminus) were important to elicit the CD8+ CTL response in HLA-A*24:02. Conclusions E781–95 (#21) and E789–103 (#23) were identified as novel epitopes from HPV18 E7 which could sensitized PBMCs of four different HLA class I (HLA-A*02:01, 24:02, 11:01 and 33:03). These epitopes could be useful for immune monitoring and immunotherapy for HPV 18+ cervical cancer.
Collapse
Affiliation(s)
| | | | | | - Jong-Baeck Lim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 135-720, Republic of Korea.
| |
Collapse
|
60
|
CD40-mediated amplification of local immunity by epithelial cells is impaired by HPV. J Invest Dermatol 2014; 134:2918-2927. [PMID: 24945092 PMCID: PMC4227541 DOI: 10.1038/jid.2014.262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/30/2022]
Abstract
The interaction between the transmembrane glycoprotein surface receptor CD40 expressed by skin epithelial cells (ECs) and its T-cell–expressed ligand CD154 was suggested to exacerbate inflammatory skin diseases. However, the full spectrum of CD40-mediated effects by ECs underlying this observation is unknown. Therefore, changes in gene expression after CD40 ligation of ECs were studied by microarrays. CD40-mediated activation for 2 hours stimulated the expression of a coordinated network of immune-involved genes strongly interconnected by IL8 and TNF, whereas after 24 hours anti-proliferative and anti-apoptotic genes were upregulated. CD40 ligation was associated with the production of chemokines and the attraction of lymphocytes and myeloid cells from peripheral blood mononuclear cells (PBMCs). Thus, CD40-mediated activation of ECs resulted in a highly coordinated response of genes required for the local development and sustainment of adaptive immune responses. The importance of this process was confirmed by a study on the effects of human papilloma virus (HPV) infection to the EC's response to CD40 ligation. HPV infection clearly attenuated the magnitude of the response to CD40 ligation and the EC's capacity to attract PBMCs. The fact that HPV attenuates CD40 signaling in ECs indicates the importance of the CD40-CD154 immune pathway in boosting cellular immunity within epithelia.
Collapse
|
61
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
62
|
Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 2014; 124:453-62. [PMID: 24891321 DOI: 10.1182/blood-2014-04-567933] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genome sequencing has revealed a large number of shared and personal somatic mutations across human cancers. In principle, any genetic alteration affecting a protein-coding region has the potential to generate mutated peptides that are presented by surface HLA class I proteins that might be recognized by cytotoxic T cells. To test this possibility, we implemented a streamlined approach for the prediction and validation of such neoantigens derived from individual tumors and presented by patient-specific HLA alleles. We applied our computational pipeline to 91 chronic lymphocytic leukemias (CLLs) that underwent whole-exome sequencing (WES). We predicted ∼22 mutated HLA-binding peptides per leukemia (derived from ∼16 missense mutations) and experimentally confirmed HLA binding for ∼55% of such peptides. Two CLL patients that achieved long-term remission following allogeneic hematopoietic stem cell transplantation were monitored for CD8(+) T-cell responses against predicted or confirmed HLA-binding peptides. Long-lived cytotoxic T-cell responses were detected against peptides generated from personal tumor mutations in ALMS1, C6ORF89, and FNDC3B presented on tumor cells. Finally, we applied our computational pipeline to WES data (N = 2488 samples) across 13 different cancer types and estimated dozens to thousands of predicted neoantigens per individual tumor, suggesting that neoantigens are frequent in most tumors.
Collapse
|
63
|
Zom GG, Khan S, Britten CM, Sommandas V, Camps MGM, Loof NM, Budden CF, Meeuwenoord NJ, Filippov DV, van der Marel GA, Overkleeft HS, Melief CJM, Ossendorp F. Efficient induction of antitumor immunity by synthetic toll-like receptor ligand-peptide conjugates. Cancer Immunol Res 2014; 2:756-64. [PMID: 24950688 DOI: 10.1158/2326-6066.cir-13-0223] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemical conjugates comprising synthetic Toll-like receptor ligands (TLR-L) covalently bound to antigenic synthetic long peptides (SLP) are attractive vaccine modalities, which can induce robust CD8(+) T-cell immune responses. Previously, we have shown that the mechanism underlying the power of TLR-L SLP conjugates is improved delivery of the antigen together with a dendritic cell activation signal. In the present study, we have expanded the approach to tumor-specific CD4(+) as well as CD8(+) T-cell responses and in vivo studies in two nonrelated aggressive tumor models. We show that TLR2-L SLP conjugates have superior mouse CD8(+) and CD4(+) T-cell priming capacity compared with free SLPs injected together with a free TLR2-L. Vaccination with TLR2-L SLP conjugates leads to efficient induction of antitumor immunity in mice challenged with aggressive transplantable melanoma or lymphoma. Our data indicate that TLR2-L SLP conjugates are suitable to promote integrated antigen-specific CD8(+) and CD4(+) T-cell responses required for the antitumor effects. Collectively, these data show that TLR2-L SLP conjugates are promising synthetic vaccine candidates for active immunotherapy against cancer.
Collapse
Affiliation(s)
- Gijs G Zom
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Selina Khan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Cedrik M Britten
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Vinod Sommandas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Nikki M Loof
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Christina F Budden
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | | | | | | | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre; ISA Pharmaceuticals BV, Leiden, the Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre;
| |
Collapse
|
64
|
Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014; 14:135-46. [PMID: 24457417 DOI: 10.1038/nrc3670] [Citation(s) in RCA: 810] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Timeline, we describe the characteristics of tumour antigens that are recognized by spontaneous T cell responses in cancer patients and the paths that led to their identification. We explain on what genetic basis most, but not all, of these antigens are tumour specific: that is, present on tumour cells but not on normal cells. We also discuss how strategies that target these tumour-specific antigens can lead either to tumour-specific or to crossreactive T cell responses, which is an issue that has important safety implications in immunotherapy. These safety issues are even more of a concern for strategies targeting antigens that are not known to induce spontaneous T cell responses in patients.
Collapse
Affiliation(s)
- Pierre G Coulie
- 1] de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium. [2] WELBIO (Walloon Excellence in Lifesciences and Biotechnology), B-1200 Brussels, Belgium
| | - Benoît J Van den Eynde
- 1] de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium. [2] Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium. [3] WELBIO (Walloon Excellence in Lifesciences and Biotechnology), B-1200 Brussels, Belgium
| | - Pierre van der Bruggen
- 1] de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium. [2] Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium. [3] WELBIO (Walloon Excellence in Lifesciences and Biotechnology), B-1200 Brussels, Belgium
| | - Thierry Boon
- 1] de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium. [2] Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium
| |
Collapse
|
65
|
de Vos van Steenwijk PJ, van Poelgeest MIE, Ramwadhdoebe TH, Löwik MJG, Berends-van der Meer DMA, van der Minne CE, Loof NM, Stynenbosch LFM, Fathers LM, Valentijn ARPM, Oostendorp J, Osse EM, Fleuren GJ, Nooij L, Kagie MJ, Hellebrekers BWJ, Melief CJM, Welters MJP, van der Burg SH, Kenter GG. The long-term immune response after HPV16 peptide vaccination in women with low-grade pre-malignant disorders of the uterine cervix: a placebo-controlled phase II study. Cancer Immunol Immunother 2014; 63:147-60. [PMID: 24233343 PMCID: PMC11028806 DOI: 10.1007/s00262-013-1499-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/03/2013] [Indexed: 02/04/2023]
Abstract
The capacity of a low-dose HPV16 synthetic long-peptide vaccine (HPV16-SLP) to induce an HPV16-specific T-cell response as well as to establish long-term immunologic memory in patients with low-grade abnormalities of the cervix was determined in a placebo-controlled, double-blinded phase II study. In addition, the effect of a booster vaccination after 1 year was evaluated. Patients received either the HPV16-SLP or a placebo at the start of the study. After 1 year, the vaccinated patients were again randomized to receive the HPV16-SLP or a placebo. Patients were followed for 2 years. HPV16-specific T-cell responses were determined in pre- and post-vaccination blood samples by ELISPOT, proliferation assay and cytokine assays. We show that the HPV16-specific T-cell responses detected after vaccination are clearly due to vaccination and that reactivity was maintained for at least 2 years. Interestingly, a booster vaccination after 1 year especially augmented the HPV16-specific Th2 response. Furthermore, pre-existing immunity to HPV16 was associated with a stronger response to vaccination and with more side effects, reflected by flu-like symptoms. We conclude that two low-dose injections of HPV16-SLP can induce a strong and stable HPV16-specific T-cell response that lasts for at least 1 year. If booster vaccination is required, then polarizing adjuvant should be added to maintain the Th1 focus of the vaccine-induced T-cell response.
Collapse
Affiliation(s)
| | | | - Tamara H. Ramwadhdoebe
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Margriet J. G. Löwik
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Caroline E. van der Minne
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Nikki M. Loof
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Linda F. M. Stynenbosch
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Lorraine M. Fathers
- Department of Clinical Pharmacology and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Clinical Pharmacology and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Oostendorp
- Department of Clinical Pharmacology and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M. Osse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gert Jan Fleuren
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Nooij
- Department of Obstetrics and Gynecology, Medical Centrum Haaglanden, The Hague, The Netherlands
| | - Marjolein J. Kagie
- Department of Obstetrics and Gynecology, Medical Centrum Haaglanden, The Hague, The Netherlands
| | | | - Cornelis J. M. Melief
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- ISA Pharmaceuticals, Leiden, The Netherlands
| | - Marij J. P. Welters
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Sjoerd H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Gemma G. Kenter
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
- Present Address: Center of Gynecologic Oncology Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
66
|
|
67
|
Bell RA, McGlone MS, Dragojevic M. Vicious viruses and vigilant vaccines: effects of linguistic agency assignment in health policy advocacy. JOURNAL OF HEALTH COMMUNICATION 2013; 19:1178-1195. [PMID: 24354913 DOI: 10.1080/10810730.2013.811330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Studying the effect of a fictitious policy editorial advocating mandatory vaccination of youth against human papillomavirus (HPV), the authors hypothesized that linguistic assignment of agency to HPV (e.g., "HPV preys on millions of people") would increase perceptions of its severity, relative to a comparable message that assigned agency to humans (e.g., "Millions of people contract HPV"). In addition, the authors predicted that HPV vaccines would be perceived as more effective when agency was assigned to vaccination (e.g., "Vaccination guards people") rather than to humans (e.g., "People guard themselves through vaccination"). University students (N = 361) were randomly assigned to read one of four versions of the editorial defined by a 2 ×2 (Threat Agency × Immunization Agency) factorial design and thereafter completed a questionnaire. When agency was assigned to the virus or the vaccine, HPV was perceived as a more severe threat, vaccination was perceived as more effective, and people were more in favor of mandatory HPV vaccination. The authors concluded that linguistic agency assignment bestows potency to the agent, thereby making threats more alarming and medical interventions seem more effective.
Collapse
Affiliation(s)
- Robert A Bell
- a Department of Communication and Department of Public Health Sciences , University of California, Davis , Davis , California , USA
| | | | | |
Collapse
|
68
|
A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity. J Control Release 2013; 173:158-65. [PMID: 24177312 DOI: 10.1016/j.jconrel.2013.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 01/31/2023]
Abstract
PELC is a novel emulsion-type adjuvant that contains the bioresorbable polymer poly (ethylene glycol)-block-poly (lactide-co-ε-caprolactone) (PEG-b-PLACL), Span®85 and squalene. To investigate whether PELC is able to enhance CTL responses of antigens for treating tumor, peptides or protein antigens derived from HPV16 E7 were formulated with PELC nanoparticles and CpG oligodeoxynucleotide. We identified that PELC formulation could delay the release of antigens in vitro and in vivo. We assessed the immunogenicity of an H-2D(b)-restricted CTL epitope RAHYNIVTF (RAH) formulated with PELC or PELC/CpG and investigated the ability of these formulations to promote tumor regression. Following a single-dose subcutaneous injection in mice, we found that the RAH peptide formulated with PELC/CpG (RAH/PELC/CpG) resulted in increased numbers of IFN-γ-secreting cells and RAH-specific CD8(+) T cells and an enhanced cytotoxic T cell response compared with RAH formulated with PELC or CpG alone. The tumor-bearing mice received a single-dose injection of RAH/PELC/CpG, which induced complete tumor regression. These results demonstrated that peptide antigen formulated with PELC/CpG nanoparticles is feasible for cancer immunotherapy.
Collapse
|
69
|
Morrow MP, Yan J, Sardesai NY. Human papillomavirus therapeutic vaccines: targeting viral antigens as immunotherapy for precancerous disease and cancer. Expert Rev Vaccines 2013; 12:271-83. [PMID: 23496667 DOI: 10.1586/erv.13.23] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections with oncogenic HPV types have the potential to lead to the induction of several types of cancer, notably cervical, vulvar, anal, and head and neck cancer. While prophylactic vaccines are currently available and show high efficacy against the establishment of HPV infection, low rates of initiation and lower rates of completion of the vaccination regimen, as well as the lack of an opportunity to be vaccinated prior to infection, has lead to the development of a patient population for whom no immune-based therapy for infection is available. In the current review the authors examine clinical approaches to HPV-targeted immune therapies, the bulk of which target the regulatory proteins E6 and E7 that are constitutively expressed in HPV-associated cancer cells. Early studies demonstrate a correlation between induction of T-cell responses and clearance of HPV-associated precancerous lesions. The clinical data corroborates these findings and highlight the importance of Th1 skewing. Improvements in our understanding of tumor immunology and development of more potent Th1-directed vaccine platforms make it feasible to foresee a HPV therapeutic vaccine in the coming years.
Collapse
Affiliation(s)
- Matthew P Morrow
- Inovio Pharmaceuticals, Inc., 1787 Sentry Parkway West, Blue Bell, PA 19422, USA
| | | | | |
Collapse
|
70
|
Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van Veelen PA, Janssen G, Franken K, Cruz LJ, Tromp A, Oostendorp J, van der Burg SH, Ossendorp F, Melief CJM. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol 2013; 43:2554-65. [PMID: 23836147 DOI: 10.1002/eji.201343324] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/26/2013] [Accepted: 07/05/2013] [Indexed: 12/19/2022]
Abstract
The efficiency of antigen (Ag) processing by dendritic cells (DCs) is vital for the strength of the ensuing T-cell responses. Previously, we and others have shown that in comparison to protein vaccines, vaccination with synthetic long peptides (SLPs) has shown more promising (pre-)clinical results. Here, we studied the unknown mechanisms underlying the observed vaccine efficacy of SLPs. We report an in vitro processing analysis of SLPs for MHC class I and class II presentation by murine DCs and human monocyte-derived DCs. Compared to protein, SLPs were rapidly and much more efficiently processed by DCs, resulting in an increased presentation to CD4⁺ and CD8⁺ T cells. The mechanism of access to MHC class I loading appeared to differ between the two forms of Ag. Whereas whole soluble protein Ag ended up largely in endolysosomes, SLPs were detected very rapidly outside the endolysosomes after internalization by DCs, followed by proteasome- and transporter associated with Ag processing-dependent MHC class I presentation. Compared to the slower processing route taken by whole protein Ags, our results indicate that the efficient internalization of SLPs, accomplished by DCs but not by B or T cells and characterized by a different and faster intracellular routing, leads to enhanced CD8⁺ T-cell activation.
Collapse
Affiliation(s)
- Rodney A Rosalia
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
de Vos van Steenwijk PJ, Ramwadhdoebe TH, Goedemans R, Doorduijn EM, van Ham JJ, Gorter A, van Hall T, Kuijjer ML, van Poelgeest MIE, van der Burg SH, Jordanova ES. Tumor-infiltrating CD14-positive myeloid cells and CD8-positive T-cells prolong survival in patients with cervical carcinoma. Int J Cancer 2013; 133:2884-94. [PMID: 23740735 DOI: 10.1002/ijc.28309] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/17/2013] [Indexed: 01/10/2023]
Abstract
One of the hallmarks of cancer is the influx of myeloid cells. In our study, we investigated the constitution of tumor-infiltrating myeloid cells and their relationship to other tumor-infiltrating immune cells, tumor characteristics and the disease-specific survival of patients with cervical cancer (CxCa). Triple-color immunofluorescence confocal microscopy was used to locate, identify and quantify macrophages (CD14), their maturation status (CD33) and their polarization (CD163) in a cohort of 86 patients with cervical carcinoma. Quantification of the numbers of myeloid cells revealed that a strong intraepithelial infiltration of CD14+ cells, and more specifically the population of CD14+CD33-CD163- matured M1 macrophages, is associated with a large influx of intraepithelial T lymphocytes (p = 0.008), improved disease-specific survival (p = 0.007) and forms an independent prognostic factor for survival (p = 0.033). The intraepithelial CD8+ T-cell and regulatory T-cell (Treg) ratio also forms an independent prognostic factor (p = 0.010) and combination of these two factors reveals a further increased benefit in survival for patients whose tumor displays a dense infiltration with intraepithelial matured M1 macrophages and a high CD8 T-cell/Treg ratio, indicating that both populations of immune cells simultaneously improve survival. Subsequently, we made a heatmap including all known immune parameters for these patients, whereby we were able to identify different immune signatures in CxCa. These results indicate that reinforcement and activation of the intratumoral M1 macrophages may form an attractive immunotherapeutic option in CxCa.
Collapse
|
72
|
Doorbar J. Latent papillomavirus infections and their regulation. Curr Opin Virol 2013; 3:416-21. [PMID: 23816390 DOI: 10.1016/j.coviro.2013.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 02/09/2023]
Abstract
Model systems show that papillomavirus DNA can persist after lesion-regression, and be maintained in a subset of epithelial basal cells. These are very likely long-lived 'stem-cells' or 'stem-like cells', with latency arising via at least two distinct mechanisms. The first involves low-titre virus infection and the retention of viral DNA at levels that are too low to allow life-cycle completion. The second involves lesion-formation, and clearance by the adaptive immune system, followed by persistence with low-level viral gene expression, and possible reactivation upon immune depletion. Mechanical irritation, inflammation and other extracellular influences affect viral copy number in the latently infected cell, and may predispose to lesion-reappearance. Reactivation may account for the recurrence of 'apparently cleared' cervical lesions caused by high-risk types, the appearance of Beta HPV-lesions following immunosuppression, and the development of recurrent respiratory papillomatosis in afflicted children.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, London, United Kingdom.
| |
Collapse
|
73
|
Archambault J, Melendy T. Targeting human papillomavirus genome replication for antiviral drug discovery. Antivir Ther 2013; 18:271-83. [PMID: 23615820 DOI: 10.3851/imp2612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) infections are a major human health problem; they are the cause of recurrent benign warts and of several cancers of the anogenital tract and head and neck region. Although there are two prophylactic HPV vaccines that could, if used universally, prevent as many as two-thirds of HPV-induced cancers, as well as several cytotoxic and immunomodulatory agents for localized treatment of infections, there are currently no HPV antiviral drugs in our arsenal of therapeutic agents. This review examines the status of past and ongoing research into the development of HPV antivirals, focused primarily upon approaches targeting the replication of the viral genome. The only HPV enzyme, E1, is a DNA helicase that interfaces with the cellular DNA replication machinery to replicate the HPV genome. To date, searches for small molecule inhibitors of E1 for use as antivirals have met with limited success. The lack of other viral enzymes has meant that the search for antivirals has shifted to a large degree to the modulation of protein-protein interactions. There has been some success in identifying small molecule inhibitors targeting interactions between HPV proteins but with activity against a small subset of viral types only. As noted in this review, it is thought that targeting E1 interactions with cellular replication proteins may provide inhibitors with broader activity against multiple HPV types. Herein, we outline the steps in HPV DNA replication and discuss those that appear to provide the most advantageous targets for the development of anti-HPV therapeutics.
Collapse
|
74
|
van Poelgeest MIE, Welters MJP, van Esch EMG, Stynenbosch LFM, Kerpershoek G, van Persijn van Meerten EL, van den Hende M, Löwik MJG, Berends-van der Meer DMA, Fathers LM, Valentijn ARPM, Oostendorp J, Fleuren GJ, Melief CJM, Kenter GG, van der Burg SH. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med 2013; 11:88. [PMID: 23557172 PMCID: PMC3623745 DOI: 10.1186/1479-5876-11-88] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/23/2013] [Indexed: 12/18/2022] Open
Abstract
Background Human papilloma virus type 16 (HPV16)-induced gynecological cancers, in particular cervical cancers, are found in many women worldwide. The HPV16 encoded oncoproteins E6 and E7 are tumor-specific targets for the adaptive immune system permitting the development of an HPV16-synthetic long peptide (SLP) vaccine with an excellent treatment profile in animal models. Here, we determined the toxicity, safety, immunogenicity and efficacy of the HPV16 SLP vaccine in patients with advanced or recurrent HPV16-induced gynecological carcinoma. Methods Patients with HPV16-positive advanced or recurrent gynecological carcinoma (n = 20) were subcutaneously vaccinated with an HPV16-SLP vaccine consisting of a mix of 13 HPV16 E6 and HPV16 E7 overlapping long peptides in Montanide ISA-51 adjuvant. The primary endpoints were safety, toxicity and tumor regression as determined by RECIST. In addition, the vaccine-induced T-cell response was assessed by proliferation and associated cytokine production as well as IFNγ-ELISPOT. Results No systemic toxicity beyond CTCAE grade II was observed. In a few patients transient flu-like symptoms were observed. In 9 out of 16 tested patients vaccine-induced HPV16-specific proliferative responses were detected which were associated with the production of IFNγ, TNFα, IL-5 and/or IL-10. ELISPOT analysis revealed a vaccine-induced immune response in 11 of the 13 tested patients. The capacity to respond to the vaccine was positively correlated to the patient’s immune status as reflected by their response to common recall antigens at the start of the trial. Median survival was 12.6 ± 9.1 months. No regression of tumors was observed among the 12 evaluable patients. Nineteen patients died of progressive disease. Conclusions The HPV16-SLP vaccine was well tolerated and induced a broad IFNγ-associated T-cell response in patients with advanced or recurrent HPV16-induced gynecological carcinoma but neither induced tumor regression nor prevented progressive disease. We, therefore, plan to use this vaccine in combination with chemotherapy and immunomodulation.
Collapse
|
75
|
Badoual C, Péré H, Roussel H, Si Mohamed A, Tartour É. [Cancers of the upper aerodigestive tract associated with human papillomavirus]. Med Sci (Paris) 2013; 29:83-8. [PMID: 23351698 DOI: 10.1051/medsci/2013291017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Carcinomas of the aerodigestive tract are most often secondary to alcohol and tobacco intoxication. However, it is shown that the oncogenic human papillomavirus (HPV) have an increasing role in the carcinogenesis of these cancers. Patients with HPV+ carcinoma are generally younger and not alcohol and tobacco users. These carcinomas are mainly localized in the oropharynx and in particular at the tonsil. HPV is found in 40 to 90 % of the cancers in the oropharynx, depending on the country. These HPV+ carcinomas have a better prognosis with better radio or chemosensitivity. To date, no change of treatment is recommended, however, several trials are underway. Preventive vaccination of boys is a real public health issue, especially since it is recommended in some countries. Moreover, a better understanding of the tumor microenvironment will ultimately offer therapeutic vaccination.
Collapse
Affiliation(s)
- Cécile Badoual
- Service d'anatomie pathologique, hôpital européen Georges Pompidou, 20-40, rue Leblanc, 75015 Paris, France.
| | | | | | | | | |
Collapse
|
76
|
van der Burg SH. Immunotherapy of human papilloma virus induced disease. Open Virol J 2012; 6:257-63. [PMID: 23341861 PMCID: PMC3547504 DOI: 10.2174/1874357901206010257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/28/2012] [Accepted: 08/17/2012] [Indexed: 01/08/2023] Open
Abstract
Immunotherapy is the generic name for treatment modalities aiming to reinforce the immune system against diseases in which the immune system plays a role. The design of an optimal immunotherapeutic treatment against chronic viruses and associated diseases requires a detailed understanding of the interactions between the target virus and its host, in order to define the specific strategies that may have the best chance to deliver success at each stage of disease. Recently, a first series of successes was reported for the immunotherapy of Human Papilloma Virus (HPV)-induced premalignant diseases but there is definitely room for improvement. Here I discuss a number of topics that in my opinion require more study as the answers to these questions allows us to better understand the underlying mechanisms of disease and as such to tailor treatment.
Collapse
Affiliation(s)
- Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
77
|
Stern PL, van der Burg SH, Hampson IN, Broker TR, Fiander A, Lacey CJ, Kitchener HC, Einstein MH. Therapy of human papillomavirus-related disease. Vaccine 2012; 30 Suppl 5:F71-82. [PMID: 23199967 PMCID: PMC4155500 DOI: 10.1016/j.vaccine.2012.05.091] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/10/2012] [Accepted: 05/03/2012] [Indexed: 12/18/2022]
Abstract
This chapter reviews the current treatment of chronic and neoplastic human papillomavirus (HPV)-associated conditions and the development of novel therapeutic approaches. Surgical excision of HPV-associated lower genital tract neoplasia is very successful but largely depends on secondary prevention programmes for identification of disease. Only high-risk HPV-driven chronic, pre-neoplastic lesions and some very early cancers cannot be successfully treated by surgical procedures alone. Chemoradiation therapy of cervical cancer contributes to the 66-79% cervical cancer survival at 5 years. Outlook for those patients with persistent or recurrent cervical cancer following treatment is very poor. Topical agents such as imiquimod (immune response modifier), cidofovir (inhibition of viral replication; induction apoptosis) or photodynamic therapy (direct damage of tumour and augmentation of anti-tumour immunity) have all shown some useful efficacy (~50-60%) in treatment of high grade vulvar intraepithelial neoplasia (VIN). Provider administered treatments of genital warts include cryotherapy, trichloracetic acid, or surgical removal which has the highest primary clearance rate. Patient applied therapies include podophyllotoxin and imiquimod. Recurrence after "successful" treatment is 30-40%. Further improvements could derive from a rational combination of current therapy with new drugs targeting molecular pathways mediated by HPV in cancer. Small molecule inhibitors targeting the DNA binding activities of HPV E1/E2 or the anti-apoptotic consequences of E6/E7 oncogenes are in preclinical development. Proteasome and histone deacetylase inhibitors, which can enhance apoptosis in HPV positive tumour cells, are being tested in early clinical trials. Chronic high-risk HPV infection/neoplasia is characterised by systemic and/or local immune suppressive regulatory or escape factors. Recently two E6/E7 vaccines have shown some clinical efficacy in high grade VIN patients and this correlated with strong and broad systemic HPV-specific T cell response and modulation of key local immune factors. Treatments that can shift the balance of immune effectors locally in combination with vaccination are now being tested. This article forms part of a special supplement entitled "Comprehensive Control of HPV Infections and Related Diseases" Vaccine Volume 30, Supplement 5, 2012.
Collapse
Affiliation(s)
- Peter L Stern
- Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
van Esch EMG, Welters MJP, Jordanova ES, Trimbos JBMZ, van der Burg SH, van Poelgeest MIE. Treatment failure in patients with HPV 16-induced vulvar intraepithelial neoplasia: understanding different clinical responses to immunotherapy. Expert Rev Vaccines 2012; 11:821-40. [PMID: 22913259 DOI: 10.1586/erv.12.56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Failure of the immune system to launch a strong and effective immune response to high-risk HPV is related to viral persistence and the development of anogenital (pre)malignant lesions such as vulvar intraepithelial neoplasia (VIN). Different forms of immunotherapy, aimed at overcoming the inertia of the immune system, have been developed and met with clinical success. Unfortunately these, in principal successful, therapeutic approaches also fail to induce clinical responses in a substantial number of cases. In this review, the authors summarize the traits of the immune response to HPV in healthy individuals and in patients with HPV-induced neoplasia. The potential mechanisms involved in the escape of HPV-induced lesions from the immune system indicate gaps in our knowledge. Finally, the interaction between the immune system and VIN is discussed with a special focus on the different forms of immunotherapy applied to treat VIN and the potential causes of therapy failure. The authors conclude that there are a number of pre-existing conditions that determine the patients' responsiveness to immunotherapy. An immunotherapeutic strategy in which different aspects of immune failure are attacked by complementary approaches, will improve the clinical response rate.
Collapse
Affiliation(s)
- Edith M G van Esch
- Department of Gynecology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
79
|
Marincola FM, Sheikh JI. A road map to Translational Medicine in Qatar and a model for the world. J Transl Med 2012; 10:177. [PMID: 22929646 PMCID: PMC3436734 DOI: 10.1186/1479-5876-10-177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 02/02/2023] Open
Abstract
Translational Medicine (TM) in Qatar is part of a concerted effort of the Qatari medical and scientific leadership supported by a strong political will by Qatari authorities to deliver world-class health care to Qatari residents while participating in the worldwide quest to bridge the gap between bench-to-bedside-to-community. TM programs should embrace the Qatar National vision for research to become an international hub of excellence in research and development, based on intellectual merit, contributing to global knowledge and adhering to international standards, to innovate by translating new and original ideas into useful applications, to be inclusive at the national and international level, to build and maintain a competitive and diversified economy and ultimately improve the health and well-being of the Qatar’s population. Although this writing focuses on Qatar, we hope that the thoughts expressed here may be of broader use for the development of any TM program particularly in regions where an established academic community surrounded by a rich research infrastructure and/or a vibrant biotechnology enterprise is not already present.
Collapse
Affiliation(s)
- Francesco M Marincola
- Office of the Dean, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, PO Box 24144, Doha, Qatar.
| | | |
Collapse
|
80
|
Wang E, Tomei S, Marincola FM. Reflections upon human cancer immune responsiveness to T cell-based therapy. Cancer Immunol Immunother 2012; 61:761-70. [PMID: 22576055 PMCID: PMC3362724 DOI: 10.1007/s00262-012-1274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/24/2012] [Indexed: 01/06/2023]
Abstract
Immune-mediated rejection of human cancer is a relatively rare but well-documented phenomenon. Its rate of occurrence progressively increases from the occasional observation of spontaneous regressions to the high rate of complete remissions observed in response to effective treatments. For two decades, our group has focused its interest in understanding this phenomenon by studying humans following an inductive approach. Sticking to a sequential logic, we dissected the phenomenon by studying to the best of our capability both peripheral and tumor samples and reached the conclusion that immune-mediated cancer rejection is a facet of autoimmunity where the target tissue is the cancer itself. As we are currently defining the strategy to effectively identify the mechanisms leading in individual patients to rejection of their own tumors, we considered useful to summarize the thought process that guided us to our own interpretation of the mechanisms of immune responsiveness.
Collapse
Affiliation(s)
- Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bldg 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Sara Tomei
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bldg 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Francesco M. Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bldg 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
81
|
Abstract
Until recently, therapeutic cancer vaccines only sporadically led to long-term clinical responses. We here report on a novel vaccine modality, characterized by the administration of long (23-45 amino acids) synthetic peptides in incomplete Freund adjuvant (mineral oil-based, Montanide ISA-51), delivered subcutaneously. Such vaccines were first demonstrated to be much more potent in preclinical T-cell response induction and tumor therapy experiments than short major histocompatibility complex class I-binding peptides that have been used extensively in the clinic. A long-peptide vaccine consisting of 13 overlapping peptides, together covering the entire length of the 2 oncogenic proteins E6 and E7 of high-risk human papilloma virus type 16 (HPV16), caused complete regression of all lesions and eradication of virus in 9 of 20 women with high-grade vulvar intraepithelial neoplasia. The nature and strength of the vaccine-induced T-cell response were significantly correlated with the clinical response. This vaccine promises to be of use, not only in patients with premalignant lesions caused by high-risk HPV16, but also in patients with malignant tumors caused by this virus, including HPV16-positive cervical cancer, anal cancer, and head and neck cancer.
Collapse
|
82
|
Chauvin JM, Larrieu P, Sarrabayrouse G, Prévost-Blondel A, Lengagne R, Desfrançois J, Labarrière N, Jotereau F. HLA anchor optimization of the melan-A-HLA-A2 epitope within a long peptide is required for efficient cross-priming of human tumor-reactive T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2102-10. [PMID: 22291187 DOI: 10.4049/jimmunol.1101807] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The uptake and long-term cross-presentation of tumor Ag long peptides (LP) by dendritic cells (DC) make them attractive cancer vaccine candidates. However, it remains to be established whether LP can prime long-lived tumor-reactive CTL and whether other cell types are able to cross-present them. Using HLA-A2 healthy donor and melanoma patient-derived PBMC, we studied the in vitro cross-priming potential of Melan-A 16-40 LP bearing the HLA-A2-restricted epitope 26-35 or its analog 26-35(A27L) and compared it to the priming capacity of the short analog. We then addressed LP priming capacity in vivo using HLA-A2 mice. We also studied LP cross-presentation by monocyte-derived DC, plasmacytoid DC, monocytes, and B cells. We showed that the modified LP gave rise to high and sustained cross-presentation by monocyte-derived DC. This led to cross priming in vitro and in vivo and to expansion of long-lived tumor-reactive cytotoxic T cells. In contrast, the LP containing the natural 26-35 epitope primed specific T cells poorly, despite its long-lived cross-presentation, and T cells primed against the short analog were short-lived. We further showed that LP cross-presentation is restricted to monocytes and conventional DC. These results document for the first time, to our knowledge, the strong immunogenicity of a human tumor Ag LP. Of note, they underscore that this property is critically dependent on sufficient HLA binding affinity and/or TCR ligand potency of the cross-presented epitope. We conclude that LP fulfilling this requirement should be used as tumor vaccines, together with DC maturating agents, especially the Melan-A 16-40(A27L) LP, for the treatment of HLA-A2(+) melanoma patients.
Collapse
|
83
|
van Hall T, van der Burg SH. Mechanisms of peptide vaccination in mouse models: tolerance, immunity, and hyperreactivity. Adv Immunol 2012; 114:51-76. [PMID: 22449778 DOI: 10.1016/b978-0-12-396548-6.00003-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of synthetic peptide vaccines capable of inducing strong and protective T-cell immunity has taken more than 20 years. Peptide vaccines come in many flavors and although their design is simple, their use is more complicated as the success of a particular peptide vaccine is influenced by many parameters. In fact, peptide vaccination may lead to tolerance, immunity or even hyper-reactivity causing death of the animals. Here we systematically dissect the parameters that influence the final outcome of peptide vaccines as examined in mouse models and this will guide the rational design of new vaccines in the future.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Clinical Oncology, Experimental Cancer Immunology and Therapy, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
84
|
Quakkelaar ED, Melief CJM. Experience with synthetic vaccines for cancer and persistent virus infections in nonhuman primates and patients. Adv Immunol 2012; 114:77-106. [PMID: 22449779 DOI: 10.1016/b978-0-12-396548-6.00004-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synthetic vaccines, in particular long synthetic peptides of approximately 25-50 amino acids in length, are attractive for HIV vaccine development and for induction of therapeutic immune responses in patients with (pre-)malignant disorders. In the case of preventive vaccine development against HIV, no major success has been achieved, but the possibilities are by no means exhausted. A long peptide vaccine consisting of 13 overlapping peptides, which together cover the entire length of the two oncogenic proteins E6 and E7 of high-risk human papilloma virus type 16 (HPV16), caused complete regression of all lesions and eradication of virus in 9 out of 20 women with high-grade vulvar intraepithelial neoplasia, a therapy-resistant preneoplastic disorder. The nature and strength of the vaccine-prompted T cell responses were significantly correlated with the clinical response. Synthetic peptide vaccines are attractive, because they allow rational improvement of vaccine design and detailed pharmacokinetic and pharmacodynamic studies not possible with conventional vaccines. Improvements are possible by addition or conjugation of adjuvants, notably TLR ligands, to the synthetic peptides.
Collapse
Affiliation(s)
- Esther D Quakkelaar
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
85
|
Wang HY, Wang RF. Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Adv Immunol 2012; 114:151-76. [PMID: 22449781 DOI: 10.1016/b978-0-12-396548-6.00006-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of T-cell-mediated antitumor immunity has been demonstrated in both animal models and human cancer immunotherapy. In the past 30 years, T-cell-based immunotherapy has been improved with an objective clinical response rate of up to 72%. Identification of MHC class I- and II-restricted tumor antigens recognized by tumor-reactive T cells has generated a resurgence of interest in cancer vaccines. Although clinical trials with cancer peptide/protein vaccines have only met a limited success, several phase II/III clinical trials are either completed or ongoing with encouraging results. Recent advances in immunotherapy have led to the approval of two anticancer drugs (sipuleucel-T vaccine and anti-CTLA-4 antibody) by the US FDA for the treatment of metastatic castration-resistant prostate cancer and melanoma, respectively. Intracellular delivery of antigenic peptides into dendritic cells (DCs) prolongs antigen presentation of antigen-presenting cells to T cells, thus further improving clinical efficacy of peptide/protein cancer vaccines. Because innate immune responses are critically important to provide sensing and initiating of adaptive immunity, combined use of cell-penetrating peptide vaccines with stimulation of innate immune signaling may produce potent antitumor immune responses. We will discuss the recent progress and novel strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Helen Y Wang
- Department of Pathology and Immunology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
86
|
Heusinkveld M, Goedemans R, Briet R, Gelderblom H, Nortier J, Gorter A, Smit V, Langeveld A, Jansen J, van der Burg S. Systemic and local human papillomavirus 16-specific T-cell immunity in patients with head and neck cancer. Int J Cancer 2011; 131:E74-85. [DOI: 10.1002/ijc.26497] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/15/2011] [Indexed: 12/31/2022]
|
87
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11:823-36. [PMID: 22076556 DOI: 10.1038/nri3084] [Citation(s) in RCA: 1233] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
88
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011. [PMID: 22076556 DOI: 10.1038/nri3084.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
89
|
Porchia BFMM, Diniz MO, Cariri FAMO, Santana VC, Amorim JH, Balan A, Braga CJM, Ferreira LCS. Purified herpes simplex type 1 glycoprotein D (gD) genetically fused with the type 16 human papillomavirus E7 oncoprotein enhances antigen-specific CD8+ T cell responses and confers protective antitumor immunity. Mol Pharm 2011; 8:2320-30. [PMID: 21985578 DOI: 10.1021/mp200194s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Type 1 herpes virus (HSV-1) glycoprotein D (gD) enhances antigen-specific immune responses, particularly CD8(+) T cell responses, in mice immunized with DNA vaccines encoding hybrid proteins genetically fused with the target antigen at a site near the C-terminal end. These effects are attributed to the interaction of gD with the herpes virus entry mediator (HVEM) and the concomitant blockade of a coinhibitory mechanism mediated by the B- and T-lymphocyte attenuator (BTLA). However, questions concerning the requirement for endogenous synthesis of the antigen or the adjuvant/antigen fusion itself have not been addressed so far. In the present study, we investigated these points using purified recombinant gDs, genetically fused or not with type 16 papilloma virus (HPV-16) E7 oncoprotein. Soluble recombinant gDs, but not denatured forms, retained the ability to bind surface-exposed cellular receptors of HVEM-expressing U937 cells. In addition, in vivo administration of the recombinant proteins, particularly gD genetically fused with E7 (gDE7), promoted the activation of dendritic cells (DC) and antigen-specific cytotoxic CD8(+) T cells. More relevantly, mice immunized with the gDE7 protein developed complete preventive and partial therapeutic antitumor protection, as measured in mice following the implantation of TC-1 cells expressing HPV-16 oncoproteins. Collectively, these results demonstrate that the T cell adjuvant effects of the HSV-1 gD protein did not require endogenous synthesis and could be demonstrated in mice immunized with purified recombinant proteins.
Collapse
Affiliation(s)
- Bruna F M M Porchia
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Petrone L, Ammendolia MG, Cesolini A, Caimi S, Superti F, Giorgi C, Di Bonito P. Recombinant HPV16 E7 assembled into particles induces an immune response and specific tumour protection administered without adjuvant in an animal model. J Transl Med 2011; 9:69. [PMID: 21592382 PMCID: PMC3120688 DOI: 10.1186/1479-5876-9-69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/18/2011] [Indexed: 01/20/2023] Open
Abstract
Background The HPV16 E7 protein is both a tumour-specific and a tumour-rejection antigen, the ideal target for developing therapeutic vaccines for the treatment of HPV16-associated cancer and its precursor lesions. E7, which plays a key role in virus-associated carcinogenesis, contains 98 amino acids and has two finger-type structures which bind a Zn++ ion. The ability of an Escherichia coli-produced E7-preparation, assembled into particles, to induce protective immunity against a HPV16-related tumour in the TC-1-C57BL/6 mouse tumour model, was evaluated. Methods E7 was expressed in E. coli, purified via a one-step denaturing protocol and prepared as a soluble suspension state after dialysis in native buffer. The presence in the E7 preparation of particulate forms was analysed by non-reducing SDS-PAGE and negative staining electron microscopy (EM). The Zn++ ion content was analysed by mass-spectrometry. Ten μg of protein per mouse was administered to groups of animals, once, twice or three times without adjuvant. The E7-specific humoral response was monitored in mice sera using an E7-based ELISA while the cell-mediated immune response was analysed in mice splenocytes with lymphoproliferation and IFN-γ ELISPOT assays. The E7 immunized mice were challenged with TC-1 tumour cells and the tumour growth monitored for two months. Results In western blot analysis E7 appears in multimers and high molecular mass oligomers. The EM micrographs show the protein dispersed as aggregates of different shape and size. The protein appears clustered in micro-, nano-aggregates, and structured particles. Mice immunised with this protein preparation show a significant E7-specific humoral and cell-mediated immune response of mixed Th1/Th2 type. The mice are fully protected from the tumour growth after vaccination with three E7-doses of 10 μg without any added adjuvant. Conclusions This report shows that a particulate form of HPV16 E7 is able to induce, without adjuvant, an E7-specific tumour protection in C57BL/6 mice. The protective immunity is sustained by both humoral and cell-mediated immune responses. The E. coli-derived HPV16 E7 assembled in vitro into micro- and nanoparticles represents not only a good substrate for antigen-presenting cell uptake and processing, but also a cost-effective means for the production of a new generation of HPV subunit vaccines.
Collapse
Affiliation(s)
- Linda Petrone
- Department of Infectious Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|