51
|
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv 2014; 23:2371-2390. [PMID: 25544604 DOI: 10.3109/10717544.2014.991001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CONTEXT Existing medication systems for the treatment of diabetes mellitus (DM) are inconvenient and troublesome for effective and safe delivery of drugs to the specific site. Therefore, investigations are desired to deliver antidiabetics using novel delivery approaches followed by their commercialization. OBJECTIVE The present review aims to provide a compilation on the latest development in the field of novel drug delivery systems (NDDSs) for antidiabetics with special emphasis on particulate, vesicular and miscellaneous systems. METHODS Review of literature (restricted to English language only) was done using electronic databases like Pubmed® and Scirus, i.e. published during 2005-2013. The CIMS/MIMS India Medical Drug Information eBook was used regarding available marketed formulation of antidiabetic drugs. Keywords used were "nanoparticle", "microparticle", "liposomes", "niosomes", "transdermal systems", "insulin", "antidiabetic drugs" and "novel drug delivery systems". Single inclusion was made for one article. If in vivo study was not done then article was seldom included in the manuscript. RESULTS The curiosity to develop NDDSs of antidiabetic drugs with special attention to the nanoparticulate system followed by microparticulate and lipid-based system is found to emerge gradually to overcome the problems associated with the conventional dosage forms and to win the confidence of end users towards the higher acceptability. CONCLUSION In the current scientific panorama when the area of novel drug delivery system has been recognized for its palpable benefits, unique potential of providing physical stability, sustained and site-specific drug delivery for a scheduled period of time can open new vistas for precise, safe and quality treatment of DM.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Nidhi Mishra
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Ashish Kumar Agrawal
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Sanyog Jain
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Narayan Prasad Yadav
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| |
Collapse
|
52
|
Ramburrun P, Kumar P, Choonara YE, Bijukumar D, du Toit LC, Pillay V. A review of bioactive release from nerve conduits as a neurotherapeutic strategy for neuronal growth in peripheral nerve injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:132350. [PMID: 25143934 PMCID: PMC4131113 DOI: 10.1155/2014/132350] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/04/2014] [Indexed: 02/07/2023]
Abstract
Peripheral nerve regeneration strategies employ the use of polymeric engineered nerve conduits encompassed with components of a delivery system. This allows for the controlled and sustained release of neurotrophic growth factors for the enhancement of the innate regenerative capacity of the injured nerves. This review article focuses on the delivery of neurotrophic factors (NTFs) and the importance of the parameters that control release kinetics in the delivery of optimal quantities of NTFs for improved therapeutic effect and prevention of dose dumping. Studies utilizing various controlled-release strategies, in attempt to obtain ideal release kinetics, have been reviewed in this paper. Release strategies discussed include affinity-based models, crosslinking techniques, and layer-by-layer technologies. Currently available synthetic hollow nerve conduits, an alternative to the nerve autografts, have proven to be successful in the bridging and regeneration of primarily the short transected nerve gaps in several patient cases. However, current research emphasizes on the development of more advanced nerve conduits able to simulate the effectiveness of the autograft which includes, in particular, the ability to deliver growth factors.
Collapse
Affiliation(s)
- Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Divya Bijukumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
53
|
Abstract
Alginic acid nanoparticles (NPs) containing insulin, with nicotinamide as permeation enhancer were developed for sublingual delivery. The lower concentration of proteolytic enzymes, lower thickness and enhanced retention due to bioadhesive property, were relied on for enhanced insulin absorption. Insulin-loaded NPs were prepared by mild and aqueous based nanoprecipitation process. NPs were negatively charged and had a mean size of ∼200 nm with low dispersity index. Insulin loading capacities of >95% suggested a high association of insulin with alginic acid. Fourier Transform Infra-Red Spectroscopy (FTIR) spectra and DSC (Differential Scanning Calorimetry) thermogram of insulin-loaded NPs revealed the association of insulin with alginic acid. Circular dichroism (CD) spectra confirmed conformational stability, while HPLC analysis confirmed chemical stability of insulin in the NPs. Sublingually delivered NPs with nicotinamide exhibited high pharmacological availability (>100%) and bioavailability (>80%) at a dose of 5 IU/kg. The high absolute pharmacological availability of 20.2% and bioavailability of 24.1% in comparison with subcutaneous injection at 1 IU/kg, in the streptozotocin-induced diabetic rat model, suggest the insulin-loaded alginic acid NPs as a promising sublingual delivery system of insulin.
Collapse
Affiliation(s)
- Nilam H Patil
- a Department of Pharmaceutical Science and Technology , Institute of Chemical Technology , Mumbai , Maharashtra , India
| | - Padma V Devarajan
- a Department of Pharmaceutical Science and Technology , Institute of Chemical Technology , Mumbai , Maharashtra , India
| |
Collapse
|
54
|
Agrawal U, Sharma R, Gupta M, Vyas SP. Is nanotechnology a boon for oral drug delivery? Drug Discov Today 2014; 19:1530-46. [PMID: 24786464 DOI: 10.1016/j.drudis.2014.04.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/12/2014] [Accepted: 04/22/2014] [Indexed: 12/14/2022]
Abstract
The oral route for drug delivery is regarded as the optimal route for achieving therapeutic benefits owing to increased patient compliance. Despite phenomenal advances in injectable, transdermal, nasal and other routes of administration, the reality is that oral drug delivery remains well ahead of the pack as the preferred delivery route. Nanocarriers can overcome the major challenges associated with this route of administration: mainly poor solubility, stability and biocompatibility of drugs. This review focuses on the potential of various polymeric drug delivery systems in oral administration, their pharmacokinetics, in vitro and in vivo models, toxicity and regulatory aspects.
Collapse
Affiliation(s)
- Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Madhu Gupta
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India.
| |
Collapse
|
55
|
Deshmukh RK, Naik JB. Aceclofenac microspheres: Quality by design approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 36:320-8. [DOI: 10.1016/j.msec.2013.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 01/20/2023]
|
56
|
Mertins O, Dimova R. Insights on the interactions of chitosan with phospholipid vesicles. Part I: Effect of polymer deprotonation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14545-14551. [PMID: 24168397 DOI: 10.1021/la403218c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interactions between the polysaccharide chitosan and negatively charged phospholipid liposomes were studied as a function of compositional and environmental conditions. Using isothermal titration calorimetry, different levels of deprotonation of chitosan in acidic solutions were attained with titration of the fully protonated polymer at pH 4.48 into solutions with increasing pH. The process was found to be highly endothermic. We then examined the interaction of the polymer with vesicles in solutions of different pH. Even when partially deprotonated, the chitosan chains retain their affinity to the negatively charged liposomes. However, the stronger adsorption results in lower organization of the chains over the membrane.
Collapse
Affiliation(s)
- Omar Mertins
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam, Germany
| | | |
Collapse
|
57
|
Deshmukh RK, Naik JB. Diclofenac Sodium-Loaded Eudragit® Microspheres: Optimization Using Statistical Experimental Design. J Pharm Innov 2013. [DOI: 10.1007/s12247-013-9167-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
58
|
He P, Liu H, Tang Z, Deng M, Yang Y, Pang X, Chen X. Poly(ester amide) blend microspheres for oral insulin delivery. Int J Pharm 2013; 455:259-66. [DOI: 10.1016/j.ijpharm.2013.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/13/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
|
59
|
Tang DW, Yu SH, Wu WS, Hsieh HY, Tsai YC, Mi FL. Hydrogel microspheres for stabilization of an antioxidant enzyme: effect of emulsion cross-linking of a dual polysaccharide system on the protection of enzyme activity. Colloids Surf B Biointerfaces 2013; 113:59-68. [PMID: 24055882 DOI: 10.1016/j.colsurfb.2013.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/15/2013] [Accepted: 09/02/2013] [Indexed: 11/24/2022]
Abstract
Catalase is an antioxidant enzyme abundant in natural resources. However, the enzyme is usually inactivated by gastric acid and digestive enzymes after oral ingestion. In this study, carboxymethyl chitosan (CM-chitosan) and hyaluronic acid (HA) conjugate hydrogel microspheres have been prepared by an emulsion cross-linking technique to retain the activity of catalase in simulated gastrointestinal (GI) fluids. Cross-linking reduced the swelling capability and increased the resistance toward hyaluronidase digestion of prepared HA-CM-chitosan hydrogel microspheres. Catalase entrapped in the hydrogel microspheres exhibited superior stability over a wide pH range (pH 2.0 and 6.0-8.0) as compared to the native enzyme. The entrapped catalase was also protected against degradation by digestive enzymes. Following the treatments, the catalase-loaded microspheres, in contrast to native catalase, could effectively decrease the intracellular H2O2 level and protect HT-29 colonic epithelial cells against H2O2-induced oxidative damage to preserve cell viability. These results suggested that the HA-CM-chitosan hydrogel microspheres can be used for entrapment, protection and intestinal delivery of catalase for H2O2 scavenging.
Collapse
Affiliation(s)
- Deh-Wei Tang
- Department of Biotechnology, Vanung University, Chung-Li 320, Taiwan
| | - Shu-Huei Yu
- Department of Polymer Materials, Vanung University, Chung-Li 320, Taiwan
| | - Wen-Shin Wu
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hao-Ying Hsieh
- Department of Polymer Materials, Vanung University, Chung-Li 320, Taiwan
| | - Yi-Chin Tsai
- Department of Biotechnology, Vanung University, Chung-Li 320, Taiwan
| | - Fwu-Long Mi
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
60
|
Shahbazi MA, Hamidi M, Mohammadi-Samani S. Preparation, optimization, and in-vitro/in-vivo/ex-vivo characterization of chitosan-heparin nanoparticles: drug-induced gelation. J Pharm Pharmacol 2013; 65:1118-33. [DOI: 10.1111/jphp.12076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/07/2013] [Indexed: 12/20/2022]
Abstract
Abstract
Objectives
Management of blood coagulation-related diseases is currently limited by the inability to provide an adequate drug concentration in blood circulation for a long term. As a promising way to overcome this problem, the long-acting forms of these drugs have attracted many interests in recent years.
Methods
In this study, chitosan-heparin nanoparticles were prepared as a polymeric delivery system intended for the prolonged intravenous delivery of heparin where the drug was used as both the therapeutic agent and a gel-forming counter-ion. The nanoparticle preparation method was optimized using a Taguchi orthogonal array. Critical formulation variables were optimized in this study in terms of their corresponding effects on the target response of particle size. Nanoparticles were characterized by the Fourier transform infrared spectroscopy, transmission electron microscopy and zeta potential.
Key findings
The size, polydispersity index, zeta potential and encapsulation efficiency for the optimized formulation were found to be 61.33 ± 1.53 nm, 0.06, +15.7 mv and 74.16 ± 1.27%, respectively. The sizes of the prepared drug-loaded nanoparticles were stable at least 1 week at room temperature and 3 months in refrigerator.
Conclusions
The ex-vivo and in-vivo tests on the heparin-chitosan nanoparticles using activated partial thromboplastin time (aPTT) as the biological index were indicative of a smoother and longer elevation in aPTT in the presence of nanoparticulate drug.
Collapse
Affiliation(s)
- Mohammad-Ali Shahbazi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mehrdad Hamidi
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
61
|
Preparation of amphiphilic hollow carbon nanosphere loaded insulin for oral delivery. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2012.10.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
62
|
Yaturu S. Insulin therapies: Current and future trends at dawn. World J Diabetes 2013; 4:1-7. [PMID: 23493823 PMCID: PMC3596776 DOI: 10.4239/wjd.v4.i1.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/17/2012] [Accepted: 01/24/2013] [Indexed: 02/05/2023] Open
Abstract
Insulin is a key player in the control of hyperglycemia for type 1 diabetes patients and selective individuals in patients of type 2 diabetes. Insulin delivery systems that are currently available for the administration of insulin include insulin syringes, insulin infusion pumps, jet injectors and pens. The traditional and most predictable method for the administration of insulin is by subcutaneous injections. The major drawback of current forms of insulin therapy is their invasive nature. To decrease the suffering, the use of supersonic injectors, infusion pumps, sharp needles and pens has been adopted. Such invasive and intensive techniques have spurred the search for alternative, more acceptable methods for administering insulin. Several non-invasive approaches for insulin delivery are being pursued. The newer methods explored include the artificial pancreas with closed-loop system, transdermal insulin, and buccal, oral and pulmonary routes. This review focuses on the new concepts that are being explored for use in future.
Collapse
|
63
|
Jose S, Fangueiro JF, Smitha J, Cinu TA, Chacko AJ, Premaletha K, Souto EB. Predictive modeling of insulin release profile from cross-linked chitosan microspheres. Eur J Med Chem 2012; 60:249-53. [PMID: 23313633 DOI: 10.1016/j.ejmech.2012.12.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 11/10/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
Insulin-loaded microspheres composed of chitosan 3% (w/v), and loading 120 IU insulin were produced by emulsion cross-linking method. Cross-linking time was 5 h and glutaraldehyde 3.5% (v/v) was used as cross-linker. Swelling ratio studies were evaluated to predict release of insulin from chitosan microspheres. Bacitracin and sodium taurocholate were incorporated in the formulations as proteolytic enzyme inhibitor and absorption enhancer, respectively. In vitro insulin release studies were performed in phosphate buffer pH 7.4 and also in HCl pH 2 with and without trypsin. Activity of bacitracin was also evaluated. In vitro release showed a controlled profile up to 12 h and the formulation containing 0.15% (w/v) of bacitracin revealed a maximum biological activity of about 49.1 ± 4.1%. Mathematical modeling using Higuchi and Korsmeyer-Peppas suggested a non-Fickian diffusion as the mechanism of insulin release. Insulin-loaded chitosan microspheres for oral delivery showed to be an innovative and reliable delivery system to overcome conventional insulin therapy.
Collapse
Affiliation(s)
- S Jose
- Department of Pharmaceutical Sciences, Mahatma Gandhi University, Cheruvandoor Campus, Ettumanoor 686 631, Kerala, India
| | | | | | | | | | | | | |
Collapse
|