51
|
Ginsenoside improves physicochemical properties and bioavailability of curcumin-loaded nanostructured lipid carrier. Arch Pharm Res 2017; 40:864-874. [PMID: 28712035 DOI: 10.1007/s12272-017-0930-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to develop a ginsenoside-modified nanostructured lipid carrier (G-NLC) dispersion containing curcumin. The NLC was prepared by melt emulsification with slight modification process. Different G-NLC dispersion systems were prepared using lipid carrier matrix composed of ginsenoside, phosphatidylcholine, lysophosphatidylcholine, and hydrogenated bean oil. TEM image of the nanoparticles in the NLC dispersion showed core/shell structure, and there was corona-like layer surrounding the particles in the G-NLC. The mean particle size of G-NLC dispersion was in the range of about 300-500 nm and stayed submicron size up to 12 months. The in vitro release of curcumin was faster in pH 1.2 compared to pH 6.8 and it showed linear release pattern after lag time of 1 h. When the G-NLC dispersion was orally administered to rats, Cmax of the free curcumin was 15.2 and 32.3 ng/mL at doses of 50 and 100 mg/kg, respectively, while it was below quantification limit when curcumin was administered as of dispersion in distilled water. Based on these results, it is certain that ginsenoside modulated the NLC dispersion, leading to enduring shelf-life of the dispersion system and enhanced bioavailability. These results strongly suggest that ginsenoside holds a promising potential as a pharmaceutical excipient in the pharmaceutical industries to increase the utility of various bioactives.
Collapse
|
52
|
Do Nascimento EG, De Caland LB, De Medeiros ASA, Fernandes-Pedrosa MF, Soares-Sobrinho JL, Dos Santos KSCR, Da Silva-Júnior AA. Tailoring Drug Release Properties by Gradual Changes in the Particle Engineering of Polysaccharide Chitosan Based Powders. Polymers (Basel) 2017; 9:E253. [PMID: 30970933 PMCID: PMC6431873 DOI: 10.3390/polym9070253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 01/09/2023] Open
Abstract
Chitosan is a natural copolymer generally available in pharmaceutical and food powders associated with drugs, vitamins, and nutraceuticals. This study focused on monitoring the effect of the morphology and structural features of the chitosan particles for controlling the release profile of the active pharmaceutical ingredient (API) propranolol hydrochloride. Chitosan with distinct molecular mass (low and medium) were used in the formulations as crystalline and irregular particles from commercial raw material, or as spherical, uniform, and amorphous spray-dried particles. The API⁻copolymer interactions were assessed when adding the drug before (drug-loaded particles) or after the spray drying (only mixed with blank particles). The formulations were further compared with physical mixtures of the API with chitin and microcrystalline cellulose. The scanning electron microscopy (SEM) images, surface area, particle size measurements, X-ray diffraction (XRD) analysis and drug loading have supported the drug release behavior. The statistical analysis of experimental data demonstrated that it was possible to control the drug release behavior (immediate or slow drug release) from chitosan powders using different types of particles.
Collapse
Affiliation(s)
- Ednaldo G Do Nascimento
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petropolis, Natal 59072-570, RN, Brazil.
| | - Lilia B De Caland
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petropolis, Natal 59072-570, RN, Brazil.
| | - Arthur S A De Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petropolis, Natal 59072-570, RN, Brazil.
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petropolis, Natal 59072-570, RN, Brazil.
| | - José L Soares-Sobrinho
- Department of Pharmacy, Center of Health Sciences, Federal University of Pernambuco, Professor Moraes Rego 1235, Recife 50670-901, PE, Brazil.
| | - Kátia S C R Dos Santos
- School of Pharmaceutical Sciences, Federal University of Amazonas, UFAM, General Rodrigo Octávio Jordão Ramos, 6200, South Sector, Manaus 69077-000, AM, Brazil.
| | - Arnóbio Antonio Da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petropolis, Natal 59072-570, RN, Brazil.
| |
Collapse
|
53
|
Chaharband F, Kamalinia G, Atyabi F, Mortazavi S, Mirzaie ZH, Dinarvand R. Formulation and in vitro evaluation of curcumin-lactoferrin conjugated nanostructures for cancerous cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017. [DOI: 10.1080/21691401.2017.1337020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Farkhondeh Chaharband
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Kamalinia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - S.Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra H. Mirzaie
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Dash TK, Konkimalla VSB. Selection and optimization of nano-formulation of P-glycoprotein inhibitor for reversal of doxorubicin resistance in COLO205 cells. ACTA ACUST UNITED AC 2017; 69:834-843. [PMID: 28397291 DOI: 10.1111/jphp.12722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/04/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The prime objective of current work was to develop a strategy for preparation of combinational nano-formulation for reversal of drug resistance. METHODS As a model system, doxorubicin (DOX)-resistant COLO205 cells were developed and validated. From co-treatment studies with DOX, curcumin was selected as it reversed DOX-resistance at lowest concentration. In an attempt to increase its solubility, curcumin was encapsulated into hydroxypropyl-β-cyclodextrin (HP-β-CD). Here, we propose that presence of stabilizer overcomes its low encapsulation efficiency. Thus, we evaluated curcumin encapsulation in HP-β-CD in presence of different stabilizers and organic solvents. Finally, the effect of nanocurcumin with liposomal DOX was studied for reversal of resistance in COLO205 cells. KEY FINDINGS In the process encapsulation, selective optimization of organic solvent by freeze-drying was found to be appropriate among other methods. From optimization studies with different organic solvent (acetone and dichloromethane) and stabilizer [polyvinyl alcohol (PVA) and Pluronics], HP-β-CD-encapsulated curcumin prepared using acetone in PVA-stabilized dispersion increased encapsulation (60%) with size of ~40 nm. Prepared nano-curcumin reversed the DOX resistance effectively in combination with liposomal DOX. CONCLUSIONS Curcumin reversed DOX resistance in COLO205 cells at low concentration and enhanced curcumin encapsulation in HP-β-CD was noted in presence of PVA. Further, it was observed that prepared HP-β-CD-encapsulated curcumin is equi-efficacious to nano-dispersed curcumin.
Collapse
Affiliation(s)
- Tapan K Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER, HBNI), Khurda, India
| | | |
Collapse
|
55
|
Wang Y, Qin F, Lu M, Gao L, Yao X. The screening and evaluating of chitosan/β-cyclodextrin nanoparticles for effective delivery mitoxantrone hydrochloride. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17030191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
56
|
Vittorio O, Curcio M, Cojoc M, Goya GF, Hampel S, Iemma F, Dubrovska A, Cirillo G. Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Deliv 2017; 24:162-180. [PMID: 28156178 PMCID: PMC8241076 DOI: 10.1080/10717544.2016.1236846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.
Collapse
Affiliation(s)
- Orazio Vittorio
- a UNSW Australia, Children's Cancer Institute, Lowy Cancer Research Center and ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Australian Center for NanoMedicine , Sydney , NSW , Australia
| | - Manuela Curcio
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Monica Cojoc
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany
| | - Gerardo F Goya
- d Institute of Nanoscience of Aragon (INA) and Department of Condensed Matter Physics, University of Zaragoza , Zaragoza , Spain
| | - Silke Hampel
- e Leibniz Institute of Solid State and Material Research Dresden , Dresden , Germany , and
| | - Francesca Iemma
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Anna Dubrovska
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany.,f German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Giuseppe Cirillo
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| |
Collapse
|
57
|
Kurniawan A, Gunawan F, Nugraha AT, Ismadji S, Wang MJ. Biocompatibility and drug release behavior of curcumin conjugated gold nanoparticles from aminosilane-functionalized electrospun poly( N -vinyl-2-pyrrolidone) fibers. Int J Pharm 2017; 516:158-169. [DOI: 10.1016/j.ijpharm.2016.10.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 01/15/2023]
|
58
|
Tyagi N, De R, Begun J, Popat A. Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. Int J Pharm 2016; 518:220-227. [PMID: 27988378 DOI: 10.1016/j.ijpharm.2016.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
With the recent quantum leap in chemoprevention by dietary products, their use as cancer therapeutics is garnering worldwide attention. The concept of effortlessly fighting this deadly disease by gulping cups of green tea or swallowing green tea extract capsules is appreciated universally. Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, has generated significant interest in controlling carcinogenesis due to its growth-inhibitory efficacy against a variety of cancers by targeting multiple signaling pathways. However, the success of EGCG in preclinical studies is difficult to translate into clinical trials due to issues of low solubility, bioavailability and an uncertain therapeutic window. The laborious and expensive journey of drugs from the laboratory to commercialization can be improved by utilizing nanoparticles as anti-cancer drug carriers. Exploitation of biopolymeric nanoparticles in recent years has improved EGCG's biodistribution, stability and tumor selectivity, revealing its superior chemopreventive effects. This review briefly summarizes recent developments regarding the targets and side effects of EGCG, complications associated with its low bioavailability and critically analyses the application of biopolymeric nanoparticles encapsulating EGCG as a next generation delivery systems.
Collapse
Affiliation(s)
- Nisha Tyagi
- School of Pharmacy, The University of Queensland Brisbane, QLD,4102,Australia
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
| | - Jakob Begun
- Inflammatory Disease Biology and Therapeutics Group- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia; School of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland Brisbane, QLD,4102,Australia; Inflammatory Disease Biology and Therapeutics Group- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
59
|
Hussain Z, Thu HE, Ng SF, Khan S, Katas H. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: A review of new trends and state-of-the-art. Colloids Surf B Biointerfaces 2016; 150:223-241. [PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/21/2016] [Accepted: 11/26/2016] [Indexed: 12/13/2022]
Abstract
Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia.
| | - Hnin Ei Thu
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz 50300, Kuala Lumpur, Malaysia
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KPK, Pakistan
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
60
|
Pujara N, Jambhrunkar S, Wong KY, McGuckin M, Popat A. Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. J Colloid Interface Sci 2016; 488:303-308. [PMID: 27838554 DOI: 10.1016/j.jcis.2016.11.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 12/19/2022]
Abstract
The polyphenolic compound resveratrol has received significant attention due to its many pharmacological actions such as anti-cancer, anti-inflammatory, antioxidant and antimicrobial activities. However, poor solubility and stability are major impediments for resveratrol's clinical effectiveness. In this work we have encapsulated resveratrol into soy protein isolate nanoparticles using a simple rotary evaporation technique. Resveratrol-loaded nanoparticles were around 100nm in diameter and negatively charged. Nano-encapsulated resveratrol was found to be in amorphous form and showed more than two times higher solubility with significantly increased dissolution when compared to free resveratrol. Finally, an in-vitro NF-κB inhibition assay revealed that encapsulated resveratrol was stable and retained bioactivity. This new formulation of resveratrol has the potential to boost the clinical effectiveness of this drug and could be utilised for other poorly soluble hydrophobic drugs.
Collapse
Affiliation(s)
- Naisarg Pujara
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Siddharth Jambhrunkar
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Kuan Yau Wong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Michael McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Amirali Popat
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
61
|
Dash TK, Konkimalla VB. Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells. Pharm Res 2016; 34:279-289. [PMID: 27815791 DOI: 10.1007/s11095-016-2060-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE Curcumin is very well established as a chemo-therapeutic, chemo-preventive and chemo-sensitizing agent in diverse disease conditions. As the isolated pure form has poor solubility and pharmacokinetic problems, therefore it is encapsulated in to several nano-formulations to improve its bioavailability. Here in the current study, we aim to compare different nano-formulations of curcumin for their chemo-sensitizing activity in doxorubicin (DOX) resistant K562 cells. METHODS Four different curcumin formulations were prepared namely DMSO assisted curcumin nano-dispersion (CurD, 260 nm), liposomal curcumin (CurL, 165 nm), MPEG-PCL micellar curcumin (CurM, 18 nm) and cyclodextrin encapsulated curcumin (CurN, 37 nm). The formulations were subjected to particle characterizations (size, zeta potential, release studies), followed by biological assays such as cellular uptake, P-gp inhibitory activity and reversal of DOX resistance by co-treatment with DOX. RESULTS Curcumin uptake in K562N and K562R cells was mildly reduced when treated with CurL and CurM, while for CurD and CurN the uptake remained equivalent. However, CurL retained P-gp inhibitory activity of curcumin and with a considerable chemo-sensitizing effect but CurM showed no P-gp inhibitory activity. CurN retained above biological activities, but requires a secondary carrier under in vivo conditions. CONCLUSIONS From the results, CurM was found to be most suitable for solubilization of curcumin where as CurL can be considered as most suitable nano-formulation for reversal of DOX resistance.
Collapse
Affiliation(s)
- Tapan K Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Via- Jatni, Khurda, 752050, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Via- Jatni, Khurda, 752050, India.
| |
Collapse
|
62
|
Enhancement of bioactivity and bioavailability of curcumin with chitosan based materials. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0243-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
63
|
Summerlin N, Qu Z, Pujara N, Sheng Y, Jambhrunkar S, McGuckin M, Popat A. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf B Biointerfaces 2016; 144:1-7. [DOI: 10.1016/j.colsurfb.2016.03.076] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/16/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
|
64
|
Na YG, Jun HS, Kim D, Park BC, Lim SK, Lee KH, Hwang SJ, Park JS, Jung SH, Cho CW. Preformulation of FK506 Prodrugs for Improving Solubility. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development; Chungnam National University; Daejeon 34134 Korea
| | - Hye-Suk Jun
- College of Pharmacy and Institute of Drug Research and Development; Chungnam National University; Daejeon 34134 Korea
| | | | - Byong-Chul Park
- Korea Research Institute of Bioscience and Biotechnology; Daejeon 305-806 Korea
| | | | - Ki-Ho Lee
- College of Pharmacy; Korea University; Sejong 30019 Korea
| | - Sung-Joo Hwang
- College of Pharmacy; Yonsei University; Incheon 406-840 Korea
| | - Jeong-Sook Park
- College of Pharmacy and Institute of Drug Research and Development; Chungnam National University; Daejeon 34134 Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development; Chungnam National University; Daejeon 34134 Korea
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development; Chungnam National University; Daejeon 34134 Korea
| |
Collapse
|
65
|
Facchi SP, Scariot DB, Bueno PV, Souza PR, Figueiredo LC, Follmann HD, Nunes CS, Monteiro JP, Bonafé EG, Nakamura CV, Muniz EC, Martins AF. Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery. Int J Biol Macromol 2016; 87:237-45. [DOI: 10.1016/j.ijbiomac.2016.02.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/19/2022]
|
66
|
Zong W, Hu Y, Su Y, Luo N, Zhang X, Li Q, Han X. Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers. J Microencapsul 2016; 33:257-62. [DOI: 10.3109/02652048.2016.1156176] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Zong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| | - Nan Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xunan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
67
|
Huang P, Zeng B, Mai Z, Deng J, Fang Y, Huang W, Zhang H, Yuan J, Wei Y, Zhou W. Novel drug delivery nanosystems based on out-inside bifunctionalized mesoporous silica yolk–shell magnetic nanostars used as nanocarriers for curcumin. J Mater Chem B 2016; 4:46-56. [DOI: 10.1039/c5tb02184g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bifunctionalized yolk–shell magnetic mesoporous silica is used as a curcumin nanocarrier with magnetic response and increased cellular uptake.
Collapse
|
68
|
Shin GH, Kim JT, Park HJ. Recent developments in nanoformulations of lipophilic functional foods. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
69
|
Soo E, Thakur S, Qu Z, Jambhrunkar S, Parekh HS, Popat A. Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J Colloid Interface Sci 2015; 462:368-74. [PMID: 26479200 DOI: 10.1016/j.jcis.2015.10.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022]
Abstract
Despite the known anticancer potential of resveratrol, its clinical applications are often hindered by physicochemical limitations such as poor solubility and stability. The encapsulation of resveratrol in formulations such as polymeric nanoparticles and liposomes has shown limited success. This study aimed to develop and optimize a novel drug carrier by co-encapsulating pristine resveratrol alongside cyclodextrin-resveratrol inclusion complexes in the lipophilic and hydrophilic compartments of liposomes, respectively by using a novel dual carrier approach. The particle size, polydispersity index and zeta potential of the final formulation were 131±1.30nm, 0.089±0.005 and -2.64±0.51mV, respectively. Compared to free resveratrol and conventional liposomal formulations with drug release profile of 40-60%, our novel nanoformulations showed complete (100%) drug release in 24h. The formulation was stable for 14days at 4°C. We also studied the in vitro cytotoxicity of resveratrol encapsulated liposomes in HT-29 colon cancer cell lines. The cytotoxicity profile of our liposomes was observed to be dose dependent and enhanced in comparison to free resveratrol (in DMSO). Our study demonstrates that co-encapsulation of pristine resveratrol along with its cyclodextrin complex in liposomal formulations is a plausible option for the enhanced delivery of the hydrophobic chemotherapeutic agent.
Collapse
Affiliation(s)
- Ernest Soo
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia
| | - Sachin Thakur
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia
| | - Siddharth Jambhrunkar
- Mucosal Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia; Mucosal Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
70
|
Udompornmongkol P, Chiang BH. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. J Biomater Appl 2015; 30:537-46. [PMID: 26170212 DOI: 10.1177/0885328215594479] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of the present study was to fabricate polymeric nanoparticles as drug carriers for encapsulated curcumin with enhanced anti-colorectal cancer applications. Nanoparticles were formulated from chitosan and gum arabic, natural polysaccharides, via an emulsification solvent diffusion method. The formation of curcumin nanoparticles was confirmed by Fourier transform infrared spectroscopy and differential scanning calorimeter. The results show that curcumin was entrapped in carriers with +48 mV, 136 nm size, and high encapsulation efficiency (95%). Based on an in vitro release study, we inferred that curcumin nanoparticles could tolerate hydrolysis due to gastric juice or small intestinal enzymes, and therefore, it should reach the colon largely intact. In addition, curcumin nanoparticles had higher anti-colorectal cancer properties than free curcumin due to greater cellular uptake. Therefore, we concluded that curcumin was successfully encapsulated in chitosan-gum arabic nanoparticles with superior anti-colorectal cancer activity.
Collapse
Affiliation(s)
| | - Been-Huang Chiang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
71
|
Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci 2015; 221:60-76. [PMID: 25999266 DOI: 10.1016/j.cis.2015.04.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 12/16/2022]
Abstract
Traditional Chinese medicine (TCM) has been practiced for thousands of years with a recent increase in popularity. Despite promising biological activities of active ingredients and fractions from TCM, their poor solubility, poor stability, short biological half-life, ease of metabolism and rapid elimination hinder their clinical application. Therefore, overcoming these problems to improve the therapeutic efficacy of TCM preparations is a major focus of pharmaceutical sciences. Recently, nanocarriers have drawn increasing attention for their excellent and efficient delivery of active TCM ingredients or fractions. This review discusses problems in the delivery of active TCM ingredients or fractions; focuses on recent advances in nanocarriers that represent potential solutions to these problems, including lipid-based nanoparticles and polymeric, inorganic, and hybrid nanocarriers; and discusses unanswered questions in the field and criteria for the development of better nanocarriers for the delivery of active TCM ingredients or fractions to be focused on in future studies.
Collapse
|
72
|
Khan MA, Akhtar N, Sharma V, Pathak K. Product development studies on sonocrystallized curcumin for the treatment of gastric cancer. Pharmaceutics 2015; 7:43-63. [PMID: 25923809 PMCID: PMC4491650 DOI: 10.3390/pharmaceutics7020043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/23/2022] Open
Abstract
Curcumin suffers from the limitation of poor solubility and low dissolution that can lead to limited applications. The investigation was aimed to substantiate the potentiality of melt sonocrystallized gastroretentive tablets of curcumin. Melt sonocrystallized curcumin (MSC CMN) was developed and its therapeutic potential was validated by in vitro cytotoxicity studies against Human oral cancer cell line KB. MSC curcumin was then formulated as floating tablet and evaluated. MSC form of CMN exhibited 2.36-fold and 2.40-fold solubility enhancement in distilled water and phosphate buffer, pH 4.5, respectively, better flow properties and intrinsic dissolution rate (0.242 ± 1.42 and 0.195 ± 1.26 mg/cm2/min) in comparison to its original form. The GI50 value of MSC CMN was found to be less than 10, specifying inhibition of growth more effectively at its least concentration by 50%. The gastroretentive-floating tablet (Formulation F4) displayed controlled drug release (96.22% ± 1.43%) for over 12 h. The present study revealed melt sonocrystallization can be used to produce particles with superior biopharmaceutical properties without the use of organic solvents or the addition of other excipients, and amenable to formulation in to a pharmaceutical dosage form.
Collapse
Affiliation(s)
- Mohammad Ashif Khan
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Delhi Mathura Road, P.O. Chhattikara, Mathura-281001, India.
| | - Nida Akhtar
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Delhi Mathura Road, P.O. Chhattikara, Mathura-281001, India.
| | - Vijay Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Delhi Mathura Road, P.O. Chhattikara, Mathura-281001, India.
| | - Kamla Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Delhi Mathura Road, P.O. Chhattikara, Mathura-281001, India.
| |
Collapse
|
73
|
Akrami M, Khoobi M, Khalilvand-Sedagheh M, Haririan I, Bahador A, Faramarzi MA, Rezaei S, Javar HA, Salehi F, Ardestani SK, Shafiee A. Evaluation of multilayer coated magnetic nanoparticles as biocompatible curcumin delivery platforms for breast cancer treatment. RSC Adv 2015. [DOI: 10.1039/c5ra13838h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel biocompatible multi-layer iron oxide magnetic nanoparticles with sustained sensitive release profile, and improved cellular uptake.
Collapse
|