51
|
Genome Editing in C. elegans and Other Nematode Species. Int J Mol Sci 2016; 17:295. [PMID: 26927083 PMCID: PMC4813159 DOI: 10.3390/ijms17030295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023] Open
Abstract
Caenorhabditis elegans, a 1 mm long free-living nematode, is a popular model animal that has been widely utilized for genetic investigations of various biological processes. Characteristic features that make C. elegans a powerful model of choice for eukaryotic genetic studies include its rapid life cycle (development from egg to adult in 3.5 days at 20 °C), well-annotated genome, simple morphology (comprising only 959 somatic cells in the hermaphrodite), and transparency (which facilitates non-invasive fluorescence observations). However, early approaches to introducing mutations in the C. elegans genome, such as chemical mutagenesis and imprecise excision of transposons, have required large-scale mutagenesis screens. To avoid this laborious and time-consuming procedure, genome editing technologies have been increasingly used in nematodes including C. briggsae and Pristionchus pacificus, thereby facilitating their genetic analyses. Here, I review the recent progress in genome editing technologies using zinc-finger nucleases (ZFNs), transcriptional activator-like nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in nematodes and offer perspectives on their use in the future.
Collapse
|
52
|
Weninger A, Killinger M, Vogl T. Key Methods for Synthetic Biology: Genome Engineering and DNA Assembly. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
53
|
Abstract
Owing to their modular and highly specific DNA recognition mode, transcription activator-like effector nucleases (TALENs) have been rapidly adopted by the scientific community for the purpose of generating site-specific double-strand breaks (DSBs) on a DNA molecule. A pair of TALENs can be used to produce random insertions or deletions of various lengths via nonhomologous end-joining or together with a homologous donor DNA to induce precise sequence alterations by homologous recombination (HR). Here, we describe a method for TALEN assembly (easyT) and a strategy for genome engineering via HR.
Collapse
Affiliation(s)
- Arslan Akmammedov
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| | - Tomonori Katsuyama
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku, 113-8654, Tokyo, Japan
| | - Renato Paro
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
- Faculty of Science, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
54
|
Abstract
The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed.
Collapse
Affiliation(s)
- David G Ousterout
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC, 27708-0281, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
55
|
|
56
|
Reegan AD, Ceasar SA, Paulraj MG, Ignacimuthu S, Al-Dhabi NA. Current status of genome editing in vector mosquitoes: A review. Biosci Trends 2016; 10:424-432. [DOI: 10.5582/bst.2016.01180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Appadurai Daniel Reegan
- Division of Vector Control, Entomology Research Institute, Loyola College
- Department of Zoology, Madras Christian College
| | | | | | - Savarimuthu Ignacimuthu
- Division of Vector Control, Entomology Research Institute, Loyola College
- Division of Molecular Biology, Entomology Research Institute, Loyola College
- International Scientific Partnership Program, Deanship of Research, King Saud University
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah chair for Environmental Studies, College of Science, King Saud University
| |
Collapse
|
57
|
Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology. ACS Chem Biol 2015; 10:2199-208. [PMID: 26241388 DOI: 10.1021/acschembio.5b00340] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man3GlcNAc2), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc2Man3GlcNAc2) in S2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.
Collapse
Affiliation(s)
- Hideaki Mabashi-Asazuma
- Department
of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Chu-Wei Kuo
- Institute
of Biological Chemistry, Academia Sinica 128 Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute
of Biological Chemistry, Academia Sinica 128 Nankang, Taipei 115, Taiwan
| | - Donald L. Jarvis
- Department
of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
- GlycoBac,
LLC, Laramie, Wyoming 82072, United States
| |
Collapse
|
58
|
Mussolino C, Mlambo T, Cathomen T. Proven and novel strategies for efficient editing of the human genome. Curr Opin Pharmacol 2015; 24:105-12. [DOI: 10.1016/j.coph.2015.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
|
59
|
Tischner C, Wenz T. Keep the fire burning: Current avenues in the quest of treating mitochondrial disorders. Mitochondrion 2015; 24:32-49. [DOI: 10.1016/j.mito.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
|
60
|
Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators. PLoS One 2015; 10:e0136423. [PMID: 26295471 PMCID: PMC4546503 DOI: 10.1371/journal.pone.0136423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
Estrogen receptor α (ERα), as a ligand-dependent transcription factor, mediates 17β-estradiol (E2) effects. ERα is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ERα dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ERα-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ERα. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ERα or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ERα or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue.
Collapse
|
61
|
Dreyer AK, Hoffmann D, Lachmann N, Ackermann M, Steinemann D, Timm B, Siler U, Reichenbach J, Grez M, Moritz T, Schambach A, Cathomen T. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 2015; 69:191-200. [PMID: 26295532 DOI: 10.1016/j.biomaterials.2015.07.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
X-linked chronic granulomatous disease (X-CGD) is an inherited disorder of the immune system. It is characterized by a defect in the production of reactive oxygen species (ROS) in phagocytic cells due to mutations in the NOX2 locus, which encodes gp91phox. Because the success of retroviral gene therapy for X-CGD has been hampered by insertional activation of proto-oncogenes, targeting the insertion of a gp91phox transgene into potential safe harbor sites, such as AAVS1, may represent a valid alternative. To conceptually evaluate this strategy, we generated X-CGD patient-derived induced pluripotent stem cells (iPSCs), which recapitulate the cellular disease phenotype upon granulocytic differentiation. We examined AAVS1-specific zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for their efficacy to target the insertion of a myelo-specific gp91phox cassette to AAVS1. Probably due to their lower cytotoxicity, TALENs were more efficient than ZFNs in generating correctly targeted iPSC colonies, but all corrected iPSC clones showed no signs of mutations at the top-ten predicted off-target sites of both nucleases. Upon differentiation of the corrected X-CGD iPSCs, gp91phox mRNA levels were highly up-regulated and the derived granulocytes exhibited restored ROS production that induced neutrophil extracellular trap (NET) formation. In conclusion, we demonstrate that TALEN-mediated integration of a myelo-specific gp91phox transgene into AAVS1 of patient-derived iPSCs represents a safe and efficient way to generate autologous, functionally corrected granulocytes.
Collapse
Affiliation(s)
- Anne-Kathrin Dreyer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Doris Steinemann
- Institute of Cell and Molecular Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara Timm
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany
| | - Ulrich Siler
- Division of Immunology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Janine Reichenbach
- Division of Immunology, University Children's Hospital, 8032 Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine, Swiss Center for Regenerative Medicine, Zurich Centre for Integrative Human Physiology, University of Zurich, 8091 Zurich, Switzerland
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Toni Cathomen
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany.
| |
Collapse
|
62
|
Skipper KA, Mikkelsen JG. Delivering the Goods for Genome Engineering and Editing. Hum Gene Ther 2015; 26:486-97. [DOI: 10.1089/hum.2015.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
63
|
Abstract
Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks.
Collapse
|
64
|
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:471-99. [DOI: 10.1002/wrna.1288] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH; Mainz Germany
- TRON gGmbH; Mainz Germany
| |
Collapse
|
65
|
Cuculis L, Abil Z, Zhao H, Schroeder CM. Direct observation of TALE protein dynamics reveals a two-state search mechanism. Nat Commun 2015; 6:7277. [PMID: 26027871 PMCID: PMC4458887 DOI: 10.1038/ncomms8277] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/24/2015] [Indexed: 11/29/2022] Open
Abstract
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. TALEs are programmable DNA-binding proteins with practical use in genome engineering and synthetic biology. Here the authors use single-molecule fluorescence microscopy to establish that TALE proteins function using two distinct DNA-interaction modes during sequence-specific target search.
Collapse
Affiliation(s)
- Luke Cuculis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zhanar Abil
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huimin Zhao
- 1] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2] Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [3] Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [4] Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 USA [5] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles M Schroeder
- 1] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2] Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [3] Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 USA [4] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
66
|
Silencing and overexpression of human blood group antigens in transfusion: Paving the way for the next steps. Blood Rev 2015; 29:163-9. [DOI: 10.1016/j.blre.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/23/2014] [Indexed: 01/25/2023]
|
67
|
Kobayashi K, Fujii T, Asada R, Ooka M, Hirota K. Development of a targeted flip-in system in avian DT40 cells. PLoS One 2015; 10:e0122006. [PMID: 25799417 PMCID: PMC4370768 DOI: 10.1371/journal.pone.0122006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Gene-targeting to create null mutants or designed-point mutants is a powerful tool for the molecular dissection of complex phenotypes involving DNA repair, signal transduction, and metabolism. Because gene-targeting is critically impaired in mutants exhibiting attenuated homologous recombination (HR), it is believed that gene-targeting is mediated via homologous recombination, though the precise mechanism remains unknown. We explored gene-targeting in yeast and avian DT40 cells. In animal cells, gene-targeting is activated by DNA double strand breaks introduced into the genomic region where gene-targeting occurs. This is evidenced by the fact that introducing double strand breaks at targeted genome sequences via artificial endonucleases such as TALEN and CRISPR facilitates gene-targeting. We found that in fission yeast, Schizosaccharomyces pombe, gene-targeting was initiated from double strand breaks on both edges of the homologous arms in the targeting construct. Strikingly, we also found efficient gene-targeting initiated on the edges of homologous arms in avian DT40 cells, a unique animal cell line in which efficient gene-targeting has been demonstrated. It may be that yeast and DT40 cells share some mechanism in which unknown factors detect and recombine broken DNA ends at homologous arms accompanied by crossover. We found efficient targeted integration of gapped plasmids accompanied by crossover in the DT40 cells. To take advantage of this finding, we developed a targeted flip-in system for avian DT40 cells. This flip-in system enables the rapid generation of cells expressing tag-fused proteins and the stable expression of transgenes from OVA loci.
Collapse
Affiliation(s)
- Kaori Kobayashi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Toshihiko Fujii
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ryuta Asada
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
- * E-mail:
| |
Collapse
|
68
|
Schmidt F, Grimm D. CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnol J 2015; 10:258-72. [DOI: 10.1002/biot.201400529] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/06/2015] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
|
69
|
Cornu TI, Mussolino C, Bloom K, Cathomen T. Editing CCR5: a novel approach to HIV gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:117-30. [PMID: 25757618 DOI: 10.1007/978-1-4939-2432-5_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) is a life-threatening disorder caused by infection of individuals with the human immunodeficiency virus (HIV). Entry of HIV-1 into target cells depends on the presence of two surface proteins on the cell membrane: CD4, which serves as the main receptor, and either CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 32-bp deletion in the CCR5 gene (CCR5∆32), leading to expression of a truncated gene product that provides resistance to HIV-1 infection in individuals homozygous for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplantation with CCR5∆32 donor cells seems to confer HIV-1 resistance to the recipient as well. However, since Δ32 donors are scarce and allogeneic HSC transplantation is not exempt from risks, the development of gene editing tools to knockout CCR5 in the genome of autologous cells is highly warranted. Targeted gene editing can be accomplished with designer nucleases, which essentially are engineered restriction enzymes that can be designed to cleave DNA at specific sites. During repair of these breaks, the cellular repair pathway often introduces small mutations at the break site, which makes it possible to disrupt the ability of the targeted locus to express a functional protein, in this case CCR5. Here, we review the current promise and limitations of CCR5 gene editing with engineered nucleases, including factors affecting the efficiency of gene disruption and potential off-target effects.
Collapse
Affiliation(s)
- Tatjana I Cornu
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Hugstetter Str. 55, Freiburg, 79106, Germany,
| | | | | | | |
Collapse
|
70
|
Doorschodt B, Teubner A, Kobayashi E, Tolba R. Promising future for the transgenic rat in transplantation research. Transplant Rev (Orlando) 2014; 28:155-62. [DOI: 10.1016/j.trre.2014.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/02/2014] [Accepted: 05/20/2014] [Indexed: 01/17/2023]
|
71
|
Abstract
Stem cell-based therapies are emerging as a promising strategy to tackle cancer. Multiple stem cell types have been shown to exhibit inherent tropism towards tumours. Moreover, when engineered to express therapeutic agents, these pathotropic delivery vehicles can effectively target sites of malignancy. This perspective considers the current status of stem cell-based treatments for cancer and provides a rationale for translating the most promising preclinical studies into the clinic.
Collapse
Affiliation(s)
- Daniel W Stuckey
- Molecular Neurotherapy and Imaging Laboratory and the Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory and the Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA; and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
72
|
Nakagawa Y, Yamamoto T, Suzuki KI, Araki K, Takeda N, Ohmuraya M, Sakuma T. Screening methods to identify TALEN-mediated knockout mice. Exp Anim 2014; 63:79-84. [PMID: 24521866 PMCID: PMC4160933 DOI: 10.1538/expanim.63.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genome editing with site-specific nucleases, such as zinc-finger nucleases or
transcription activator-like effector nucleases (TALENs), and RNA-guided nucleases, such
as the CRISPR/Cas (clustered regularly interspaced short palindromic
repeats/CRISPR-associated) system, is becoming the new standard for targeted genome
modification in various organisms. Application of these techniques to the manufacture of
knockout mice would be greatly aided by simple and easy methods for genotyping of mutant
and wild-type pups among litters. However, there are no detailed or comparative reports
concerning the identification of mutant mice generated using genome editing technologies.
Here, we genotyped TALEN-derived enhanced green fluorescent protein
(eGFP) knockout mice using a combination of approaches, including
fluorescence observation, heteroduplex mobility assay, restriction fragment length
polymorphism analysis and DNA sequencing. The detection sensitivities for TALEN-induced
mutations differed among these methods, and we therefore concluded that combinatorial
testing is necessary for the screening and determination of mutant genotypes. Since the
analytical methods tested can be carried out without specialized equipment, costly
reagents and/or sophisticated protocols, our report should be of interest to a broad range
of researchers who are considering the application of genome editing technologies in
various organisms.
Collapse
Affiliation(s)
- Yoshiko Nakagawa
- Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Rappaport A, Johnson L. Genetically engineered knock-in and conditional knock-in mouse models of cancer. Cold Spring Harb Protoc 2014; 2014:897-911. [PMID: 25183823 DOI: 10.1101/pdb.top069799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Classical transgenic models are useful for quickly gauging the impact of transgene overexpression, but they are limited by the absence of the innate, subtle regulatory elements encoded in introns and other untranslated regions. Moreover, the widespread, high-level expression of oncogenes often leads to tumors that lack the histopathological and acquired genetic features of human cancers. Targeted mutation of endogenous loci, or knock-in (KI) alleles, facilitates more accurate modeling of human tumors by allowing for the expression of mutant alleles under normal physiological regulation. Advanced strategies enable the stochastic activation of such alleles in somatic cells, such that genotypically wild-type cells surround individual mutant cells. More recent technologies, such as site-specific engineered nucleases, have also accelerated the design and implementation of KI strategies. Together, these tools aid in the development of advanced mouse models that better recapitulate the features of human disease.
Collapse
Affiliation(s)
- Amy Rappaport
- Genentech, Inc., South San Francisco, California 94080
| | - Leisa Johnson
- Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|
74
|
Yen ST, Zhang M, Deng JM, Usman SJ, Smith CN, Parker-Thornburg J, Swinton PG, Martin JF, Behringer RR. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev Biol 2014; 393:3-9. [PMID: 24984260 PMCID: PMC4166609 DOI: 10.1016/j.ydbio.2014.06.017] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/20/2022]
Abstract
Tyrosinase is the rate-limiting enzyme for the production of melanin pigmentation. In the mouse and other animals, homozygous null mutations in the Tyrosinase gene (Tyr) result in the absence of pigmentation, i.e. albinism. Here we used the CRISPR/Cas9 system to generate mono- and bi-allelic null mutations in the Tyr locus by zygote injection of two single-guide and Cas9 RNAs. Injection into C57BL/6N wild-type embryos resulted in one completely albino founder carrying two different Tyr mutations. In addition, three pigmentation mosaics and fully pigmented littermates were obtained that transmitted new mutant Tyr alleles to progeny in test crosses with albinos. Injection into Tyr heterozygous (B6CBAF1/J×FVB/NJ) zygotes resulted in the generation of numerous albinos and also mice with a graded range of albino mosaicism. Deep sequencing revealed that the majority of the albinos and the mosaics had more than two new mutant alleles. These visual phenotypes and molecular genotypes highlight the somatic mosaicism and allele complexity in founders that occurs for targeted genes during CRISPR/Cas9-mediated mutagenesis by zygote injection in mice.
Collapse
Affiliation(s)
- Shuo-Ting Yen
- Program in Developmental Biology, Baylor College of Medicine, USA; Department of Genetics, University of Texas M.D. Anderson Cancer Center, USA
| | - Min Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, USA
| | - Jian Min Deng
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, USA
| | - Shireen J Usman
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, USA
| | - Chad N Smith
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, USA
| | - Jan Parker-Thornburg
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, USA
| | | | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, USA; Texas Heart Institute, Houston, TX 77030, USA
| | - Richard R Behringer
- Program in Developmental Biology, Baylor College of Medicine, USA; Department of Genetics, University of Texas M.D. Anderson Cancer Center, USA.
| |
Collapse
|
75
|
Rodrigues M, Lengerer B, Ostermann T, Ladurner P. Molecular biology approaches in bioadhesion research. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:983-93. [PMID: 25161834 PMCID: PMC4142862 DOI: 10.3762/bjnano.5.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1) generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2) setting up a BLAST search facility, (3) perform an in situ hybridization screen, and (4) functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.
Collapse
Affiliation(s)
- Marcelo Rodrigues
- University of Innsbruck, Institute of Zoology and Center for Molecular Biosciences Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Birgit Lengerer
- University of Innsbruck, Institute of Zoology and Center for Molecular Biosciences Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Thomas Ostermann
- University of Innsbruck, Institute of Zoology and Center for Molecular Biosciences Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Peter Ladurner
- University of Innsbruck, Institute of Zoology and Center for Molecular Biosciences Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| |
Collapse
|
76
|
Marimani M, Hean J, Bloom K, Ely A, Arbuthnot P. Recent advances in developing nucleic acid-based HBV therapy. Future Microbiol 2014; 8:1489-504. [PMID: 24199806 DOI: 10.2217/fmb.13.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic HBV infection remains an important public health problem and currently licensed therapies rarely prevent complications of viral persistence. Silencing HBV gene expression using gene therapy, particularly with exogenous activators of RNAi, holds promise for developing an HBV gene therapy. However, immune stimulation, off-targeting effects and inefficient delivery of RNAi activators remain problematic. Several new approaches have recently been employed to address these issues. Chemical modifications to anti-HBV synthetic siRNAs have been investigated and a variety of vectors are being developed for delivery of RNAi effectors. In this article, we review the potential utility of gene therapy for treating HBV infection.
Collapse
Affiliation(s)
- Musa Marimani
- Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
77
|
Steentoft C, Bennett EP, Schjoldager KTBG, Vakhrushev SY, Wandall HH, Clausen H. Precision genome editing: a small revolution for glycobiology. Glycobiology 2014; 24:663-80. [PMID: 24861053 DOI: 10.1093/glycob/cwu046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption, insertion, repair, modification and deletion. The nuclease-based techniques comprised of homing endonucleases, zinc finger nucleases, transcription activator-like effector nucleases, as well as the RNA-guided clustered regularly interspaced short palindromic repeat/Cas nuclease system, all function by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene editing for the field is exemplified by applications to xenotransplantation; to probing O-glycoproteomes, including differential O-GalNAc glycoproteomes, to decipher the function of individual polypeptide GalNAc-transferases, as well as for engineering Chinese Hamster Ovary host cells for production of improved therapeutic biologics.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Katrine T-B G Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
78
|
Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 2014; 42:6762-73. [PMID: 24792154 PMCID: PMC4041469 DOI: 10.1093/nar/gku305] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Designer nucleases have been successfully employed to modify the genomes of various model organisms and human cell types. While the specificity of zinc-finger nucleases (ZFNs) and RNA-guided endonucleases has been assessed to some extent, little data are available for transcription activator-like effector-based nucleases (TALENs). Here, we have engineered TALEN pairs targeting three human loci (CCR5, AAVS1 and IL2RG) and performed a detailed analysis of their activity, toxicity and specificity. The TALENs showed comparable activity to benchmark ZFNs, with allelic gene disruption frequencies of 15–30% in human cells. Notably, TALEN expression was overall marked by a low cytotoxicity and the absence of cell cycle aberrations. Bioinformatics-based analysis of designer nuclease specificity confirmed partly substantial off-target activity of ZFNs targeting CCR5 and AAVS1 at six known and five novel sites, respectively. In contrast, only marginal off-target cleavage activity was detected at four out of 49 predicted off-target sites for CCR5- and AAVS1-specific TALENs. The rational design of a CCR5-specific TALEN pair decreased off-target activity at the closely related CCR2 locus considerably, consistent with fewer genomic rearrangements between the two loci. In conclusion, our results link nuclease-associated toxicity to off-target cleavage activity and corroborate TALENs as a highly specific platform for future clinical translation.
Collapse
Affiliation(s)
- Claudio Mussolino
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Eli J Fine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Robert Morbitzer
- Institute of Genetics, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Thomas J Cradick
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Thomas Lahaye
- Institute of Genetics, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany Center for Plant Molecular Biology, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
79
|
Non-integrating gamma-retroviral vectors as a versatile tool for transient zinc-finger nuclease delivery. Sci Rep 2014; 4:4656. [PMID: 24722320 PMCID: PMC3983605 DOI: 10.1038/srep04656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/14/2014] [Indexed: 12/17/2022] Open
Abstract
Designer nucleases, like zinc-finger nucleases (ZFNs), represent valuable tools for targeted genome editing. Here, we took advantage of the gamma-retroviral life cycle and produced vectors to transfer ZFNs in the form of protein, mRNA and episomal DNA. Transfer efficacy and ZFN activity were assessed in quantitative proof-of-concept experiments in a human cell line and in mouse embryonic stem cells. We demonstrate that retrovirus-mediated protein transfer (RPT), retrovirus-mediated mRNA transfer (RMT), and retrovirus-mediated episome transfer (RET) represent powerful methodologies for transient protein delivery or protein expression. Furthermore, we describe complementary strategies to augment ZFN activity after gamma-retroviral transduction, including serial transduction, proteasome inhibition, and hypothermia. Depending on vector dose and target cell type, gene disruption frequencies of up to 15% were achieved with RPT and RMT, and >50% gene knockout after RET. In summary, non-integrating gamma-retroviral vectors represent a versatile tool to transiently deliver ZFNs to human and mouse cells.
Collapse
|
80
|
van Til NP, Sarwari R, Visser TP, Hauer J, Lagresle-Peyrou C, van der Velden G, Malshetty V, Cortes P, Jollet A, Danos O, Cassani B, Zhang F, Thrasher AJ, Fontana E, Poliani PL, Cavazzana M, Verstegen MM, Villa A, Wagemaker G. Recombination-activating gene 1 (Rag1)–deficient mice with severe combined immunodeficiency treated with lentiviral gene therapy demonstrate autoimmune Omenn-like syndrome. J Allergy Clin Immunol 2014; 133:1116-23. [DOI: 10.1016/j.jaci.2013.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 10/04/2013] [Accepted: 10/09/2013] [Indexed: 12/20/2022]
|
81
|
Schambach A, Moritz T. Toward position-independent retroviral vector expression in pluripotent stem cells. Mol Ther 2014; 21:1474-7. [PMID: 23903574 DOI: 10.1038/mt.2013.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
82
|
Nakashima N, Miyazaki K. Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci 2014; 15:2773-93. [PMID: 24552876 PMCID: PMC3958881 DOI: 10.3390/ijms15022773] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 12/18/2022] Open
Abstract
Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption), knock-in (insertion), and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence) target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering.
Collapse
Affiliation(s)
- Nobutaka Nakashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| | - Kentaro Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| |
Collapse
|
83
|
Zhao P, Zhang Z, Ke H, Yue Y, Xue D. Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system. Cell Res 2014; 24:247-50. [PMID: 24418757 DOI: 10.1038/cr.2014.9] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Pei Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongmei Ke
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiren Yue
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ding Xue
- 1] School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
84
|
Merkert S, Wunderlich S, Bednarski C, Beier J, Haase A, Dreyer AK, Schwanke K, Meyer J, Göhring G, Cathomen T, Martin U. Efficient designer nuclease-based homologous recombination enables direct PCR screening for footprintless targeted human pluripotent stem cells. Stem Cell Reports 2014; 2:107-18. [PMID: 24678453 PMCID: PMC3966116 DOI: 10.1016/j.stemcr.2013.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/13/2022] Open
Abstract
Genetic engineering of human induced pluripotent stem cells (hiPSCs) via customized designer nucleases has been shown to be significantly more efficient than conventional gene targeting, but still typically depends on the introduction of additional genetic selection elements. In our study, we demonstrate the efficient nonviral and selection-independent gene targeting in human pluripotent stem cells (hPSCs). Our high efficiencies of up to 1.6% of gene-targeted hiPSCs, accompanied by a low background of randomly inserted transgenes, eliminated the need for antibiotic or fluorescence-activated cell sorting selection, and allowed the use of short donor oligonucleotides for footprintless gene editing. Gene-targeted hiPSC clones were established simply by direct PCR screening. This optimized approach allows targeted transgene integration into safe harbor sites for more predictable and robust expression and enables the straightforward generation of disease-corrected, patient-derived iPSC lines for research purposes and, ultimately, for future clinical applications. Footprintless gene editing in hiPSCs using ssODNs without any preselection Targeted clone isolation simply via PCR screening Targeted reporter integration into safe harbor locus AAVS1 with up to 1.6% efficiency hiPSC reporter assay for gene editing via customized designer nucleases
Collapse
Affiliation(s)
- Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany ; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany ; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Christien Bednarski
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany ; Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79106 Freiburg, Germany ; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jennifer Beier
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany ; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany ; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Anne-Kathrin Dreyer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany ; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Gudrun Göhring
- Institute of Cell and Molecular Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany ; Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79106 Freiburg, Germany ; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany ; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
85
|
Sakuma T, Woltjen K. Nuclease-mediated genome editing: At the front-line of functional genomics technology. Dev Growth Differ 2014; 56:2-13. [PMID: 24387662 DOI: 10.1111/dgd.12111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/26/2022]
Abstract
Genome editing with engineered endonucleases is rapidly becoming a staple method in developmental biology studies. Engineered nucleases permit random or designed genomic modification at precise loci through the stimulation of endogenous double-strand break repair. Homology-directed repair following targeted DNA damage is mediated by co-introduction of a custom repair template, allowing the derivation of knock-out and knock-in alleles in animal models previously refractory to classic gene targeting procedures. Currently there are three main types of customizable site-specific nucleases delineated by the source mechanism of DNA binding that guides nuclease activity to a genomic target: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Among these genome engineering tools, characteristics such as the ease of design and construction, mechanism of inducing DNA damage, and DNA sequence specificity all differ, making their application complementary. By understanding the advantages and disadvantages of each method, one may make the best choice for their particular purpose.
Collapse
Affiliation(s)
- Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | | |
Collapse
|
86
|
Mori T, Mori K, Tobimatsu T, Sera T. Sandwiched zinc-finger nucleases demonstrating higher homologous recombination rates than conventional zinc-finger nucleases in mammalian cells. Bioorg Med Chem Lett 2014; 24:813-6. [PMID: 24412074 DOI: 10.1016/j.bmcl.2013.12.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 01/26/2023]
Abstract
We previously reported that our sandwiched zinc-finger nucleases (ZFNs), in which a DNA cleavage domain is inserted between two artificial zinc-finger proteins, cleave their target DNA much more efficiently than conventional ZFNs in vitro. In the present study, we compared DNA cleaving efficiencies of a sandwiched ZFN with those of its corresponding conventional ZFN in mammalian cells. Using a plasmid-based single-strand annealing reporter assay in HEK293 cells, we confirmed that the sandwiched ZFN induced homologous recombination more efficiently than the conventional ZFN; reporter activation by the sandwiched ZFN was more than eight times that of the conventional one. Western blot analysis showed that the sandwiched ZFN was expressed less frequently than the conventional ZFN, indicating that the greater DNA-cleaving activity of the sandwiched ZFN was not due to higher expression of the sandwiched ZFN. Furthermore, an MTT assay demonstrated that the sandwiched ZFN did not have any significant cytotoxicity under the DNA-cleavage conditions. Thus, because our sandwiched ZFN cleaved more efficiently than its corresponding conventional ZFN in HEK293 cells as well as in vitro, sandwiched ZFNs are expected to serve as an effective molecular tool for genome editing in living cells.
Collapse
Affiliation(s)
- Tomoaki Mori
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mori
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Takamasa Tobimatsu
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Takashi Sera
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
87
|
Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 2014; 80:1544-52. [PMID: 24389925 DOI: 10.1128/aem.03786-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Development of tools for targeted genome editing and regulation of gene expression has significantly expanded our ability to elucidate the mechanisms of interesting biological phenomena and to engineer desirable biological systems. Recent rapid progress in the study of a clustered, regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein system in bacteria has facilitated the development of newly facile and programmable platforms for genome editing and transcriptional control in a sequence-specific manner. The core RNA-guided Cas9 endonuclease in the type II CRISPR system has been harnessed to realize gene mutation and DNA deletion and insertion, as well as transcriptional activation and repression, with multiplex targeting ability, just by customizing 20-nucleotide RNA components. Here we describe the molecular basis of the type II CRISPR/Cas system and summarize applications and factors affecting its utilization in model organisms. We also discuss the advantages and disadvantages of Cas9-based tools in comparison with widely used customizable tools, such as Zinc finger nucleases and transcription activator-like effector nucleases.
Collapse
|
88
|
Rocca CJ, Abdul-Razak HH, Holmes MC, Gregory PD, Yáñez-Muñoz RJ. A southern blot protocol to detect chimeric nuclease-mediated gene repair. Methods Mol Biol 2014; 1114:325-38. [PMID: 24557913 DOI: 10.1007/978-1-62703-761-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gene targeting by homologous recombination at chromosomal endogenous loci has traditionally been considered a low-efficiency process. However, the effectiveness of such so-called genome surgery or genome editing has recently been drastically improved through technical developments, chiefly the use of designer nucleases like zinc-finger nucleases (ZFNs), meganucleases, transcription activator-like effector nucleases (TALENs) and CRISPR/Cas nucleases. These enzymes are custom designed to recognize long target sites and introduce double-strand breaks (DSBs) at specific target loci in the genome, which in turn mediate significant improvements in the frequency of homologous recombination. Here, we describe a Southern blot-based assay that allows detection of gene repair and estimation of repair frequencies in a cell population, useful in cases where the targeted modification itself cannot be detected by restriction digest. This is achieved through detection of a silent restriction site introduced alongside the desired mutation, in our particular example using integration-deficient lentiviral vectors (IDLVs) coding for ZFNs and a suitable DNA repair template.
Collapse
Affiliation(s)
- Céline J Rocca
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | | | | | | | | |
Collapse
|
89
|
Pelascini LPL, Gonçalves MAFV. Lentiviral vectors encoding zinc-finger nucleases specific for the model target locus HPRT1. Methods Mol Biol 2014; 1114:181-99. [PMID: 24557904 DOI: 10.1007/978-1-62703-761-7_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zinc-finger nucleases (ZFNs) are artificial proteins designed to induce double-stranded DNA breaks (DSBs) at predefined chromosomal positions. These site-specific genomic lesions facilitate the study of translocations and cellular DNA repair processes and serve as powerful stimuli for the editing of complex genomes. The delivery of ZFNs into a wide range of cell types is of utmost importance for the broad evaluation and deployment of the technology. Lentiviral vectors (LVs) are versatile gene delivery vehicles that transduce alike transformed and primary cells regardless of their division rate. In this chapter, we describe the generation of conventional and integrase-defective LVs encoding ZFNs targeting the human hypoxanthine phosphoribosyltransferase 1 (HPRT1) locus. Furthermore, we introduce a general LV titration method based on a cost-effective quantitative PCR protocol and implement a rapid and simple restriction enzyme site polymorphism assay to detected DSB formation at the HPRT1 target sequence. Owing in part to the small molecule-based clone selection schemes conferred by HPRT1 allelic knockouts, this X-linked gene has become a "classical" target model locus in mammalian cells. The reagents and techniques detailed herein yield LV preparations that induce HPRT1-specific DSBs. As a result, they should constitute a valuable resource to increase the robustness and decrease the timelines of the various protocols based on HPRT1 gene disruption and targeting.
Collapse
Affiliation(s)
- Laetitia P L Pelascini
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
90
|
Mashimo T. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Dev Growth Differ 2013; 56:46-52. [PMID: 24372523 DOI: 10.1111/dgd.12110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/21/2022]
Abstract
The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed.
Collapse
Affiliation(s)
- Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
91
|
Huang W, Zheng J, He Y, Luo C. Tandem repeat modification during double-strand break repair induced by an engineered TAL effector nuclease in zebrafish genome. PLoS One 2013; 8:e84176. [PMID: 24386347 PMCID: PMC3873399 DOI: 10.1371/journal.pone.0084176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022] Open
Abstract
Tandem repeats (TRs) are abundant and widely distributed in eukaryotic genomes. TRs are thought to have various functions in gene transcription, DNA methylation, nucleosome position and chromatin organization. Variation of repeat units in the genome is observed in association with a number of diseases, such as Fragile X Syndrome, Huntington's disease and Friedreich's ataxia. However, the underlying mechanisms involved are poorly understood, largely owing to the technical limitations in modification of TRs at definite sites in the genome in vivo. Transcription activator-like effector nucleases (TALENs) are widely used in recent years in gene targeting for their specific binding to target sequences when engineered in vitro. Here, we show that the repair of a double-strand break (DSB) induced by TALENs adjacent to a TR can produce serial types of mutations in the TR region. Sequencing analysis revealed that there are three types of mutations induced by the DSB repair, including indels only within the TR region or within the flanking TALEN target region or simutaneously within both regions. Therefore, desired TR mutant types can be conveniently obtained by using engineered TALENs. These results demonstrate that TALENs can serve as a convenient tool for modifying TRs in the genome in studying the functions of TRs.
Collapse
Affiliation(s)
- Wanxu Huang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianbo Zheng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying He
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Luo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
92
|
Sugi T, Sakuma T, Ohtani Y, Yamamoto T. Versatile strategy for isolating transcription activator-like effector nuclease-mediated knockout mutants in Caenorhabditis elegans. Dev Growth Differ 2013; 56:78-85. [PMID: 24409999 DOI: 10.1111/dgd.12108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 12/13/2022]
Abstract
Targeted genome editing using transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems has recently emerged as a potentially powerful method for creating locus-specific mutations in Caenorhabditis elegans. Due to the low mutation frequencies, one of the crucial steps in using these technologies is screening animals that harbor a targeted mutation. In previous studies, identifying targeted mutations in C. elegans usually depended on observations of fluorescent markers such as a green fluorescent protein or visible phenotypes such as dumpy and uncoordinated phenotypes. However, this strategy is limited in practice because the phenotypes caused by targeted mutations such as defects in sensory behaviors are often apparently invisible. Here, we describe a versatile strategy for isolating C. elegans knockout mutants by TALEN-mediated genome editing and a heteroduplex mobility assay. We applied TALENs to engineer the locus of the neural gene glr-1, which is a C. elegans AMPA-type receptor orthologue that is known to have crucial roles in various sensory behaviors. Knockout mutations in the glr-1 locus, which caused defective mechanosensory behaviors, were efficiently identified by the heteroduplex mobility assay. Thus, we demonstrated the utility of a TALEN-based knockout strategy for creating C. elegans with mutations that cause invisible phenotypes.
Collapse
Affiliation(s)
- Takuma Sugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | | | | | | |
Collapse
|
93
|
Sun N, Bao Z, Xiong X, Zhao H. SunnyTALEN: A second-generation TALEN system for human genome editing. Biotechnol Bioeng 2013; 111:683-91. [DOI: 10.1002/bit.25154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/17/2013] [Accepted: 11/14/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Sun
- Department of Biochemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana Illinois 61801
| | - Zehua Bao
- Department of Biochemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana Illinois 61801
| | - Xiong Xiong
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana Illinois 61801
| | - Huimin Zhao
- Department of Biochemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana Illinois 61801
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana Illinois 61801
- Department of Bioengineering, Department of Chemistry; Center for Biophysics and Computational Biology and Institute for Genomic Biology; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana Illinois 61801
| |
Collapse
|
94
|
Jarmin S, Kymalainen H, Popplewell L, Dickson G. New developments in the use of gene therapy to treat Duchenne muscular dystrophy. Expert Opin Biol Ther 2013; 14:209-30. [PMID: 24308293 DOI: 10.1517/14712598.2014.866087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a lethal X-linked inherited disorder characterised by progressive muscle weakness, wasting and degeneration. Although the gene affected in DMD was identified over 25 years ago, there is still no effective treatment. AREAS COVERED Here we review some of the genetic-based strategies aimed at amelioration of the DMD phenotype. A number of Phase II/III clinical trials of antisense oligonucleotide-induced exon skipping for restoration of the open reading frame (ORF) of the DMD gene have recently been completed. The potential strategies for overcoming the hurdles that appear to prevent exon skipping becoming an effective treatment for DMD currently are discussed. EXPERT OPINION The applicability of exon skipping as a therapy to DMD is restricted and the development of alternative strategies that are more encompassing is needed. The rapid pre-clinical advances that are being made in the field of adeno-associated virus (AAV)-based delivery of micro-dystrophin would address this. The obstacles to be faced with gene replacement strategies would include the need for high viral titres, efficient muscle targeting and avoidance of immune response to vector and transgene. The new emerging field of gene editing could potentially provide permanent correction of the DMD gene and the feasibility of such an approach to DMD is discussed.
Collapse
Affiliation(s)
- Susan Jarmin
- Royal Holloway University of London , Egham, Surrey , UK
| | | | | | | |
Collapse
|
95
|
Doyle EL, Hummel AW, Demorest ZL, Starker CG, Voytas DF, Bradley P, Bogdanove AJ. TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat -1. PLoS One 2013; 8:e82120. [PMID: 24312634 PMCID: PMC3849474 DOI: 10.1371/journal.pone.0082120] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022] Open
Abstract
TAL effectors are re-targetable transcription factors used for tailored gene regulation and, as TAL effector-nuclease fusions (TALENs), for genome engineering. Their hallmark feature is a customizable central string of polymorphic amino acid repeats that interact one-to-one with individual DNA bases to specify the target. Sequences targeted by TAL effector repeats in nature are nearly all directly preceded by a thymine (T) that is required for maximal activity, and target sites for custom TAL effector constructs have typically been selected with this constraint. Multiple crystal structures suggest that this requirement for T at base 0 is encoded by a tryptophan residue (W232) in a cryptic repeat N-terminal to the central repeats that exhibits energetically favorable van der Waals contacts with the T. We generated variants based on TAL effector PthXo1 with all single amino acid substitutions for W232. In a transcriptional activation assay, many substitutions altered or relaxed the specificity for T and a few were as active as wild type. Some showed higher activity. However, when replicated in a different TAL effector, the effects of the substitutions differed. Further, the effects differed when tested in the context of a TALEN in a DNA cleavage assay, and in a TAL effector-DNA binding assay. Substitution of the N-terminal region of the PthXo1 construct with that of one of the TAL effector-like proteins of Ralstonia solanacearum, which have arginine in place of the tryptophan, resulted in specificity for guanine as the 5' base but low activity, and several substitutions for the arginine, including tryptophan, destroyed activity altogether. Thus, the effects on specificity and activity generated by substitutions at the W232 (or equivalent) position are complex and context dependent. Generating TAL effector scaffolds with high activity that robustly accommodate sites without a T at position 0 may require larger scale re-engineering.
Collapse
Affiliation(s)
- Erin L. Doyle
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Aaron W. Hummel
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Zachary L. Demorest
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Cellectis Plant Sciences, New Brighton, Minnesota, United States of America
| | - Colby G. Starker
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Philip Bradley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Adam J. Bogdanove
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
96
|
|
97
|
Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. THE NEW PHYTOLOGIST 2013; 200:808-819. [PMID: 23879865 DOI: 10.1111/nph.12411] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/03/2013] [Indexed: 05/03/2023]
Abstract
Bacterial plant-pathogenic Xanthomonas strains translocate transcription activator-like (TAL) effectors into plant cells to function as specific transcription factors. Only a few plant target genes of TAL effectors have been identified, so far. Three plant SWEET genes encoding putative sugar transporters are known to be induced by TAL effectors from rice-pathogenic Xanthomonas oryzae pv. oryzae (Xoo). We predict and validate that expression of OsSWEET14 is induced by a novel TAL effector, Tal5, from an African Xoo strain. Artificial TAL effectors (ArtTALs) were constructed to individually target 20 SWEET orthologs in rice. They were used as designer virulence factors to study which rice SWEET genes can support Xoo virulence. The Tal5 target box differs from those of the already known TAL effectors TalC, AvrXa7 and PthXo3, which also induce expression of OsSWEET14, suggesting evolutionary convergence on key targets. ArtTALs efficiently complemented an Xoo talC mutant, demonstrating that specific induction of OsSWEET14 is the key target of TalC. ArtTALs that specifically target individual members of the rice SWEET family revealed three known and two novel SWEET genes to support bacterial virulence. Our results demonstrate that five phylogenetically close SWEET proteins, which presumably act as sucrose transporters, can support Xoo virulence.
Collapse
Affiliation(s)
- Jana Streubel
- Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, D-06120, Halle (Saale), Germany
| | - Céline Pesce
- UMR 186 IRD-UM2-Cirad 'Résistance des Plantes aux Bioagresseurs', BP 64501, 34394, Montpellier Cedex 5, France
- Earth and Life Institute, Applied Microbiology Phytopathology, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Mathilde Hutin
- UMR 186 IRD-UM2-Cirad 'Résistance des Plantes aux Bioagresseurs', BP 64501, 34394, Montpellier Cedex 5, France
| | - Ralf Koebnik
- UMR 186 IRD-UM2-Cirad 'Résistance des Plantes aux Bioagresseurs', BP 64501, 34394, Montpellier Cedex 5, France
| | - Jens Boch
- Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, D-06120, Halle (Saale), Germany
| | - Boris Szurek
- UMR 186 IRD-UM2-Cirad 'Résistance des Plantes aux Bioagresseurs', BP 64501, 34394, Montpellier Cedex 5, France
| |
Collapse
|
98
|
Aryan A, Anderson MAE, Myles KM, Adelman ZN. Germline excision of transgenes in Aedes aegypti by homing endonucleases. Sci Rep 2013; 3:1603. [PMID: 23549343 PMCID: PMC3615334 DOI: 10.1038/srep01603] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/22/2013] [Indexed: 01/24/2023] Open
Abstract
Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1–4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20–40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector.
Collapse
Affiliation(s)
- Azadeh Aryan
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
99
|
Wang F, Ma S, Xu H, Duan J, Wang Y, Ding H, Liu Y, Wang X, Zhao P, Xia Q. High-efficiency system for construction and evaluation of customized TALENs for silkworm genome editing. Mol Genet Genomics 2013; 288:683-90. [DOI: 10.1007/s00438-013-0782-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
|
100
|
D'Hulst C, Parvanova I, Tomoiaga D, Sapar ML, Feinstein P. Fast quantitative real-time PCR-based screening for common chromosomal aneuploidies in mouse embryonic stem cells. Stem Cell Reports 2013; 1:350-9. [PMID: 24319669 PMCID: PMC3849352 DOI: 10.1016/j.stemcr.2013.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/26/2022] Open
Abstract
Chromosomal integrity has been known for many years to affect the ability of mouse embryonic stem cells (mESCs) to contribute to the germline of chimeric mice. Abnormal chromosomes are generally detected by standard cytogenetic karyotyping. However, this method is expensive, time consuming, and often omitted prior to blastocyst injection, consequently reducing the frequency of mESC-derived offspring. Here, we show a fast, accurate, and inexpensive screen for identifying the two most common aneuploidies (Trisomy 8 and loss of chromosome Y) in genetically manipulated mESCs using quantitative real-time PCR (qPCR). Screening against these two aneuploidies significantly increases the fraction of normal mESC clones. Our method is extremely sensitive and can detect as low as 10% aneuploidy among a large population of mESCs. It greatly expedites the generation of mutant mice and provides a quick tool for assessing the aneuploidy percentages of any mESC line. Fast aneuploidy detection of mESCs using quantitative real-time PCR Simultaneous processing of multiple cell lines Highly sensitive: identifies low percentage of aneuploidy within an ESC clone Method can detect loss or gain of any chromosomal region of interest
Collapse
Affiliation(s)
- Charlotte D'Hulst
- Department of Biological Sciences, Hunter College and The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, The City University of New York, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|