51
|
Kato AS, Witkin JM. Auxiliary subunits of AMPA receptors: The discovery of a forebrain-selective antagonist, LY3130481/CERC-611. Biochem Pharmacol 2017; 147:191-200. [PMID: 28987594 DOI: 10.1016/j.bcp.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Drugs originate from the discovery of compounds, natural or synthetic, that bind to proteins (receptors, enzymes, transporters, etc.), the interaction of which modulates biological cascades that have potential therapeutic benefit. Rational strategies for identifying novel drug therapies are typically based on knowledge of the structure of the target proteins and the design of new chemical entities that modulate these proteins in a beneficial manner. The present review discusses a novel approach to drug discovery based on the identification and characterization of auxiliary proteins, the transmembrane AMPA receptor regulatory proteins (TARPs) that are associated with AMPA receptors. Utilizing these auxiliary proteins in compound screening led to the discovery of the TARP-dependent-AMPA forebrain selective receptor antagonist (TDAA), LY3130481/CERC-611 that is currently in clinical development for epilepsy.
Collapse
Affiliation(s)
- Akihiko S Kato
- Neuroscience Discovery Research, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285-0510, United States.
| | - Jeffrey M Witkin
- Neuroscience Discovery Research, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285-0510, United States.
| |
Collapse
|
52
|
Pharmacological characterisation of S 47445, a novel positive allosteric modulator of AMPA receptors. PLoS One 2017; 12:e0184429. [PMID: 28886144 PMCID: PMC5590943 DOI: 10.1371/journal.pone.0184429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
S 47445 is a novel positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors (AMPA-PAM). S 47445 enhanced glutamate’s action at AMPA receptors on human and rat receptors and was inactive at NMDA and kainate receptors. Potentiation did not differ among the different AMPA receptors subtypes (GluA1/2/4 flip and flop variants) (EC50 between 2.5–5.4 μM), except a higher EC50 value for GluA4 flop (0.7 μM) and a greater amount of potentiation on GluA1 flop. A low concentration of S 47445 (0.1 μM) decreased receptor response decay time of GluA1flop/GluA2flip AMPA receptors and increased the sensitivity to glutamate. Furthermore, S 47445 (0.1 and 0.3 μM) in presence of repetitive glutamate pulses induced a progressive potentiation of the glutamate-evoked currents from the second pulse of glutamate confirming a rapid-enhancing effect of S 47445 at low concentrations. The potentiating effect of S 47445 (1 μM) was concentration-dependently reversed by the selective AMPA receptor antagonist GYKI52466 demonstrating the selective modulatory effect of S 47445 on AMPA receptors. Using an AMPA-kainate chimera approach, it was confirmed that S 47445 binds to the common binding pocket of AMPA-PAMs. S 47445 did not demonstrate neurotoxic effect against glutamate-mediated excitotoxicity in vitro, in contrast significantly protected rat cortical neurons at 10 μM. S 47445 was shown to improve both episodic and spatial working memory in adult rodents at 0.3 mg/kg, as measured in the natural forgetting condition of object recognition and T-maze tasks. Finally, no deleterious effect on spontaneous locomotion and general behavior was observed up to 1000 mg/kg of S 47445 given acutely in rodents, neither occurrence of convulsion or tremors. Collectively, these results indicate that S 47445 is a potent and selective AMPA-PAM presenting procognitive and potential neuroprotective properties. This drug is currently evaluated in clinical phase 2 studies in Alzheimer’s disease and in Major Depressive Disorder.
Collapse
|
53
|
Changeux JP, Christopoulos A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes Obes Metab 2017; 19 Suppl 1:4-21. [PMID: 28880476 DOI: 10.1111/dom.12959] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Four major receptor families enable cells to respond to chemical and physical signals from their proximal environment. The ligand- and voltage-gated ion channels, G-protein-coupled receptors, nuclear hormone receptors and receptor tyrosine kinases are all allosteric proteins that carry multiple, spatially distinct, yet conformationally linked ligand-binding sites. Recent studies point to common mechanisms governing the allosteric transitions of these receptors, including the impact of oligomerization, pre-existing and functionally distinct conformational ensembles, intrinsically disordered regions, and the occurrence of allosteric modulatory sites. Importantly, synthetic allosteric modulators are being discovered for these receptors, providing an enriched, yet challenging, landscape for novel therapeutics.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Site/drug effects
- Animals
- Binding Sites/drug effects
- Dimerization
- Drug Discovery/trends
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacology
- Humans
- Ligand-Gated Ion Channels/agonists
- Ligand-Gated Ion Channels/antagonists & inhibitors
- Ligand-Gated Ion Channels/chemistry
- Ligand-Gated Ion Channels/metabolism
- Ligands
- Models, Molecular
- Protein Conformation/drug effects
- Protein Multimerization/drug effects
- Receptor Protein-Tyrosine Kinases/agonists
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Voltage-Gated Sodium Channels/chemistry
- Voltage-Gated Sodium Channels/metabolism
Collapse
Affiliation(s)
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville, Australia
| |
Collapse
|
54
|
Disrupted Glutamatergic Transmission in Prefrontal Cortex Contributes to Behavioral Abnormality in an Animal Model of ADHD. Neuropsychopharmacology 2017; 42:2096-2104. [PMID: 28176786 PMCID: PMC5561342 DOI: 10.1038/npp.2017.30] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 01/01/2023]
Abstract
Spontaneously hypertensive rats (SHR) are the most widely used animal model for the study of attention deficit hyperactivity disorder (ADHD). Here we sought to reveal the neuronal circuits and molecular basis of ADHD and its potential treatment using SHR. Combined electrophysiological, biochemical, pharmacological, chemicogenetic, and behavioral approaches were utilized. We found that AMPAR-mediated synaptic transmission in pyramidal neurons of prefrontal cortex (PFC) was diminished in SHR, which was correlated with the decreased surface expression of AMPAR subunits. Administration of methylphenidate (a psychostimulant drug used to treat ADHD), which blocks dopamine transporters and norepinephrine transporters, ameliorated the behavioral deficits of adolescent SHR and restored AMPAR-mediated synaptic function. Activation of PFC pyramidal neurons with a CaMKII-driven Gq-coupled designer receptor exclusively activated by designer drug also led to the elevation of AMPAR function and the normalization of ADHD-like behaviors in SHR. These results suggest that the disrupted function of AMPARs in PFC may underlie the behavioral deficits in adolescent SHR and enhancing PFC activity could be a treatment strategy for ADHD.
Collapse
|
55
|
Borroni B, Stanic J, Verpelli C, Mellone M, Bonomi E, Alberici A, Bernasconi P, Culotta L, Zianni E, Archetti S, Manes M, Gazzina S, Ghidoni R, Benussi L, Stuani C, Di Luca M, Sala C, Buratti E, Padovani A, Gardoni F. Anti-AMPA GluA3 antibodies in Frontotemporal dementia: a new molecular target. Sci Rep 2017; 7:6723. [PMID: 28751743 PMCID: PMC5532270 DOI: 10.1038/s41598-017-06117-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a neurodegenerative disorder mainly characterised by Tau or TDP43 inclusions. A co-autoimmune aetiology has been hypothesised. In this study, we aimed at defining the pathogenetic role of anti-AMPA GluA3 antibodies in FTD. Serum and cerebrospinal fluid (CSF) anti-GluA3 antibody dosage was carried out and the effect of CSF with and without anti-GluA3 antibodies was tested in rat hippocampal neuronal primary cultures and in differentiated neurons from human induced pluripotent stem cells (hiPSCs). TDP43 and Tau expression in hiPSCs exposed to CSF was assayed. Forty-one out of 175 screened FTD sera were positive for the presence of anti-GluA3 antibodies (23.4%). FTD patients with anti-GluA3 antibodies more often presented presenile onset, behavioural variant FTD with bitemporal atrophy. Incubation of rat hippocampal neuronal primary cultures with CSF with anti-GluA3 antibodies led to a decrease of GluA3 subunit synaptic localization of the AMPA receptor (AMPAR) and loss of dendritic spines. These results were confirmed in differentiated neurons from hiPSCs, with a significant reduction of the GluA3 subunit in the postsynaptic fraction along with increased levels of neuronal Tau. In conclusion, autoimmune mechanism might represent a new potentially treatable target in FTD and might open new lights in the disease underpinnings.
Collapse
Affiliation(s)
- B Borroni
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - J Stanic
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - C Verpelli
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - M Mellone
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - E Bonomi
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - A Alberici
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - L Culotta
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Zianni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - S Archetti
- III Laboratory of Analyses, Biotechnology Laboratory, Brescia Hospital, Brescia, Italy
| | - M Manes
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - S Gazzina
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - R Ghidoni
- Molecular Markers Laboratory, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - L Benussi
- Molecular Markers Laboratory, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - C Stuani
- International Centre for Genetic Engineering and Biotechnology-ICGEB, Trieste, Italy
| | - M Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - C Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Buratti
- International Centre for Genetic Engineering and Biotechnology-ICGEB, Trieste, Italy
| | - A Padovani
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - F Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
56
|
The AMPA receptor positive allosteric modulator S 47445 rescues in vivo CA3-CA1 long-term potentiation and structural synaptic changes in old mice. Neuropharmacology 2017; 123:395-409. [PMID: 28603025 DOI: 10.1016/j.neuropharm.2017.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/27/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022]
Abstract
Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are small molecules that decrease deactivation of AMPARs via an allosteric site. These molecules keep the receptor in an active state. Interestingly, this type of modulator has been proposed for treating cognitive decline in ageing, dementias, and Alzheimer's disease (AD). S 47445 (8-cyclopropyl-3-[2-(3-fluorophenyl)ethyl]-7,8-dihydro-3H-[1,3]oxazino[6,5-g][1,2,3]benzotriazine-4,9-dione) is a novel AMPAR positive allosteric modulator (AMPA-PAM). Here, the mechanisms by which S 47445 could improve synaptic strength and connectivity were studied and compared between young and old mice. A single oral administration of S 47445 at 10 mg/kg significantly increased long-term potentiation (LTP) in CA3-CA1 hippocampal synapses in alert young mice in comparison to control mice. Moreover, chronic treatment with S 47445 at 10 mg/kg in old alert animals significantly counteracted the deficit of LTP due to age. Accordingly, chronic treatment with S 47445 at 10 mg/kg seems to preserve synaptic cytoarchitecture in old mice as compared with young control mice. It was shown that the significant decreases in number and size of pre-synaptic buttons stained for VGlut1, and post-synaptic dendritic spines stained for spinophilin, observed in old mice were significantly prevented after chronic treatment with 10 mg/kg of S 47445. Altogether, by its different effects on LTP, VGlut1-positive particles, and spinophilin, S 47445 is able to modulate both the structure and function of hippocampal excitatory synapses known to be involved in learning and memory processes. These results open a new window for the treatment of specific age-dependent cognitive decline and dementias such as AD.
Collapse
|
57
|
Greger IH, Watson JF, Cull-Candy SG. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 2017; 94:713-730. [DOI: 10.1016/j.neuron.2017.04.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
58
|
Abstract
As the first drug to see widespread use for the treatment of attention deficit hyperactivity disorder (ADHD), methylphenidate was the forerunner and catalyst to the modern era of rapidly increasing diagnosis, treatment, and medication development for this condition. During its often controversial history, it has variously elucidated the importance of dopamine signaling in memory and attention, provoked concerns about pharmaceutical cognitive enhancement, driven innovation in controlled-release technologies and enantiospecific therapeutics, and stimulated debate about the impact of pharmaceutical sales techniques on the practice of medicine. In this Review, we will illustrate the history and importance of methylphenidate to ADHD treatment and neuroscience in general, as well as provide key information about its synthesis, structure-activity relationship, pharmacological activity, metabolism, manufacturing, FDA-approved indications, and adverse effects.
Collapse
Affiliation(s)
- Cody J. Wenthur
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
59
|
Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell 2016; 166:1084-1102. [DOI: 10.1016/j.cell.2016.08.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/13/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
|
60
|
Carmichael ST. Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann Neurol 2016; 79:895-906. [PMID: 27043816 PMCID: PMC4884133 DOI: 10.1002/ana.24653] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Abstract
Stroke is the leading cause of adult disability. The past decade has seen advances in basic science research of neural repair in stroke. The brain forms new connections after stroke, which have a causal role in recovery of function. Brain progenitors, including neuronal and glial progenitors, respond to stroke and initiate a partial formation of new neurons and glial cells. The molecular systems that underlie axonal sprouting, neurogenesis, and gliogenesis after stroke have recently been identified. Importantly, tractable drug targets exist within these molecular systems that might stimulate tissue repair. These basic science advances have taken the field to its first scientific milestone; the elemental principles of neural repair in stroke have been identified. The next stages in this field involve understanding how these elemental principles of recovery interact in the dynamic cellular systems of the repairing brain. Emergent principles arise out of the interaction of the fundamental or elemental principles in a system. In neural repair, the elemental principles of brain reorganization after stroke interact to generate higher order and distinct concepts of regenerative brain niches in cellular repair, neuronal networks in synaptic plasticity, and the distinction of molecular systems of neuroregeneration. Many of these emergent principles directly guide the development of new therapies, such as the necessity for spatial and temporal control in neural repair therapy delivery and the overlap of cancer and neural repair mechanisms. This review discusses the emergent principles of neural repair in stroke as they relate to scientific and therapeutic concepts in this field. Ann Neurol 2016;79:895–906
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA and UCLA Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
61
|
Design, Synthesis and Biological Evaluation of Brain-Targeted Thiamine Disulfide Prodrugs of Ampakine Compound LCX001. Molecules 2016; 21:488. [PMID: 27089316 PMCID: PMC6274124 DOI: 10.3390/molecules21040488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 01/28/2023] Open
Abstract
Ampakine compounds have been shown to reverse opiate-induced respiratory depression by activation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. However, their pharmacological exploitations are hindered by low blood-brain barrier (BBB) permeability and limited brain distribution. Here, we explored whether thiamine disulfide prodrugs with the ability of “lock-in” can be used to solve these problems. A series of thiamine disulfide prodrugs 7a–7f of ampakine compound LCX001 was synthesized and evaluated. The trials in vitro showed that prodrugs 7e, 7d, 7f possessed a certain stability in plasma and quickly decomposed in brain homogenate by the disulfide reductase. In vivo, prodrug 7e decreased the peripheral distribution of LCX001 and significantly increased brain distribution of LCX001 after i.v. administration. This compound showed 2.23- and 3.29-fold greater increases in the AUC0-t and MRT0-t of LCX001 in brain, respectively, than did LCX001 itself. A preliminary pharmacodynamic study indicated that the required molar dose of prodrug 7e was only one eighth that of LCX001 required to achieve the same effect in mice. These findings provide an important reference to evaluate the clinical outlook of ampakine compounds.
Collapse
|
62
|
Holst SC, Valomon A, Landolt HP. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy. Annu Rev Pharmacol Toxicol 2016; 56:577-603. [DOI: 10.1146/annurev-pharmtox-010715-103801] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian C. Holst
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Amandine Valomon
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology and Zürich Center for Interdisciplinary Sleep Research, University of Zürich, CH-8057 Zürich, Switzerland;
| |
Collapse
|
63
|
Biggin PC, Aldeghi M, Bodkin MJ, Heifetz A. Beyond Membrane Protein Structure: Drug Discovery, Dynamics and Difficulties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:161-181. [PMID: 27553242 DOI: 10.1007/978-3-319-35072-1_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most of the previous content of this book has focused on obtaining the structures of membrane proteins. In this chapter we explore how those structures can be further used in two key ways. The first is their use in structure based drug design (SBDD) and the second is how they can be used to extend our understanding of their functional activity via the use of molecular dynamics. Both aspects now heavily rely on computations. This area is vast, and alas, too large to consider in depth in a single book chapter. Thus where appropriate we have referred the reader to recent reviews for deeper assessment of the field. We discuss progress via the use of examples from two main drug target areas; G-protein coupled receptors (GPCRs) and ion channels. We end with a discussion of some of the main challenges in the area.
Collapse
Affiliation(s)
- Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Matteo Aldeghi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Michael J Bodkin
- Evotec Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Alexander Heifetz
- Evotec Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| |
Collapse
|
64
|
Battisti UM, Citti C, Rastelli G, Pinzi L, Puja G, Ravazzini F, Ciccarella G, Braghiroli D, Cannazza G. An unexpected reversal in the pharmacological stereoselectivity of benzothiadiazine AMPA positive allosteric modulators. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00440g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereodiscrimination process in the binding of the R isomer with the receptor pocket is ruled by van der Waals interactions and/or H-bonding with water molecules.
Collapse
Affiliation(s)
- Umberto M. Battisti
- Department of Life Sciences
- University of Modena & Reggio Emilia
- 41125 Modena
- Italy
- Department of Medicinal Chemistry
| | - Cinzia Citti
- Department of Biological and Environmental Sciences and Technologies
- University of Salento
- 73100 Lecce
- Italy
- CNR-NANOTEC
| | - Giulio Rastelli
- Department of Life Sciences
- University of Modena & Reggio Emilia
- 41125 Modena
- Italy
| | - Luca Pinzi
- Department of Life Sciences
- University of Modena & Reggio Emilia
- 41125 Modena
- Italy
| | - Giulia Puja
- Department of Life Sciences
- University of Modena & Reggio Emilia
- 41125 Modena
- Italy
| | - Federica Ravazzini
- Department of Life Sciences
- University of Modena & Reggio Emilia
- 41125 Modena
- Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences and Technologies
- University of Salento
- 73100 Lecce
- Italy
- CNR-NANOTEC
| | - Daniela Braghiroli
- Department of Life Sciences
- University of Modena & Reggio Emilia
- 41125 Modena
- Italy
| | - Giuseppe Cannazza
- Department of Life Sciences
- University of Modena & Reggio Emilia
- 41125 Modena
- Italy
- CNR-NANOTEC
| |
Collapse
|
65
|
Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Biophys J 2015; 109:1136-48. [PMID: 26255587 PMCID: PMC4576161 DOI: 10.1016/j.bpj.2015.06.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/26/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment.
Collapse
|
66
|
Cooperative Dynamics of Intact AMPA and NMDA Glutamate Receptors: Similarities and Subfamily-Specific Differences. Structure 2015; 23:1692-1704. [PMID: 26256538 DOI: 10.1016/j.str.2015.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/19/2015] [Accepted: 07/01/2015] [Indexed: 01/03/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric ion channels that mediate excitatory neurotransmission. Recent structures of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors permit a comparative analysis of whole-receptor dynamics for the first time. Despite substantial differences in the packing of their two-domain extracellular region, the two iGluRs share similar dynamics, elucidated by elastic network models. Motions accessible to either structure enable conformational interconversion, such as compression of the AMPA receptor toward the more tightly packed NMDA receptor conformation, which has been linked to allosteric regulation. Pivoting motions coupled to concerted rotations of the transmembrane ion channel are prominent between dimers of distal N-terminal domains in the loosely packed AMPA receptor. The occurrence and functional relevance of these motions is verified by cross-linking experiments designed to probe the computationally predicted distance changes. Together with the identification of hotspot residues acting as mediators of allosteric communication, our data provide a glimpse into the dynamic spectrum of iGluRs.
Collapse
|
67
|
Long-Term Supplementation with Beta Serum Concentrate (BSC), a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats. Nutrients 2015; 7:4526-41. [PMID: 26056919 PMCID: PMC4488800 DOI: 10.3390/nu7064526] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022] Open
Abstract
We have previously reported that the supplementation of ganglioside-enriched complex-milk-lipids improves cognitive function and that a phospholipid-enriched complex-milk-lipid prevents age-related cognitive decline in rats. This current study evaluated the effects of post-natal supplementation of ganglioside- and phospholipid-enriched complex-milk-lipids beta serum concentrate (BSC) on cognitive function in young rats. The diet of male rats was supplemented with either gels formulated BSC (n = 16) or blank gels (n = 16) from post-natal day 10 to day 70. Memory and anxiety-like behaviors were evaluated using the Morris water maze, dark–light boxes, and elevated plus maze tests. Neuroplasticity and white matter were measured using immunohistochemical staining. The overall performance in seven-day acquisition trials was similar between the groups. Compared with the control group, BSC supplementation reduced the latency to the platform during day one of the acquisition tests. Supplementation improved memory by showing reduced latency and improved path efficiency to the platform quadrant, and smaller initial heading error from the platform zone. Supplemented rats showed an increase in striatal dopamine terminals and hippocampal glutamate receptors. Thus BSC supplementation during post-natal brain development improved learning and memory, independent from anxiety. The moderately enhanced neuroplasticity in dopamine and glutamate may be biological changes underlying the improved cognitive function.
Collapse
|