51
|
Fernández Casafuz AB, De Rossi MC, Bruno L. Intracellular motor-driven transport of rodlike smooth organelles along microtubules. Phys Rev E 2021; 101:062416. [PMID: 32688554 DOI: 10.1103/physreve.101.062416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Molecular motors are fascinating proteins that use the energy of ATP hydrolysis to drive vesicles and organelles along cytoskeleton filaments toward their final destination within the cell. Several copies of these proteins bind to the cargo and take turns transporting the cargo attaching to and detaching from the track stochastically. Despite the relevance of molecular motors to cell physiology, key aspects of their collective functioning are still unknown. In this work we propose a one-dimensional model for the transport of extensive and smooth organelles driven by molecular motors. We ran numerical simulations to study the behavior of the cargo for different motor configurations, focusing on the transport properties observable in the experiments, e.g., average speed of the organelle and variations in length. We found that active motors drive the cargo using two different mechanisms: Either they locate in front of the cargo and pull the organelle or they situate at the cargo lagging edge and push. Variations in the organelle length is in close relation with the fraction of motors in each configuration, which depends on the resisting load. The results of this model were contrasted with experimental data obtained from the tracking of rodlike mitochondria during active transport in Xenopus laevis melanophores.
Collapse
Affiliation(s)
- A B Fernández Casafuz
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - M C De Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - L Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
52
|
Yu WD, Kim YJ, Cho MJ, Kim GJ, Kim SH, Kim MJ, Ko JJ, Lee JH. MIT-001 Restores Human Placenta-Derived Mesenchymal Stem Cells by Enhancing Mitochondrial Quiescence and Cytoskeletal Organization. Int J Mol Sci 2021; 22:ijms22105062. [PMID: 34064719 PMCID: PMC8151078 DOI: 10.3390/ijms22105062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a major cause of several chronic diseases and is reported to be recovered by the immuno-modulation of mesenchymal stem cells (MSCs). While most studies have focussed on the anti-inflammatory roles of MSCs in stem cell therapy, the impaired features of MSCs, such as the loss of homeostasis by systemic aging or pathologic conditions, remain incompletely understood. In this study, we investigated whether the altered phenotypes of human placenta-derived MSCs (hPD-MSCs) exposed to inflammatory cytokines, including TNF-α and IFN-γ, could be protected by MIT-001, a small anti-inflammatory and anti-necrotic molecule. MIT-001 promoted the spindle-like shape and cytoskeletal organization extending across the long cell axis, whereas hPD-MSCs exposed to TNF-α/IFN-γ exhibited increased morphological heterogeneity with an abnormal cell shape and cytoskeletal disorganization. Importantly, MIT-001 improved mitochondrial distribution across the cytoplasm. MIT-001 significantly reduced basal respiration, ATP production, and cellular ROS levels and augmented the spare respiratory capacity compared to TNF-α/IFN-γ-exposed hPD-MSCs, indicating enhanced mitochondrial quiescence and homeostasis. In conclusion, while TNF-α/IFN-γ-exposed MSCs lost homeostasis and mitochondrial quiescence by becoming over-activated in response to inflammatory cytokines, MIT-001 was able to rescue mitochondrial features and cellular phenotypes. Therefore, MIT-001 has therapeutic potential for clinical applications to treat mitochondrion-related inflammatory diseases.
Collapse
Affiliation(s)
- Won Dong Yu
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
| | - Yu Jin Kim
- CHA Fertility Center, Seoul Station, Hangang-daero, Jung-gu, Seoul 04637, Korea;
| | - Min Jeong Cho
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
| | - Soon Ha Kim
- Mitoimmune Therapeutics Inc., Gangnam-gu, Seoul 06253, Korea;
| | - Myung Joo Kim
- CHA Fertility Center, Seoul Station, Hangang-daero, Jung-gu, Seoul 04637, Korea;
- Correspondence: (M.J.K.); (J.J.K.); (J.H.L.); Tel.: +82-2-2002-0406 (J.H.L.)
| | - Jung Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
- Correspondence: (M.J.K.); (J.J.K.); (J.H.L.); Tel.: +82-2-2002-0406 (J.H.L.)
| | - Jae Ho Lee
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea; (W.D.Y.); (M.J.C.); (G.J.K.)
- CHA Fertility Center, Seoul Station, Hangang-daero, Jung-gu, Seoul 04637, Korea;
- Correspondence: (M.J.K.); (J.J.K.); (J.H.L.); Tel.: +82-2-2002-0406 (J.H.L.)
| |
Collapse
|
53
|
Mahecic D, Carlini L, Kleele T, Colom A, Goujon A, Matile S, Roux A, Manley S. Mitochondrial membrane tension governs fission. Cell Rep 2021; 35:108947. [PMID: 33852852 DOI: 10.1016/j.celrep.2021.108947] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/15/2020] [Accepted: 03/14/2021] [Indexed: 01/03/2023] Open
Abstract
During mitochondrial fission, key molecular and cellular factors assemble on the outer mitochondrial membrane, where they coordinate to generate constriction. Constriction sites can eventually divide or reverse upon disassembly of the machinery. However, a role for membrane tension in mitochondrial fission, although speculated, has remained undefined. We capture the dynamics of constricting mitochondria in mammalian cells using live-cell structured illumination microscopy (SIM). By analyzing the diameters of tubules that emerge from mitochondria and implementing a fluorescence lifetime-based mitochondrial membrane tension sensor, we discover that mitochondria are indeed under tension. Under perturbations that reduce mitochondrial tension, constrictions initiate at the same rate, but are less likely to divide. We propose a model based on our estimates of mitochondrial membrane tension and bending energy in living cells which accounts for the observed probability distribution for mitochondrial constrictions to divide.
Collapse
Affiliation(s)
- Dora Mahecic
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Lina Carlini
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Tatjana Kleele
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Adai Colom
- National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Antoine Goujon
- National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Roux
- National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Suliana Manley
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland.
| |
Collapse
|
54
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
55
|
Quintanilla RA, Tapia-Monsalves C, Vergara EH, Pérez MJ, Aranguiz A. Truncated Tau Induces Mitochondrial Transport Failure Through the Impairment of TRAK2 Protein and Bioenergetics Decline in Neuronal Cells. Front Cell Neurosci 2020; 14:175. [PMID: 32848607 PMCID: PMC7406829 DOI: 10.3389/fncel.2020.00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are highly specialized organelles essential for the synapse, and their impairment contributes to the neurodegeneration in Alzheimer's disease (AD). Previously, we studied the role of caspase-3-cleaved tau in mitochondrial dysfunction in AD. In neurons, the presence of this AD-relevant tau form induced mitochondrial fragmentation with a concomitant reduction in the expression of Opa1, a mitochondrial fission regulator. More importantly, we showed that caspase-cleaved tau affects mitochondrial transport, decreasing the number of moving mitochondria in the neuronal processes without affecting their velocity rate. However, the molecular mechanisms involved in these events are unknown. We studied the possible role of motor proteins (kinesin 1 and dynein) and mitochondrial protein adaptors (RhoT1/T2, syntaphilin, and TRAK2) in the mitochondrial transport failure induced by caspase-cleaved tau. We expressed green fluorescent protein (GFP), GFP-full-length, and GPF-caspase-3-cleaved tau proteins in rat hippocampal neurons and immortalized cortical neurons (CN 1.4) and analyzed the expression and localization of these proteins involved in mitochondrial transport regulation. We observed that hippocampal neurons expressing caspase-cleaved tau showed a significant accumulation of a mitochondrial population in the soma. These changes were accompanied by evident mitochondrial bioenergetic deficits, including depolarization, oxidative stress, and a significant reduction in ATP production. More critically, caspase-cleaved tau significantly decreased the expression of TRAK2 in immortalized and primary hippocampal neurons without affecting RhoT1/T2 and syntaphilin levels. Also, when we analyzed the expression of motor proteins-Kinesin 1 (KIF5) and Dynein-we did not detect changes in their expression, localization, and binding to the mitochondria. Interestingly, the expression of truncated tau significantly increases the association of TRAK2 with mitochondria compared with neuronal cells expressing full-length tau. Altogether these results indicate that caspase-cleaved tau may affect mitochondrial transport through the increase of TRAK2-mitochondria binding and reduction of ATP production available for the process of movement of these organelles. These observations are novel and represent a set of exciting findings whereby tau pathology could affect mitochondrial distribution in neurons, an event that may contribute to synaptic failure observed in AD.
Collapse
Affiliation(s)
- Rodrigo A. Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
56
|
Gao Y, Liu G, Kong P, Song Y, Zhang D, Yin Y, Han M. Smooth muscle 22α deficiency impairs oxytocin-induced uterine contractility in mice at full-term pregnancy. Biochem Biophys Res Commun 2020; 529:884-889. [PMID: 32819594 DOI: 10.1016/j.bbrc.2020.05.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 11/18/2022]
Abstract
Smooth muscle 22α (SM22α, namely Transgelin), as an actin-binding protein, regulates the contractility of vascular smooth muscle cells (VSMCs) by modulation of the stress fiber formation. However, little is known about the roles of SM22α in the regulation of uterine contraction during parturition. Here, we showed that contraction in response to oxytocin (OT) was significantly decreased in the uterine muscle strips from SM22α knockout (Sm22α-KO) mice, especially at full-term pregnancy, which may be resulted from impaired formation of stress fibers. Furthermore, serious mitochondrial damage such as the mitochondrial swelling, cristae disruption and even disappearance were observed in the myometrium of Sm22α-KO mice at full-term pregnancy, eventually resulting in the collapse of mitochondrial membrane potential and impairment in ATP synthesis. Our data indicate that SM22α is necessary to maintain uterine contractility at delivery in mice, and acts as a novel target for preventive or therapeutic manipulation of uterine atony during parturition.
Collapse
MESH Headings
- Adenosine Triphosphate/deficiency
- Animals
- Female
- Gene Expression Regulation
- Mice
- Mice, Knockout
- Microfilament Proteins/deficiency
- Microfilament Proteins/genetics
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondrial Swelling/genetics
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myometrium/drug effects
- Myometrium/metabolism
- Myometrium/pathology
- Oxytocin/pharmacology
- Parturition
- Pregnancy
- Primary Cell Culture
- Stress Fibers/drug effects
- Stress Fibers/metabolism
- Stress Fibers/pathology
- Tissue Culture Techniques
- Uterine Contraction/drug effects
- Uterine Inertia/genetics
- Uterine Inertia/metabolism
- Uterine Inertia/pathology
Collapse
Affiliation(s)
- Yakun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Guixia Liu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yu Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Dandan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yajuan Yin
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
57
|
Qiao X, Niu X, Shi J, Chen L, Wang X, Liu J, Zhu L, Zhong M. Wnt5a regulates Ameloblastoma Cell Migration by modulating Mitochondrial and Cytoskeletal Dynamics. J Cancer 2020; 11:5490-5502. [PMID: 32742496 PMCID: PMC7391189 DOI: 10.7150/jca.46547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: Abnormal expression of Wnt5a has been detected in various tumors, including ameloblastoma (AB). Yet, there is no specific mechanistic evidence for the functional role of Wnt5a in AB. In this study, we aimed to conduct a mechanistic examination of the importance of Wnt5a in AB development. Methods: The expressions of Wnt5a and Coro1A were examined by Western blot and immunohistochemistry both in AB tissues and AM-1 cells. The number and size of mitochondria were detected by electronic transmission microscope and confocal microscope. Gain-of-function and loss-of-function assays were used to explore the biological roles of Wnt5a and Coro1A in organelle dynamics changes and cell migration. Cell migration was detected by wound healing and transwell assay. Results: We found that in AM-1 cells, up-regulation of Wnt5a led to enhanced mitochondrial energy production and altered calcium homeostasis, with elevated calcium levels directly leading to altered mitochondrial dynamics and interactions between the cytoskeleton and the mitochondria. When Wnt5a or its downstream cytoskeleton-associated protein Coro1A was knocked down, the migration capacity of AM-1 cells was markedly impaired. Conclusion: Together, these results suggest that Wnt5a plays mitochondria and cytoskeleton specific roles in regulating the development of human AB, with its down-regulation leading to impaired tumor development, thus highlighting Wnt5a or Coro1A as potentially viable therapeutic targets for the treatment of AB.
Collapse
Affiliation(s)
- Xue Qiao
- Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Xing Niu
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Junxiu Shi
- Department of Developmental Cell Biology, Cell Biology Division, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Lijie Chen
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Xiaobin Wang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Li Zhu
- Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Ming Zhong
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China
- Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
58
|
Raffa P, Scattolini V, Gerli MFM, Perin S, Cui M, De Coppi P, Elvassore N, Caccin P, Luni C, Urciuolo A. Decellularized skeletal muscles display neurotrophic effects in three-dimensional organotypic cultures. Stem Cells Transl Med 2020; 9:1233-1243. [PMID: 32578968 PMCID: PMC7519766 DOI: 10.1002/sctm.20-0090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle decellularization allows the generation of natural scaffolds that retain the extracellular matrix (ECM) mechanical integrity, biological activity, and three‐dimensional (3D) architecture of the native tissue. Recent reports showed that in vivo implantation of decellularized muscles supports muscle regeneration in volumetric muscle loss models, including nervous system and neuromuscular junctional homing. Since the nervous system plays pivotal roles during skeletal muscle regeneration and in tissue homeostasis, support of reinnervation is a crucial aspect to be considered. However, the effect of decellularized muscles on reinnervation and on neuronal axon growth has been poorly investigated. Here, we characterized residual protein composition of decellularized muscles by mass spectrometry and we show that scaffolds preserve structural proteins of the ECM of both skeletal muscle and peripheral nervous system. To investigate whether decellularized scaffolds could per se attract neural axons, organotypic sections of spinal cord were cultured three dimensionally in vitro, in presence or in absence of decellularized muscles. We found that neural axons extended from the spinal cord are attracted by the decellularized muscles and penetrate inside the scaffolds upon 3D coculture. These results demonstrate that decellularized scaffolds possess intrinsic neurotrophic properties, supporting their potential use for the treatment of clinical cases where extensive functional regeneration of the muscle is required.
Collapse
Affiliation(s)
- Paolo Raffa
- Veneto Institute of Molecular Medicine, Padova, Italy.,Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Valentina Scattolini
- Veneto Institute of Molecular Medicine, Padova, Italy.,Women's and Children's Health Department, University of Padova, Padova, Italy
| | | | - Silvia Perin
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, People's Republic of China
| | - Paolo De Coppi
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine, Padova, Italy.,University College London Great Ormond Street Institute of Child Health, London, UK.,Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, People's Republic of China.,Industrial Engineering Department, University of Padova, Padova, Italy
| | - Paola Caccin
- Biomedical Science Department, University of Padova, Padova, Italy
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, People's Republic of China
| | - Anna Urciuolo
- University College London Great Ormond Street Institute of Child Health, London, UK.,Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padova, Italy
| |
Collapse
|
59
|
Kim MJ, Choi KH, Seo DW, Lee HR, Kong HS, Lee CH, Lee WS, Lee HT, Ko JJ, Kim JH, Lee SJ, Lee JH. Association Between Functional Activity of Mitochondria and Actin Cytoskeleton Instability in Oocytes from Advanced Age Mice. Reprod Sci 2020; 27:1037-1046. [PMID: 32026305 DOI: 10.1007/s43032-020-00145-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/21/2023]
Abstract
Mitochondrial dysfunction is strongly associated with the oocyte quality and aging, wherein the aged oocytes are related to the actin cytoskeleton integrity; however, whether this integrity is associated with mitochondrial dysfunction in oocytes from aged mice remains unclear. In the present study, we investigated the relationship between mitochondrial dysfunction and actin cytoskeleton instability in oocytes from the aged mice. We performed comparable analysis of mitochondrial motility between young, 1.5 μM cytochalasin B (CB)-treated young oocytes, and aged oocytes by confocal live imaging. Moreover, we analyzed the relationships between mitochondrial motility and maturation ratios, including ATP production ratio of the young, CB-treated young, and aged oocytes. Actin cytoskeleton instability in the aged oocytes and CB-treated young oocytes led to a significant decrease in the mitochondrial motility and low ATP productive ratios compared to those in the young group. Our data suggest that the actin cytoskeleton instability is presumably the primary cause for the loss of mitochondrial function in the aged murine oocytes.
Collapse
Affiliation(s)
- Myung Joo Kim
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea
| | - Kyoung Hee Choi
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea.,Department of Animal Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Dong Woo Seo
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea
| | - Hye Ran Lee
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea
| | - Hyun Seok Kong
- Department of Animal Biotechnology & Resource, Sahmyook University, Seoul, 01795, South Korea
| | - Chan Hee Lee
- Department of Animal Biotechnology & Resource, Sahmyook University, Seoul, 01795, South Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, 06135, South Korea
| | - Hoon Taek Lee
- Department of Animal Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Jung Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, South Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 13496, South Korea.
| | - Sang Jin Lee
- Department of Animal Biotechnology & Resource, Sahmyook University, Seoul, 01795, South Korea
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea. .,Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, South Korea.
| |
Collapse
|
60
|
Yu R, Lendahl U, Nistér M, Zhao J. Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Front Endocrinol (Lausanne) 2020; 11:374. [PMID: 32595603 PMCID: PMC7300174 DOI: 10.3389/fendo.2020.00374] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are highly dynamic organelles and important for a variety of cellular functions. They constantly undergo fission and fusion events, referred to as mitochondrial dynamics, which affects the shape, size, and number of mitochondria in the cell, as well as mitochondrial subcellular transport, mitochondrial quality control (mitophagy), and programmed cell death (apoptosis). Dysfunctional mitochondrial dynamics is associated with various human diseases. Mitochondrial dynamics is mediated by a set of mitochondria-shaping proteins in both yeast and mammals. In this review, we describe recent insights into the potential molecular mechanisms underlying mitochondrial fusion and fission, particularly highlighting the coordinating roles of different mitochondria-shaping proteins in the processes, as well as the roles of the endoplasmic reticulum (ER), the actin cytoskeleton and membrane phospholipids in the regulation of mitochondrial dynamics. We particularly focus on emerging roles for the mammalian mitochondrial proteins Fis1, Mff, and MIEFs (MIEF1 and MIEF2) in regulating the recruitment of the cytosolic Drp1 to the surface of mitochondria and how these proteins, especially Fis1, mediate crosstalk between the mitochondrial fission and fusion machineries. In summary, this review provides novel insights into the molecular mechanisms of mammalian mitochondrial dynamics and the involvement of these mechanisms in apoptosis and autophagy.
Collapse
Affiliation(s)
- Rong Yu
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- *Correspondence: Monica Nistér
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Jian Zhao
| |
Collapse
|
61
|
Locatelli L, Cazzaniga A, De Palma C, Castiglioni S, Maier JAM. Mitophagy contributes to endothelial adaptation to simulated microgravity. FASEB J 2019; 34:1833-1845. [PMID: 31914607 DOI: 10.1096/fj.201901785rrr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Exposure to real or simulated microgravity is sensed as a stress by mammalian cells, which activate a complex adaptive response. In human primary endothelial cells, we have recently shown the sequential intervention of various stress proteins which are crucial to prevent apoptosis and maintain cell function. We here demonstrate that mitophagy contributes to endothelial adaptation to gravitational unloading. After 4 and 10 d of exposure to simulated microgravity in the rotating wall vessel, the amount of BCL2 interacting protein 3, a marker of mitophagy, is increased and, in parallel, mitochondrial content, oxygen consumption, and maximal respiratory capacity are reduced, suggesting the acquisition of a thrifty phenotype to meet the novel metabolic challenges generated by gravitational unloading. Moreover, we suggest that microgravity induced-disorganization of the actin cytoskeleton triggers mitophagy, thus creating a connection between cytoskeletal dynamics and mitochondrial content upon gravitational unloading.
Collapse
Affiliation(s)
- Laura Locatelli
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Alessandra Cazzaniga
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Clara De Palma
- Unit of Clinical Pharmacology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Sara Castiglioni
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Jeanette A M Maier
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| |
Collapse
|
62
|
Randall TA, Gu C, Li X, Wang H, Shears SB. A two-way switch for inositol pyrophosphate signaling: Evolutionary history and biological significance of a unique, bifunctional kinase/phosphatase. Adv Biol Regul 2019; 75:100674. [PMID: 31776069 DOI: 10.1016/j.jbior.2019.100674] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a unique subgroup of intracellular signals with diverse functions, many of which can be viewed as reflecting an overarching role in metabolic homeostasis. Thus, considerable attention is paid to the enzymes that synthesize and metabolize the PP-InsPs. One of these enzyme families - the diphosphoinositol pentakisphosphate kinases (PPIP5Ks) - provides an extremely rare example of separate kinase and phosphatase activities being present within the same protein. Herein, we review the current state of structure/function insight into the PPIP5Ks, the separate specialized activities of the two metazoan PPIP5K genes, and we describe a phylogenetic analysis that places PPIP5K evolutionary origin within the Excavata, the very earliest of eukaryotes. These different aspects of PPIP5K biology are placed in the context of a single, overriding question. Why are they bifunctional: i.e., what is the particular significance of the ability to turn PP-InsP signaling on or off from two separate 'switches' in a single protein?
Collapse
Affiliation(s)
- Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Xingyao Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
63
|
Agrawal A, Ramachandran R. Exploring the links between lipid geometry and mitochondrial fission: Emerging concepts. Mitochondrion 2019; 49:305-313. [DOI: 10.1016/j.mito.2019.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023]
|
64
|
Abstract
Myosin 2 plays a central role in numerous, fundamental, actin-based biological processes, including cell migration, cell division, and the adhesion of cells to substrates and other cells. Here, we highlight recent studies in which the forces created by actomyosin 2 have been shown to also impact tension-sensitive ion channels and cell metabolism.
Collapse
Affiliation(s)
- Melissa A Quintanilla
- Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Center for Translational Research and Education, Maywood, IL, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jordan R Beach
- Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Center for Translational Research and Education, Maywood, IL, USA
| |
Collapse
|
65
|
Szpila M, Walewska A, Sabat-Pośpiech D, Strączyńska P, Ishikawa T, Milewski R, Szczepańska K, Ajduk A. Postovulatory ageing modifies sperm-induced Ca 2+ oscillations in mouse oocytes through a conditions-dependent, multi-pathway mechanism. Sci Rep 2019; 9:11859. [PMID: 31413272 PMCID: PMC6694115 DOI: 10.1038/s41598-019-48281-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/01/2019] [Indexed: 02/04/2023] Open
Abstract
Postovulatory ageing of mammalian oocytes occurs between their ovulation and fertilization and has been shown to decrease their developmental capabilities. Aged oocytes display numerous abnormalities, including altered Ca2+ signalling. Fertilization-induced Ca2+ oscillations are essential for activation of the embryonic development, therefore maintaining proper Ca2+ homeostasis is crucial for the oocyte quality. In the present paper, we show that the mechanism underlying age-dependent alterations in the pattern of sperm-triggered Ca2+ oscillations is more complex and multifaceted than previously believed. Using time-lapse imaging accompanied by immunostaining and molecular analyses, we found that postovulatory ageing affects the amount of Ca2+ stored in the cell, expression of Ca2+ pump SERCA2, amount of available ATP and distribution of endoplasmic reticulum and mitochondria in a manner often strongly depending on ageing conditions (in vitro vs. in vivo). Importantly, those changes do not have to be caused by oxidative stress, usually linked with the ageing process, as they occur even if the amount of reactive oxygen species remains low. Instead, our results suggest that aberrations in Ca2+ signalling may be a synergistic result of ageing-related alterations of the cell cycle, cytoskeleton, and mitochondrial functionality.
Collapse
Affiliation(s)
- Marcin Szpila
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Walewska
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Dorota Sabat-Pośpiech
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| | - Patrycja Strączyńska
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, pl. Traugutta 2, 41-800, Zabrze, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Szpitalna 37, 15-295, Bialystok, Poland
| | - Katarzyna Szczepańska
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
66
|
Yang M, Van Wijk E, Pang J, Yan Y, van der Greef J, Van Wijk R, Han J. A Bridge of Light: Toward Chinese and Western Medicine Perspectives Through Ultraweak Photon Emissions. Glob Adv Health Med 2019; 8:2164956119855930. [PMID: 31218117 PMCID: PMC6558537 DOI: 10.1177/2164956119855930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/18/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
The gap between Western medicine and traditional Chinese medicine (CM) is closely
related to the diversity in culture, philosophy, and scientific developments.
Although numerous studies have evaluated the efficacy of acupuncture, the gap in
explanatory disease models has not been bridged so far. Developments in research
of ultraweak photon emission (UPE) and organized dynamics of metabolism and its
relationship with technological advances in metabolomics have created the
conditions to bring the basics of the medicines of the West and East together
which might open the avenue for a scientific dialogue. The paper discusses (1)
the UPE in relation to Qi energy, meridians and acupuncture points in CM, (2)
the biochemical explanation of photon emission of living systems in Western
biomedicine, and (3) the progress in research on the large-scale organization
and dynamics of the metabolic network including photon metabolism.
Collapse
Affiliation(s)
- Meina Yang
- Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Jinan, China
| | - Eduard Van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine, Tiel, The Netherlands.,Meluna Research, Geldermalsen, The Netherlands
| | - Jingxiang Pang
- Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Yan
- Sino-Dutch Centre for Preventive and Personalized Medicine, Tiel, The Netherlands.,Meluna Research, Geldermalsen, The Netherlands
| | - Jan van der Greef
- Sino-Dutch Centre for Preventive and Personalized Medicine, Tiel, The Netherlands.,Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Roeland Van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine, Tiel, The Netherlands.,Meluna Research, Geldermalsen, The Netherlands
| | - Jinxiang Han
- Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
67
|
Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion 2019; 49:269-283. [PMID: 31228566 DOI: 10.1016/j.mito.2019.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/02/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial dynamics shape the mitochondrial network and contribute to mitochondrial function and quality control. Mitochondrial fusion and division are integrated into diverse cellular functions and respond to changes in cell physiology. Imbalanced mitochondrial dynamics are associated with a range of diseases that are broadly characterized by impaired mitochondrial function and increased cell death. In various disease models, modulating mitochondrial fusion and division with either small molecules or genetic approaches has improved function. Although additional mechanistic understanding of mitochondrial fusion and division will be critical to inform further therapeutic approaches, mitochondrial dynamics represent a powerful therapeutic target in a wide range of human diseases.
Collapse
|