51
|
Affiliation(s)
- Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
52
|
Gamond L, Cattaneo Z. The dorsomedial prefrontal cortex plays a causal role in mediating in-group advantage in emotion recognition: A TMS study. Neuropsychologia 2016; 93:312-317. [DOI: 10.1016/j.neuropsychologia.2016.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 01/25/2023]
|
53
|
Electrophysiological responses to symmetry presented in the left or in the right visual hemifield. Cortex 2016; 86:93-108. [PMID: 27923173 DOI: 10.1016/j.cortex.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/22/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022]
Abstract
Symmetry is a highly salient feature in the visual world, abundant in both man-made and natural objects. In particular, humans find reflectional symmetry most salient. Electrophysiological work on symmetry perception has identified a difference wave known as the Sustained Posterior Negativity (SPN) originating from extrastriate areas. Amplitude is more negative for symmetrical than random patterns, from around 200 msec after stimulus onset. For the first time, we report responses to patterns presented exclusively in one hemifield. Participants were presented with reflection or random dot patterns to the left and right of fixation (3.2°). They judged whether the patterns were light red or dark red in colour. In Experiment 1, the pair always included one symmetrical and one random pattern. In Experiments 2 and 3 we varied the information presented contralaterally. The SPN was generated separately in each hemisphere in response to what was presented in the contralateral visual hemifield (a lateralised SPN). We conclude that a symmetry-sensitive network of extrastriate areas can be activated independently in each cerebral hemisphere.
Collapse
|
54
|
Makin ADJ, Wright D, Rampone G, Palumbo L, Guest M, Sheehan R, Cleaver H, Bertamini M. An Electrophysiological Index of Perceptual Goodness. Cereb Cortex 2016; 26:4416-4434. [PMID: 27702812 PMCID: PMC5193141 DOI: 10.1093/cercor/bhw255] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 11/27/2022] Open
Abstract
A traditional line of work starting with the Gestalt school has shown that patterns vary in strength and salience; a difference in “Perceptual goodness.” The Holographic weight of evidence model quantifies goodness of visual regularities. The key formula states that W = E/N, where E is number of holographic identities in a pattern and N is number of elements. We tested whether W predicts the amplitude of the neural response to regularity in an extrastriate symmetry-sensitive network. We recorded an Event Related Potential (ERP) generated by symmetry called the Sustained Posterior Negativity (SPN). First, we reanalyzed the published work and found that W explained most variance in SPN amplitude. Then in four new studies, we confirmed specific predictions of the holographic model regarding 1) the differential effects of numerosity on reflection and repetition, 2) the similarity between reflection and Glass patterns, 3) multiple symmetries, and 4) symmetry and anti-symmetry. In all cases, the holographic approach predicted SPN amplitude remarkably well; particularly in an early window around 300–400 ms post stimulus onset. Although the holographic model was not conceived as a model of neural processing, it captures many details of the brain response to symmetry.
Collapse
Affiliation(s)
- Alexis D J Makin
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Liverpool, L69 7ZA, UK
| | - Damien Wright
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Liverpool, L69 7ZA, UK
| | - Giulia Rampone
- Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK
| | - Letizia Palumbo
- Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK
| | - Martin Guest
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Liverpool, L69 7ZA, UK
| | - Rhiannon Sheehan
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Liverpool, L69 7ZA, UK
| | - Helen Cleaver
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Liverpool, L69 7ZA, UK
| | - Marco Bertamini
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Liverpool, L69 7ZA, UK
| |
Collapse
|
55
|
Heuer A, Schubö A, Crawford JD. Different Cortical Mechanisms for Spatial vs. Feature-Based Attentional Selection in Visual Working Memory. Front Hum Neurosci 2016; 10:415. [PMID: 27582701 PMCID: PMC4987349 DOI: 10.3389/fnhum.2016.00415] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/04/2016] [Indexed: 11/29/2022] Open
Abstract
The limited capacity of visual working memory (VWM) necessitates attentional mechanisms that selectively update and maintain only the most task-relevant content. Psychophysical experiments have shown that the retroactive selection of memory content can be based on visual properties such as location or shape, but the neural basis for such differential selection is unknown. For example, it is not known if there are different cortical modules specialized for spatial vs. feature-based mnemonic attention, in the same way that has been demonstrated for attention to perceptual input. Here, we used transcranial magnetic stimulation (TMS) to identify areas in human parietal and occipital cortex involved in the selection of objects from memory based on cues to their location (spatial information) or their shape (featural information). We found that TMS over the supramarginal gyrus (SMG) selectively facilitated spatial selection, whereas TMS over the lateral occipital cortex (LO) selectively enhanced feature-based selection for remembered objects in the contralateral visual field. Thus, different cortical regions are responsible for spatial vs. feature-based selection of working memory representations. Since the same regions are involved in terms of attention to external events, these new findings indicate overlapping mechanisms for attentional control over perceptual input and mnemonic representations.
Collapse
Affiliation(s)
- Anna Heuer
- Experimental and Biological Psychology, Philipps-University Marburg Marburg, Germany
| | - Anna Schubö
- Experimental and Biological Psychology, Philipps-University Marburg Marburg, Germany
| | - J D Crawford
- Centre for Vision Research, York UniversityToronto, ON, Canada; Canadian Action and Perception Network, York UniversityToronto, ON, Canada; Departments of Psychology, Biology, and Kinesiology and Health Sciences, York UniversityToronto, ON, Canada
| |
Collapse
|
56
|
Abstract
We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.
Collapse
|
57
|
Abstract
UNLABELLED Humans can learn to abstract and conceptualize the shared visual features defining an object category in object learning. Therefore, learning is generalizable to transformations of familiar objects and even to new objects that differ in other physical properties. In contrast, visual perceptual learning (VPL), improvement in discriminating fine differences of a basic visual feature through training, is commonly regarded as specific and low-level learning because the improvement often disappears when the trained stimulus is simply relocated or rotated in the visual field. Such location and orientation specificity is taken as evidence for neural plasticity in primary visual cortex (V1) or improved readout of V1 signals. However, new training methods have shown complete VPL transfer across stimulus locations and orientations, suggesting the involvement of high-level cognitive processes. Here we report that VPL bears similar properties of object learning. Specifically, we found that orientation discrimination learning is completely transferrable between luminance gratings initially encoded in V1 and bilaterally symmetric dot patterns encoded in higher visual cortex. Similarly, motion direction discrimination learning is transferable between first- and second-order motion signals. These results suggest that VPL can take place at a conceptual level and generalize to stimuli with different physical properties. Our findings thus reconcile perceptual and object learning into a unified framework. SIGNIFICANCE STATEMENT Training in object recognition can produce a learning effect that is applicable to new viewing conditions or even to new objects with different physical properties. However, perceptual learning has long been regarded as a low-level form of learning because of its specificity to the trained stimulus conditions. Here we demonstrate with new training tactics that visual perceptual learning is completely transferrable between distinct physical stimuli. This finding indicates that perceptual learning also operates at a conceptual level in a stimulus-invariant manner.
Collapse
|
58
|
Abstract
Naturalistic textures with an intermediate degree of statistical regularity can capture key structural features of natural images (Freeman and Simoncelli, 2011). V2 and later visual areas are sensitive to these features, while primary visual cortex is not (Freeman et al., 2013). Here we expand on this work by investigating a class of textures that have maximal formal regularity, the 17 crystallographic wallpaper groups (Fedorov, 1891). We used texture stimuli from four of the groups that differ in the maximum order of rotation symmetry they contain, and measured neural responses in human participants using functional MRI and high-density EEG. We found that cortical area V3 has a parametric representation of the rotation symmetries in the textures that is not present in either V1 or V2, the first discovery of a stimulus property that differentiates processing in V3 from that of lower-level areas. Parametric responses were also seen in higher-order ventral stream areas V4, VO1, and lateral occipital complex (LOC), but not in dorsal stream areas. The parametric response pattern was replicated in the EEG data, and source localization indicated that responses in V3 and V4 lead responses in LOC, which is consistent with a feedforward mechanism. Finally, we presented our stimuli to four well developed feedforward models and found that none of them were able to account for our results. Our results highlight structural regularity as an important stimulus dimension for distinguishing the early stages of visual processing, and suggest a previously unrecognized role for V3 in the visual form-processing hierarchy. Significance statement: Hierarchical processing is a fundamental organizing principle in visual neuroscience, with each successive processing stage being sensitive to increasingly complex stimulus properties. Here, we probe the encoding hierarchy in human visual cortex using a class of visual textures--wallpaper patterns--that are maximally regular. Through a combination of fMRI and EEG source imaging, we find specific responses to texture regularity that depend parametrically on the maximum order of rotation symmetry in the textures. These parametric responses are seen in several areas of the ventral visual processing stream, as well as in area V3, but not in V1 or V2. This is the first demonstration of a stimulus property that differentiates processing in V3 from that of lower-level visual areas.
Collapse
|
59
|
Bona S, Cattaneo Z, Silvanto J. Investigating the Causal Role of rOFA in Holistic Detection of Mooney Faces and Objects: An fMRI-guided TMS Study. Brain Stimul 2016; 9:594-600. [PMID: 27210036 DOI: 10.1016/j.brs.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/15/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The right occipital face area (rOFA) is known to be involved in face discrimination based on local featural information. Whether this region is also involved in global, holistic stimulus processing is not known. OBJECTIVE We used fMRI-guided transcranial magnetic stimulation (TMS) to investigate whether rOFA is causally implicated in stimulus detection based on holistic processing, by the use of Mooney stimuli. METHODS Two studies were carried out: In Experiment 1, participants performed a detection task involving Mooney faces and Mooney objects; Mooney stimuli lack distinguishable local features and can be detected solely via holistic processing (i.e. at a global level) with top-down guidance from previously stored representations. Experiment 2 required participants to detect shapes which are recognized via bottom-up integration of local (collinear) Gabor elements and was performed to control for specificity of rOFA's implication in holistic detection. RESULTS In Experiment 1, TMS over rOFA and rLO impaired detection of all stimulus categories, with no category-specific effect. In Experiment 2, shape detection was impaired when TMS was applied over rLO but not over rOFA. CONCLUSIONS Our results demonstrate that rOFA is causally implicated in the type of top-down holistic detection required by Mooney stimuli and that such role is not face-selective. In contrast, rOFA does not appear to play a causal role in detection of shapes based on bottom-up integration of local components, demonstrating that its involvement in processing non-face stimuli is specific for holistic processing.
Collapse
Affiliation(s)
- Silvia Bona
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 Espoo, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, OV Lounasmaa Laboratory, School of Science, Aalto University, 00076 Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Central Hospital, 00290 Helsinki, Finland; Department of Behavioural Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, 27100 Pavia, Italy.
| | - Juha Silvanto
- Department of Psychology, Faculty of Science and Technology, University of Westminster, 309 Regent Street, W1B 2HW London, UK.
| |
Collapse
|
60
|
Di Nota PM, Levkov G, Bar R, DeSouza JFX. Lateral occipitotemporal cortex (LOTC) activity is greatest while viewing dance compared to visualization and movement: learning and expertise effects. Exp Brain Res 2016; 234:2007-2023. [PMID: 26960739 DOI: 10.1007/s00221-016-4607-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
The lateral occipitotemporal cortex (LOTC) is comprised of subregions selectively activated by images of human bodies (extrastriate body area, EBA), objects (lateral occipital complex, LO), and motion (MT+). However, their role in motor imagery and movement processing is unclear, as are the influences of learning and expertise on its recruitment. The purpose of our study was to examine putative changes in LOTC activation during action processing following motor learning of novel choreography in professional ballet dancers. Subjects were scanned with functional magnetic resonance imaging up to four times over 34 weeks and performed four tasks: viewing and visualizing a newly learned ballet dance, visualizing a dance that was not being learned, and movement of the foot. EBA, LO, and MT+ were activated most while viewing dance compared to visualization and movement. Significant increases in activation were observed over time in left LO only during visualization of the unlearned dance, and all subregions were activated bilaterally during the viewing task after 34 weeks of performance, suggesting learning-induced plasticity. Finally, we provide novel evidence for modulation of EBA with dance experience during the motor task, with significant activation elicited in a comparison group of novice dancers only. These results provide a composite of LOTC activation during action processing of newly learned ballet choreography and movement of the foot. The role of these areas is confirmed as primarily subserving observation of complex sequences of whole-body movement, with new evidence for modification by experience and over the course of real world ballet learning.
Collapse
Affiliation(s)
- Paula M Di Nota
- Department of Psychology, York University, Toronto, ON, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada.,Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Gabriella Levkov
- Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Rachel Bar
- Department of Psychology, Ryerson University, Toronto, ON, Canada.,Canada's National Ballet School, Toronto, ON, Canada
| | - Joseph F X DeSouza
- Department of Psychology, York University, Toronto, ON, Canada. .,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada. .,Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada. .,Department of Biology, York University, Toronto, ON, Canada. .,Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada.
| |
Collapse
|
61
|
Scaling of the extrastriate neural response to symmetry. Vision Res 2015; 117:1-8. [PMID: 26475086 DOI: 10.1016/j.visres.2015.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 11/21/2022]
Abstract
Neuroimaging work has shown that visual symmetry activates extrastriate brain areas, most consistently the lateral occipital complex (LOC). LOC activation increases with proportion of symmetrical dots (pSymm) in a degraded display. In the current work, we recorded a posterior ERP called the sustained posterior negativity (SPN), which is relatively negative for symmetrical compared to random patterns. We predicted that SPN would also scale with pSymm, because it is probably generated by the LOC. Twenty-four participants viewed dot patterns with different levels of regularity: 0% regularity (full random configuration) 20%, 40%, 60%, 80%, and 100% (full reflection symmetry). Participants judged if the pattern contained "some regularity" or "no regularity". As expected, the SPN amplitude increased with pSymm, while the latency and duration was the same in all conditions. The SPN was independent of the participant's decision, and it was present on some trials where people reported 'no-regularity'. We conclude that the SPN is generated at an intermediate stage of visual processing, probably in the LOC, where perceptual goodness is represented. This comes after initial visual analysis, but before subsequent decision stages, which apply a threshold to the analog LOC response.
Collapse
|
62
|
The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception. J Neurosci 2015; 35:731-8. [PMID: 25589766 DOI: 10.1523/jneurosci.3733-14.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Symmetry is an important cue in face and object perception. Here we used fMRI-guided transcranial magnetic stimulation (TMS) to shed light on the role of the occipital face area (OFA), a key region in face processing, and the lateral occipital (LO) cortex, a key area in object processing, in symmetry detection. In the first experiment, we applied TMS over the rightOFA, its left homolog (leftOFA), rightLO, and vertex (baseline) while participants were discriminating between symmetric and asymmetric dot patterns. Stimulation of rightOFA and rightLO impaired performance, causally implicating these two regions in detection of symmetry in low-level dot configurations. TMS over rightLO but not rightOFA also significantly impaired detection of nonsymmetric shapes defined by collinear Gabor patches, demonstrating that rightOFA responds to symmetry but not to all cues mediating figure-ground segregation. The second experiment showed a causal role for rightOFA but not rightLO in facial symmetry detection. Overall, our results demonstrate that both the rightOFA and rightLO are sensitive to symmetry in dot patterns, whereas only rightOFA is causally involved in facial symmetry detection.
Collapse
|
63
|
Cattaneo Z, Lega C, Ferrari C, Vecchi T, Cela-Conde CJ, Silvanto J, Nadal M. The role of the lateral occipital cortex in aesthetic appreciation of representational and abstract paintings: a TMS study. Brain Cogn 2015; 95:44-53. [PMID: 25682351 DOI: 10.1016/j.bandc.2015.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/31/2014] [Accepted: 01/15/2015] [Indexed: 11/25/2022]
Abstract
Neuroimaging studies of aesthetic appreciation have shown that activity in the lateral occipital area (LO)-a key node in the object recognition pathway-is modulated by the extent to which visual artworks are liked or found beautiful. However, the available evidence is only correlational. Here we used transcranial magnetic stimulation (TMS) to investigate the putative causal role of LO in the aesthetic appreciation of paintings. In our first experiment, we found that interfering with LO activity during aesthetic appreciation selectively reduced evaluation of representational paintings, leaving appreciation of abstract paintings unaffected. A second experiment demonstrated that, although the perceived clearness of the images overall positively correlated with liking, the detrimental effect of LO TMS on aesthetic appreciation does not owe to TMS reducing perceived clearness. Taken together, our findings suggest that object-recognition mechanisms mediated by LO play a causal role in aesthetic appreciation of representational art.
Collapse
Affiliation(s)
- Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia, Italy.
| | - Carlotta Lega
- Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - Chiara Ferrari
- Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Tomaso Vecchi
- Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Juha Silvanto
- Department of Psychology, Faculty of Science and Technology, University of Westminster, UK
| | - Marcos Nadal
- Department of Basic Psychological Research and Research Methods, University of Vienna, Austria
| |
Collapse
|
64
|
Wright D, Makin ADJ, Bertamini M. Right-lateralized alpha desynchronization during regularity discrimination: hemispheric specialization or directed spatial attention? Psychophysiology 2014; 52:638-47. [PMID: 25532558 PMCID: PMC4681321 DOI: 10.1111/psyp.12399] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022]
Abstract
When actively classifying abstract patterns according to their regularity, alpha desynchronization (ERD) becomes right lateralized over posterior brain areas. This could reflect temporary enhancement of contralateral visual inputs and specifically a shift of attention to the left, or right hemisphere specialization for regularity discrimination. This study tested these competing hypotheses. Twenty-four participants discriminated between dot patterns containing a reflection or a translation. The direction of the transformation, which matched one half onto the other half, was either vertical or horizontal. The strategy of shifting attention to one side of the patterns would not produce lateralized ERD in the horizontal condition. However, right-lateralized ERD was found in all conditions, regardless of orientation. We conclude that right hemisphere networks that incorporate the early posterior regions are specialized for regularity discrimination.
Collapse
Affiliation(s)
- Damien Wright
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
65
|
|
66
|
Bauer C, Yazzolino L, Hirsch G, Cattaneo Z, Vecchi T, Merabet LB. Neural correlates associated with superior tactile symmetry perception in the early blind. Cortex 2014; 63:104-117. [PMID: 25243993 DOI: 10.1016/j.cortex.2014.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/07/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
Symmetry is an organizational principle that is ubiquitous throughout the visual world. However, this property can also be detected through non-visual modalities such as touch. The role of prior visual experience on detecting tactile patterns containing symmetry remains unclear. We compared the behavioral performance of early blind and sighted (blindfolded) controls on a tactile symmetry detection task. The tactile patterns used were similar in design and complexity as in previous visual perceptual studies. The neural correlates associated with this behavioral task were identified with functional magnetic resonance imaging (fMRI). In line with growing evidence demonstrating enhanced tactile processing abilities in the blind, we found that early blind individuals showed significantly superior performance in detecting tactile symmetric patterns compared to sighted controls. Furthermore, comparing patterns of activation between these two groups identified common areas of activation (e.g. superior parietal cortex) but key differences also emerged. In particular, tactile symmetry detection in the early blind was also associated with activation that included peri-calcarine cortex, lateral occipital (LO), and middle temporal (MT) cortex, as well as inferior temporal and fusiform cortex. These results contribute to the growing evidence supporting superior behavioral abilities in the blind, and the neural correlates associated with crossmodal neuroplasticity following visual deprivation.
Collapse
Affiliation(s)
- Corinna Bauer
- Laboratory for Visual Neuroplasticity. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary. Harvard Medical School. 20 Staniford Street. Boston, MA, USA
| | - Lindsay Yazzolino
- Laboratory for Visual Neuroplasticity. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary. Harvard Medical School. 20 Staniford Street. Boston, MA, USA
| | - Gabriella Hirsch
- Laboratory for Visual Neuroplasticity. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary. Harvard Medical School. 20 Staniford Street. Boston, MA, USA
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1 - 20126, Milano, Italy.,Brain Connectivity Center, National Neurological Institute C. Mondino, Via Mondino 2, Pavia, Italy
| | - Tomaso Vecchi
- Brain Connectivity Center, National Neurological Institute C. Mondino, Via Mondino 2, Pavia, Italy.,. Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, 27100, Pavia, Italy
| | - Lotfi B Merabet
- Laboratory for Visual Neuroplasticity. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary. Harvard Medical School. 20 Staniford Street. Boston, MA, USA
| |
Collapse
|
67
|
Cattaneo Z, Bona S, Monegato M, Pece A, Vecchi T, Herbert AM, Merabet LB. Visual symmetry perception in early onset monocular blindness. VISUAL COGNITION 2014. [DOI: 10.1080/13506285.2014.938712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
68
|
Symmetry Detection in Visual Impairment: Behavioral Evidence and Neural Correlates. Symmetry (Basel) 2014. [DOI: 10.3390/sym6020427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|