51
|
Hau J, Sarubbo S, Houde JC, Corsini F, Girard G, Deledalle C, Crivello F, Zago L, Mellet E, Jobard G, Joliot M, Mazoyer B, Tzourio-Mazoyer N, Descoteaux M, Petit L. Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct 2016; 222:1645-1662. [PMID: 27581617 DOI: 10.1007/s00429-016-1298-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/22/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Janice Hau
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France
| | - Silvio Sarubbo
- Division of Neurosurgery, Department of Neurosciences, "S. Chiara" Hospital, Trento APSS, Trento, Italy
- Structural and Functional Connectivity Lab, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS, Trento, Italy
| | | | - Francesco Corsini
- Division of Neurosurgery, Department of Neurosciences, "S. Chiara" Hospital, Trento APSS, Trento, Italy
- Structural and Functional Connectivity Lab, Division of Neurosurgery, "S. Chiara" Hospital, Trento APSS, Trento, Italy
| | - Gabriel Girard
- Sherbrooke Connectivity Imaging Lab, University of Sherbrooke, Sherbrooke, Canada
| | - Charles Deledalle
- Institut de Mathématiques de Bordeaux-UMR 5251, CNRS, Talence, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France
| | - Laure Zago
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France
| | - Emmanuel Mellet
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France
| | - Gaël Jobard
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, University of Sherbrooke, Sherbrooke, Canada
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, PAC Carreire, 146 rue Léo Saignat-CS61292-Case 28, 33076, Bordeaux, France.
| |
Collapse
|
52
|
Herbet G, Moritz-Gasser S, Duffau H. Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition. Brain Struct Funct 2016; 222:1597-1610. [PMID: 27568379 DOI: 10.1007/s00429-016-1294-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/17/2016] [Indexed: 11/29/2022]
Abstract
The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, 34295, Montpellier, France. .,National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, 34091, Montpellier, France. .,University of Montpellier, 163 rue Auguste Broussonnet, 34090, Montpellier, France.
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, 34295, Montpellier, France.,National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, 34091, Montpellier, France.,University of Montpellier, 163 rue Auguste Broussonnet, 34090, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, 34295, Montpellier, France.,National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, 34091, Montpellier, France.,University of Montpellier, 163 rue Auguste Broussonnet, 34090, Montpellier, France
| |
Collapse
|
53
|
Holland R, Johns SL, Woollams AM. The impact of phonological versus semantic repetition training on generalisation in chronic stroke aphasia reflects differences in dorsal pathway connectivity. Neuropsychol Rehabil 2016; 28:548-567. [DOI: 10.1080/09602011.2016.1190384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rachel Holland
- Division of Language and Communication Science, City University London, London, England
| | - Sasha L. Johns
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, England
| | - Anna M. Woollams
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, England
| |
Collapse
|
54
|
Ivanova MV, Isaev DY, Dragoy OV, Akinina YS, Petrushevskiy AG, Fedina ON, Shklovsky VM, Dronkers NF. Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex 2016; 85:165-181. [PMID: 27289586 DOI: 10.1016/j.cortex.2016.04.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/08/2016] [Accepted: 04/23/2016] [Indexed: 11/16/2022]
Abstract
A growing literature is pointing towards the importance of white matter tracts in understanding the neural mechanisms of language processing, and determining the nature of language deficits and recovery patterns in aphasia. Measurements extracted from diffusion-weighted (DW) images provide comprehensive in vivo measures of local microstructural properties of fiber pathways. In the current study, we compared microstructural properties of major white matter tracts implicated in language processing in each hemisphere (these included arcuate fasciculus (AF), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), inferior frontal-occipital fasciculus (IFOF), uncinate fasciculus (UF), and corpus callosum (CC), and corticospinal tract (CST) for control purposes) between individuals with aphasia and healthy controls and investigated the relationship between these neural indices and language deficits. Thirty-seven individuals with aphasia due to left hemisphere stroke and eleven age-matched controls were scanned using DW imaging sequences. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) values for each major white matter tract were extracted from DW images using tract masks chosen from standardized atlases. Individuals with aphasia were also assessed with a standardized language test in Russian targeting comprehension and production at the word and sentence level. Individuals with aphasia had significantly lower FA values for left hemisphere tracts and significantly higher values of MD, RD and AD for both left and right hemisphere tracts compared to controls, all indicating profound impairment in tract integrity. Language comprehension was predominantly related to integrity of the left IFOF and left ILF, while language production was mainly related to integrity of the left AF. In addition, individual segments of these three tracts were differentially associated with language production and comprehension in aphasia. Our findings highlight the importance of fiber pathways in supporting different language functions and point to the importance of temporal tracts in language processing, in particular, comprehension.
Collapse
Affiliation(s)
- Maria V Ivanova
- National Research University Higher School of Economics, Neurolinguistics Laboratory, Moscow, Russia.
| | - Dmitry Yu Isaev
- National Research University Higher School of Economics, Neurolinguistics Laboratory, Moscow, Russia
| | - Olga V Dragoy
- National Research University Higher School of Economics, Neurolinguistics Laboratory, Moscow, Russia; Moscow Research Institute of Psychiatry, Department of Speech Pathology and Neurorehabilitation, Moscow, Russia
| | - Yulia S Akinina
- National Research University Higher School of Economics, Neurolinguistics Laboratory, Moscow, Russia; University of Groningen, Graduate School for the Humanities, Groningen, The Netherlands
| | | | - Oksana N Fedina
- Center for Speech Pathology and Neurorehabilitation, Moscow, Russia
| | - Victor M Shklovsky
- Moscow Research Institute of Psychiatry, Department of Speech Pathology and Neurorehabilitation, Moscow, Russia; Center for Speech Pathology and Neurorehabilitation, Moscow, Russia
| | - Nina F Dronkers
- National Research University Higher School of Economics, Neurolinguistics Laboratory, Moscow, Russia; Center for Aphasia and Related Disorders, VA Northern California Health Care System, Martinez, CA, USA; Department of Neurology, University of California, Davis, CA, USA
| |
Collapse
|
55
|
Language learning and brain reorganization in a 3.5-year-old child with left perinatal stroke revealed using structural and functional connectivity. Cortex 2016; 77:95-118. [DOI: 10.1016/j.cortex.2016.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/09/2015] [Accepted: 01/18/2016] [Indexed: 11/20/2022]
|
56
|
Bajada CJ, Haroon HA, Azadbakht H, Parker GJM, Lambon Ralph MA, Cloutman LL. The tract terminations in the temporal lobe: Their location and associated functions. Cortex 2016; 97:277-290. [PMID: 27118049 PMCID: PMC5726606 DOI: 10.1016/j.cortex.2016.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 12/11/2022]
Abstract
Temporal lobe networks are associated with multiple cognitive domains. Despite an upsurge of interest in connectional neuroanatomy, the terminations of the main fibre tracts in the human brain are yet to be mapped. This information is essential given that neurological, neuroanatomical and computational accounts expect neural functions to be strongly shaped by the pattern of white-matter connections. This paper uses a probabilistic tractography approach to identify the main cortical areas that contribute to the major temporal lobe tracts. In order to associate the tract terminations to known functional domains of the temporal lobe, eight automated meta-analyses were performed using the Neurosynth database. Overlaps between the functional regions highlighted by the meta-analyses and the termination maps were identified in order to investigate the functional importance of the tracts of the temporal lobe. The termination maps are made available in the Supplementary Materials of this article for use by researchers in the field.
Collapse
Affiliation(s)
- Claude J Bajada
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, The University of Manchester, UK
| | - Hamied A Haroon
- Manchester Academic Health Science Centre, Manchester, UK; Centre for Imaging Sciences, Institute of Population Health, The University of Manchester, Manchester, UK
| | - Hojjatollah Azadbakht
- Manchester Academic Health Science Centre, Manchester, UK; Centre for Imaging Sciences, Institute of Population Health, The University of Manchester, Manchester, UK
| | - Geoff J M Parker
- Manchester Academic Health Science Centre, Manchester, UK; Centre for Imaging Sciences, Institute of Population Health, The University of Manchester, Manchester, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, The University of Manchester, UK.
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, The University of Manchester, UK.
| |
Collapse
|
57
|
Papinutto N, Galantucci S, Mandelli ML, Gesierich B, Jovicich J, Caverzasi E, Henry RG, Seeley WW, Miller BL, Shapiro KA, Gorno-Tempini ML. Structural connectivity of the human anterior temporal lobe: A diffusion magnetic resonance imaging study. Hum Brain Mapp 2016; 37:2210-22. [PMID: 26945805 DOI: 10.1002/hbm.23167] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/10/2016] [Accepted: 02/21/2016] [Indexed: 11/07/2022] Open
Abstract
The anterior temporal lobes (ATL) have been implicated in a range of cognitive functions including auditory and visual perception, language, semantic knowledge, and social-emotional processing. However, the anatomical relationships between the ATLs and the broader cortical networks that subserve these functions have not been fully elucidated. Using diffusion tensor imaging (DTI) and probabilistic tractography, we tested the hypothesis that functional segregation of information in the ATLs is reflected by distinct patterns of structural connectivity to regions outside the ATLs. We performed a parcellation of the ATLs bilaterally based on the degree of connectivity of each voxel with eight ipsilateral target regions known to be involved in various cognitive networks. Six discrete segments within each ATL showed preferential connectivity to one of the ipsilateral target regions, via four major fiber tracts (uncinate, inferior longitudinal, middle longitudinal, and arcuate fasciculi). Two noteworthy interhemispheric differences were observed: connections between the ATL and orbito-frontal areas were stronger in the right hemisphere, while the consistency of the connection between the ATL and the inferior frontal gyrus through the arcuate fasciculus was greater in the left hemisphere. Our findings support the hypothesis that distinct regions within the ATLs have anatomical connections to different cognitive networks. Hum Brain Mapp 37:2210-2222, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nico Papinutto
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sebastiano Galantucci
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Luisa Mandelli
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy
| | - Eduardo Caverzasi
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Roland G Henry
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kevin A Shapiro
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
58
|
Commentary on Bajada et al., (2015). Cortex 2016. [DOI: 10.1016/j.cortex.2015.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
59
|
Abstract
Considerable evidence from different methodologies has identified the anterior temporal lobes (ATLs) as key regions for the representation of semantic knowledge. Research interest is now shifting to investigate the roles of different ATL subregions in semantic representation, with particular emphasis on the functions of the left versus right ATLs. In this review, we provide evidence for graded specializations both between and within the ATLs. We argue (1) that multimodal, pan-category semantic representations are supported jointly by both left and right ATLs, yet (2) that the ATLs are not homogeneous in their function. Instead, subtle functional gradations both between and within the ATLs emerge as a consequence of differential connectivity with primary sensory/motor/limbic regions. This graded specialization account of semantic representation provides a compromise between theories that posit no differences between the functions of the left and right ATLs and those that posit that the left and right ATLs are entirely segregated in function. Evidence for this graded account comes from converging sources, and its benefits have been exemplified in formal computational models. We propose that this graded principle is not only a defining feature of the ATLs but is also a more general neurocomputational principle found throughout the temporal lobes.
Collapse
Affiliation(s)
- Grace E Rice
- Neuroscience and Aphasia Research Unit (NARU), University of Manchester, Manchester, United Kingdom
| | - Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), University of Manchester, Manchester, United Kingdom
| |
Collapse
|