51
|
|
52
|
Lesterhuis WJ, de Vries IJM, Schreibelt G, Lambeck AJ, Aarntzen EH, Jacobs JF, Scharenborg NM, van de Rakt MW, de Boer AJ, Croockewit S, van Rossum MM, Mus R, Oyen WJ, Boerman OC, Lucas S, Adema GJ, Punt CJ, Figdor CG. Route of Administration Modulates the Induction of Dendritic Cell Vaccine–Induced Antigen-Specific T Cells in Advanced Melanoma Patients. Clin Cancer Res 2011; 17:5725-35. [DOI: 10.1158/1078-0432.ccr-11-1261] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
53
|
Wieërs G, Demotte N, Godelaine D, van der Bruggen P. Immune suppression in tumors as a surmountable obstacle to clinical efficacy of cancer vaccines. Cancers (Basel) 2011; 3:2904-54. [PMID: 24212939 PMCID: PMC3759179 DOI: 10.3390/cancers3032904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 02/07/2023] Open
Abstract
Human tumors are usually not spontaneously eliminated by the immune system and therapeutic vaccination of cancer patients with defined antigens is followed by tumor regressions only in a small minority of the patients. The poor vaccination effectiveness could be explained by an immunosuppressive tumor microenvironment. Because T cells that infiltrate tumor metastases have an impaired ability to lyse target cells or to secrete cytokine, many researchers are trying to decipher the underlying immunosuppressive mechanisms. We will review these here, in particular those considered as potential therapeutic targets. A special attention will be given to galectins, a family of carbohydrate binding proteins. These lectins have often been implicated in inflammation and cancer and may be useful targets for the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Grégoire Wieërs
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Nathalie Demotte
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Danièle Godelaine
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| |
Collapse
|
54
|
Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood 2011; 118:2502-10. [PMID: 21750314 DOI: 10.1182/blood-2011-03-344838] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To increase (tumor) vaccine efficacy, there is an urgent need for phenotypic and functional characterization of human dendritic cell (DC) subsets residing in lymphoid tissues. In this study we identified and functionally tested 4 human conventional DC (cDC) subsets within skin-draining sentinel lymph nodes (SLNs) from early-stage melanoma patients. These SLNs were all tumor negative and were removed on average 44 days after excision of the primary melanoma. As such, they were considered representative of steady-state conditions. On comparison with skin-migrated cDC, 2 CD1a(+) subsets were identified as most likely skin-derived CD11c(int) Langerhans cells (LC) with intracellular langerin and E-cadherin expression or as CD11c(hi) dermal DCs with variable expression of langerin. Two other CD1a(-) LN-residing cDC subsets were characterized as CD14(-)BDCA3(hi)CD103(-) and CD14(+)BDCA3(lo)CD103(+), respectively. Whereas the CD1a(+) skin-derived subsets displayed greater levels of phenotypic maturation, they were associated with lower levels of inflammatory cytokine release and were inferior in terms of allogeneic T-cell priming and IFNγ induction. Thus, despite their higher maturation state, skin-derived cDCs (and LCs in particular) proved inferior T-cell activators compared with the CD1a(-) cDC subsets residing in melanoma-draining LNs. These observations should be considered in the design of DC-targeting immunotherapies.
Collapse
|
55
|
Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D, Lee CN, Phipson B, Shi W, Smyth GK, Lew AM, Kato Y, Mueller SN, Davey GM, Heath WR, Shortman K, Caminschi I. Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. THE JOURNAL OF IMMUNOLOGY 2011; 187:842-50. [PMID: 21677141 DOI: 10.4049/jimmunol.1101176] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Three surface molecules of mouse CD8(+) dendritic cells (DCs), also found on the equivalent human DC subpopulation, were compared as targets for Ab-mediated delivery of Ags, a developing strategy for vaccination. For the production of cytotoxic T cells, DEC-205 and Clec9A, but not Clec12A, were effective targets, although only in the presence of adjuvants. For Ab production, however, Clec9A excelled as a target, even in the absence of adjuvant. Potent humoral immunity was a result of the highly specific expression of Clec9A on DCs, which allowed longer residence of targeting Abs in the bloodstream, prolonged DC Ag presentation, and extended CD4 T cell proliferation, all of which drove highly efficient development of follicular helper T cells. Because Clec9A shows a similar expression pattern on human DCs, it has particular promise as a target for vaccines of human application.
Collapse
Affiliation(s)
- Mireille H Lahoud
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Von Bubnoff D, Scheler M, Wilms H, Fimmers R, Bieber T. Identification of IDO-positive and IDO-negative human dendritic cells after activation by various proinflammatory stimuli. THE JOURNAL OF IMMUNOLOGY 2011; 186:6701-9. [PMID: 21543643 DOI: 10.4049/jimmunol.1003151] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) can induce tolerance or immunity. We identified and characterized an IDO-expressing and an IDO-negative human DC population after stimulation by various proinflammatory stimuli. IDO expression was strongly dependent on the maturation status of the cells (CD83-positive cells only). The two DC subpopulations remained IDO positive and IDO negative, respectively, over a time period of at least 48 h. IDO enzyme activity of human DCs was highest during stimulation by strongly maturation-inducing TLR ligands such as highly purified LPS (TLR4 ligand) or polyriboinosinic-polyribocytidilic acid (TLR3 ligand); factors of the adaptive immune system such as IFN-γ, a mixture of cytokines, and IFN-α had lesser stimulatory capacity for IDO induction and activity. After stimulation with CD40L, IDO-positive DCs expressed significantly increased levels of B7 family molecules such as CD40, CD80, CD86, ICOS ligand, as well as PD-L1 (B7-H1) and PD-L2 (B7-DC) compared with the IDO-negative DC subset. At the same time, the inhibitory receptors Ig-like transcripts 3 and 4 were significantly downregulated on IDO-positive cells. Functionally, IDO-positive DCs produced significantly more IL-1β and IL-15 and less IL-10 and IL-6 than the IDO-negative subset after CD40L stimulation. These results show that IDO expression is associated with a distinctive phenotype and functional capacity in mature DCs. It seems likely that the IDO-positive DC subset possesses a regulatory function and might skew a T cell response toward tolerance.
Collapse
Affiliation(s)
- Dagmar Von Bubnoff
- Department of Dermatology and Allergy, Friedrich-Wilhelms-University of Bonn, 53105 Bonn, Germany.
| | | | | | | | | |
Collapse
|
57
|
Copier J, Bodman-Smith M, Dalgleish A. Current status and future applications of cellular therapies for cancer. Immunotherapy 2011; 3:507-16. [DOI: 10.2217/imt.11.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Therapies based on the use of autologous immune cells are among the best candidates for cancer immunotherapy. Dendritic cell vaccines have demonstrated very encouraging responses for some solid tumors, while in melanoma autologous T-cell therapies have exceeded 70% objective response rates in selected Phase I trials. However, it is clear that a number of barriers exist to the effective, practical application of these therapies. The aim of this article is to consider modifications to such strategies over the last 3 years and the resultant clinical research in autologous dendritic cell vaccines, T-cell therapy and γδ T-cell therapy for cancer.
Collapse
Affiliation(s)
- John Copier
- Department of Oncology, Division of Clinical Sciences, St George’s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Mark Bodman-Smith
- Department of Oncology, Division of Clinical Sciences, St George’s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | | |
Collapse
|
58
|
Cruz LJ, Tacken PJ, Bonetto F, Buschow SI, Croes HJ, Wijers M, de Vries IJ, Figdor CG. Multimodal imaging of nanovaccine carriers targeted to human dendritic cells. Mol Pharm 2011; 8:520-31. [PMID: 21381651 DOI: 10.1021/mp100356k] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy against cancer and infectious diseases. The targeted delivery of nanovaccine particles (NPs) to DCs in vivo is a promising strategy to enhance immune responses. Here, targeted nanovaccine carriers were generated that allow multimodal imaging of nanocarrier-DC interactions from the subcellular to the organism level. These carriers were made of biodegradable poly(D,L-lactide-co-glycolide) harboring superparamagnetic iron oxide particles (SPIO) and fluorescently labeled antigen in a single particle. Targeted delivery was facilitated by coating the NPs with antibodies recognizing the DC-specific receptor DC-SIGN. The fluorescent label allowed for rapid analysis and quantification of specific versus nonspecific uptake of targeted NPs by DCs compared to other blood cells. In addition, it showed that part of the encapsulated antigen reached the lysosomal compartment of DCs within 24 h. Moreover, the presence of fluorescent label did not prevent the antigen from being presented to antigen-specific T cells. The incorporated SPIO was applied to track the NPs at subcellular cell organel level using transmission electron microscopy (TEM). NPs were found within endolysosomal compartments, where part of the SPIO was already released within 24 h. Furthermore, part of the NPs seemed to localize within the cytoplasm. Ex vivo loading of DCs with NPs resulted in efficient labeling and detection by MRI and did not abolish cell migration within collagen scaffolds. In conclusion, incorporation of two imaging agents within a single carrier allows tracking of targeted nanovaccines on a subcellular, cellular and possibly organism level, thereby facilitating rational design of in vivo targeted vaccination strategies.
Collapse
Affiliation(s)
- Luis J Cruz
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
60
|
Steele JC, Rao A, Marsden JR, Armstrong CJ, Berhane S, Billingham LJ, Graham N, Roberts C, Ryan G, Uppal H, Walker C, Young LS, Steven NM. Phase I/II trial of a dendritic cell vaccine transfected with DNA encoding melan A and gp100 for patients with metastatic melanoma. Gene Ther 2011; 18:584-93. [PMID: 21307889 DOI: 10.1038/gt.2011.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This trial tested a dendritic cell (DC) therapeutic cancer vaccine in which antigen is loaded using a novel non-viral transfection method enabling the uptake of plasmid DNA condensed with a cationic peptide. Proof of principle required the demonstration of diverse T lymphocyte responses following vaccination, including multiple reactivities restricted through both major histocompatibility complex (MHC) class I and II. Patients with advanced melanoma were offered four cycles of vaccination with autologous DC expressing melan A and gp100. Disease response was measured using Response Evaluation Criteria in Solid Tumours. Circulating MHC class I- and II-restricted responses were measured against peptide and whole antigen targets using interferon-γ ELIspot and enzyme-linked immunosorbent assay assays, respectively. Responses were analyzed across the trial population and presented descriptively for some individuals. Twenty-five patients received at least one cycle. Vaccination was well tolerated. Three patients had reduction in disease volume. Across the trial population, vaccination resulted in an expansion of effector responses to both antigens, to the human leukocyte antigen A2-restricted modified epitope, melan A ELAGIGILTV, and to a panel of MHC class I- and II-restricted epitopes. Vaccination with mature DC non-virally transfected with DNA encoding antigen had biological effect causing tumour regression and inducing diverse T lymphocyte responses.
Collapse
Affiliation(s)
- J C Steele
- Cancer Research UK Clinical Trials Unit, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Lesterhuis WJ, Schreibelt G, Scharenborg NM, Brouwer HMLH, Gerritsen MJP, Croockewit S, Coulie PG, Torensma R, Adema GJ, Figdor CG, de Vries IJM, Punt CJA. Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunol Immunother 2011; 60:249-60. [PMID: 21069321 PMCID: PMC11029288 DOI: 10.1007/s00262-010-0942-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/28/2010] [Indexed: 12/22/2022]
Abstract
Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients. Several strategies have been employed to load DC with antigen, including peptide loading. To increase immunogenicity of peptides, major histocompatibility complex (MHC) class I binding affinity and stability of peptide-MHC complexes at the cell surface may be improved by modification of the amino acid sequence. In this study, we compared the capacity of DC loaded with wild-type versus modified gp100 peptides with higher binding affinities to induce an immune and clinical response in advanced melanoma patients. Metastatic HLA-A2.1(+) melanoma patients were vaccinated intravenously (on average 25 × 10(6) DC) and intradermally (on average 11 × 10(6) DC) with mature DC loaded with keyhole limpet hemocyanin (KLH) together with tyrosinase peptide and either wild-type (15 patients) or modified (12 patients) gp100 peptides. All vaccinated patients showed a pronounced proliferative T cell or humoral response against KLH. Gp100-specific T cell responses were monitored in post-treatment delayed type hypersensitivity (DTH) skin biopsies by tetramer and functional analysis. Antigen-specific T cells were found in 2 of 15 patients vaccinated with wild-type gp100-loaded DC, versus 1 of 12 patients vaccinated with modified peptide-loaded DC. These three patients also had the best clinical response, with long-term (>8 years) complete responses in two patients, one in each group. We conclude that vaccination with peptide-loaded DC can result in long-term clinical responses in a minority of metastatic melanoma patients, and that the use of modified as compared to wild-type gp100 peptides for DC loading does not result in a relevant enhanced immune responses.
Collapse
Affiliation(s)
- W. Joost Lesterhuis
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicole M. Scharenborg
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - H. Mary-lène H. Brouwer
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Sandra Croockewit
- Department of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Pierre G. Coulie
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ruurd Torensma
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gosse J. Adema
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Cornelis J. A. Punt
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
62
|
Mortality Affected by Health Care and Public Health Policy Interventions. INTERNATIONAL HANDBOOK OF ADULT MORTALITY 2011. [DOI: 10.1007/978-90-481-9996-9_28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
63
|
de Vries IJM, Castelli C, Huygens C, Jacobs JFM, Stockis J, Schuler-Thurner B, Adema GJ, Punt CJA, Rivoltini L, Schuler G, Coulie PG, Lucas S. Frequency of circulating Tregs with demethylated FOXP3 intron 1 in melanoma patients receiving tumor vaccines and potentially Treg-depleting agents. Clin Cancer Res 2010; 17:841-8. [PMID: 21177412 DOI: 10.1158/1078-0432.ccr-10-2227] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Regulatory T cells (Tregs) are thought to inhibit antitumor immune responses, and their depletion could therefore have a synergistic effect with therapeutic cancer vaccines. We investigated the impact of three medications on blood Treg frequency in vaccinated cancer patients. EXPERIMENTAL DESIGN To date, the most specific marker for human Tregs is demethylation in the DNA that encodes the transcription factor FOXP3. Thus, we used a FOXP3 methylation-specific quantitative PCR assay (MS-qPCR) to measure Treg frequencies in the peripheral blood mononuclear cells (PBMCs) of melanoma patients. The patients participated in three clinical trials that combined tumor vaccines with potential Treg-depleting agents: low-dose cyclophosphamide, anti-CD25 monoclonal antibody daclizumab, and the IL-2/diphtheria toxin fusion protein denileukin diftitox. RESULTS In the nine control patients, blood Treg frequencies varied over time; there was a 46% reduction in one patient. In treated patients, a more than 2-fold decrease in Tregs was observed in one out of 11 patients receiving cyclophosphamide and in four out of 13 receiving daclizumab, but there was no such Treg decrease in any of the six patients who received denileukin diftitox. As a positive control, a more than 2-fold increase in blood Tregs was detected in four out of nine patients who were treated with interleukin-2. CONCLUSIONS We used a MS-qPCR method that detects Tregs but not other activated T lymphocytes; however, none of the Treg-depleting strategies that we tested led, in the majority of patients, to a conservative 50% reduction in blood Tregs.
Collapse
Affiliation(s)
- I Jolanda M de Vries
- Department of Medical Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Vilekar P, Awasthi V, Lagisetty P, King C, Shankar N, Awasthi S. In vivo trafficking and immunostimulatory potential of an intranasally-administered primary dendritic cell-based vaccine. BMC Immunol 2010; 11:60. [PMID: 21143974 PMCID: PMC3018378 DOI: 10.1186/1471-2172-11-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/10/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Coccidioidomycosis or Valley fever is caused by a highly virulent fungal pathogen: Coccidioides posadasii or immitis. Vaccine development against Coccidioides is of contemporary interest because a large number of relapses and clinical failures are reported with antifungal agents. An efficient Th1 response engenders protection. Thus, we have focused on developing a dendritic cell (DC)-based vaccine for coccidioidomycosis. In this study, we investigated the immunostimulatory characteristics of an intranasal primary DC-vaccine in BALB/c mouse strain that is most susceptible to coccidioidomycosis. The DCs were transfected nonvirally with Coccidioides-Ag2/PRA-cDNA. Expression of DC-markers, Ag2/PRA and cytokines were studied by flow cytometry, dot-immunoblotting and cytometric bead array methods, respectively. The T cell activation was studied by assessing the upregulation of activation markers in a DC-T cell co-culture assay. For trafficking, the DCs were co-transfected with a plasmid DNA encoding HSV1 thymidine kinase (TK) and administered intranasally into syngeneic mice. The trafficking and homing of TK-expressing DCs were monitored with positron emission tomography (PET) using 18F-FIAU probe. Based on the PET-probe accumulation in vaccinated mice, selected tissues were studied for antigen-specific response and T cell phenotypes using ELISPOT and flow cytometry, respectively. RESULTS We found that the primary DCs transfected with Coccidioides-Ag2/PRA-cDNA were of immature immunophenotype, expressed Ag2/PRA and activated naïve T cells. In PET images and subsequent biodistribution, intranasally-administered DCs were found to migrate in blood, lung and thymus; lymphocytes showed generation of T effector memory cell population (T(EM)) and IFN-γ release. CONCLUSIONS In conclusion, our results demonstrate that the intranasally-administered primary DC vaccine is capable of inducing Ag2/PRA-specific T cell response. Unique approaches utilized in our study represent an attractive and novel means of producing and evaluating an autologous DC-based vaccine.
Collapse
Affiliation(s)
- Prachi Vilekar
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73117, USA
| | | | | | | | | | | |
Collapse
|
65
|
Augier S, Ciucci T, Luci C, Carle GF, Blin-Wakkach C, Wakkach A. Inflammatory Blood Monocytes Contribute to Tumor Development and Represent a Privileged Target To Improve Host Immunosurveillance. THE JOURNAL OF IMMUNOLOGY 2010; 185:7165-73. [DOI: 10.4049/jimmunol.0902583] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
66
|
Mac Keon S, Gazzaniga S, Mallerman J, Bravo AI, Mordoh J, Wainstok R. Vaccination with dendritic cells charged with apoptotic/necrotic B16 melanoma induces the formation of subcutaneous lymphoid tissue. Vaccine 2010; 28:8162-8. [PMID: 20937314 DOI: 10.1016/j.vaccine.2010.09.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/18/2010] [Accepted: 09/25/2010] [Indexed: 01/20/2023]
Abstract
Antigen presentation by dendritic cells (DC) is of key importance for the initiation of the primary immune response. Mice vaccinated with DC charged with apoptotic/necrotic B16 cells (DC-Apo/Nec) are protected against B16 challenge. The aim of this study was to assess vaccine cell migration in our system and to find out if there is an immunological response taking place at the vaccination site. The formation of a pseudocapsule, peripheral node addresin expression in small venules, and the recruitment of a wide variety of cellular populations, including macrophages, polymorphonuclear lymphocytes, and CD8+ and CD4+ T lymphocytes found in association with DC, evidenced the formation of tertiary lymphoid tissue in the vaccination site in our experimental system.
Collapse
Affiliation(s)
- Soledad Mac Keon
- Depto. de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
67
|
Lesterhuis WJ, de Vries IJM, Aarntzen EA, de Boer A, Scharenborg NM, van de Rakt M, van Spronsen DJ, Preijers FW, Figdor CG, Adema GJ, Punt CJA. A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients. Br J Cancer 2010; 103:1415-21. [PMID: 20924373 PMCID: PMC2990614 DOI: 10.1038/sj.bjc.6605935] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Dendritic cell (DC) vaccination has been shown to induce anti-tumour immune responses in cancer patients, but so far its clinical efficacy is limited. Recent evidence supports an immunogenic effect of cytotoxic chemotherapy. Pre-clinical data indicate that the combination of chemotherapy and immunotherapy may result in an enhanced anti-cancer activity. Most studies have focused on the immunogenic aspect of chemotherapy-induced cell death, but only few studies have investigated the effect of chemotherapeutic agents on the effector lymphocytes of the immune system. Methods: Here we investigated the effect of treatment with oxaliplatin and capecitabine on non-specific and specific DC vaccine-induced adaptive immune responses. Stage III colon cancer patients receiving standard adjuvant oxaliplatin/capecitabine chemotherapy were vaccinated at the same time with keyhole limpet haemocyanin (KLH) and carcinoembryonic antigen (CEA)-peptide pulsed DCs. Results: In 4 out of 7 patients, functional CEA-specific T-cell responses were found at delayed type hypersensitivity (DTH) skin testing. In addition, we observed an enhanced non-specific T-cell reactivity upon oxaliplatin administration. KLH-specific T-cell responses remained unaffected by the chemotherapy, whereas B-cell responses were diminished. Conclusion: The results strongly support further testing of the combined use of specific anti-tumour vaccination with oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- W J Lesterhuis
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Schreibelt G, Tel J, Sliepen KHEWJ, Benitez-Ribas D, Figdor CG, Adema GJ, de Vries IJM. Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol Immunother 2010; 59:1573-82. [PMID: 20204387 PMCID: PMC11029854 DOI: 10.1007/s00262-010-0833-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/08/2010] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are central players of the immune response. To date, DC-based immunotherapy is explored worldwide in clinical vaccination trials with cancer patients, predominantly with ex vivo-cultured monocyte-derived DCs (moDCs). However, the extensive culture period and compounds required to differentiate them into DCs may negatively affect their immunological potential. Therefore, it is attractive to consider alternative DC sources, such as blood DCs. Two major types of naturally occurring DCs circulate in peripheral blood, myeloid DCs (mDCs) and plasmacytoid (pDCs). These DC subsets express different surface molecules and are suggested to have distinct functions. Besides scavenging pathogens and presenting antigens, DCs secrete cytokines, all of which is vital for both the acquired and the innate immune system. These immunological functions relate to Toll-like receptors (TLRs) expressed by DCs. TLRs recognize pathogen-derived products and subsequently provoke DC maturation, antigen presentation and cytokine secretion. However, not every TLR is expressed on each DC subset nor causes the same effects when activated. Considering the large amount of clinical trials using DC-based immunotherapy for cancer patients and the decisive role of TLRs in DC maturation, this review summarizes TLR expression in different DC subsets in relation to their function. Emphasis will be given to the therapeutic potential of TLR-matured DC subsets for DC-based immunotherapy.
Collapse
Affiliation(s)
- Gerty Schreibelt
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jurjen Tel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Kwinten H. E. W. J. Sliepen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Carl G. Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gosse J. Adema
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Paedriatric Hemato-Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
69
|
Srinivas M, Aarntzen EHJG, Bulte JWM, Oyen WJ, Heerschap A, de Vries IJM, Figdor CG. Imaging of cellular therapies. Adv Drug Deliv Rev 2010; 62:1080-93. [PMID: 20800081 DOI: 10.1016/j.addr.2010.08.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 12/13/2022]
Abstract
Cellular therapy promises to revolutionize medicine, by restoring tissue and organ function, and combating key disorders including cancer. As with all major developments, new tools must be introduced to allow optimization. For cell therapy, the key tool is in vivo imaging for real time assessment of parameters such as cell localization, numbers and viability. Such data is critical to modulate and tailor the therapy for each patient. In this review, we discuss recent work in the field of imaging cell therapies in the clinic, including preclinical work where clinical examples are not yet available. Clinical trials in which transferred cells were imaged using magnetic resonance imaging (MRI), nuclear scintigraphy, single photon emission computed tomography (SPECT), and positron emission tomography (PET) are evaluated from an imaging perspective. Preclinical cell tracking studies that focus on fluorescence and bioluminescence imaging are excluded, as these modalities are generally not applicable to clinical cell tracking. In this review, we assess the advantages and drawbacks of the various imaging techniques available, focusing on immune cells, particularly dendritic cells. Both strategies of prelabeling cells before transplant and the use of an injectable label to target cells in situ are covered. Finally, we discuss future developments, including the emergence of multimodal imaging technology for cell tracking from the preclinical to the clinical realm.
Collapse
Affiliation(s)
- M Srinivas
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
70
|
Rapid generation of maturationally synchronized human dendritic cells: contribution to the clinical efficacy of extracorporeal photochemotherapy. Blood 2010; 116:4838-47. [PMID: 20720185 DOI: 10.1182/blood-2009-11-256040] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extracorporeal photochemotherapy (ECP) is widely used to treat cutaneous T-cell lymphoma, graft-versus-host disease, and allografted organ rejection. Its clinical and experimental efficacy in cancer immunotherapy and autoreactive disorders suggests a novel mechanism. This study reveals that ECP induces a high percentage of processed monocytes to enter the antigen-presenting dendritic cell (DC) differentiation pathway, within a single day, without added cytokines, as determined by enhanced expression of relevant genes. The resulting DCs are capable of processing and presentation of exogenous and endogenous antigen and are largely maturationally synchronized, as assessed by the level of expression of costimulatory surface molecules. Principal component analysis of the ECP-induced monocyte transcriptome reveals that activation or suppression of more than 1100 genes produces a reproducible distinctive molecular signature, common to ECP-processed monocytes from normal subjects, and those from patients. Because ECP induces normal monocytes to enter the DC differentiation pathway, this phenomenon is independent of disease state. The efficiency with which ECP stimulates new functional DCs supports the possibility that these cells participate prominently in the clinical successes of the treatment. Appropriately modified by future advances, ECP may potentially offer a general source of therapeutic DCs.
Collapse
|
71
|
ten Brinke A, van Schijndel G, Visser R, de Gruijl TD, Zwaginga JJ, van Ham SM. Monophosphoryl lipid A plus IFNgamma maturation of dendritic cells induces antigen-specific CD8+ cytotoxic T cells with high cytolytic potential. Cancer Immunol Immunother 2010; 59:1185-95. [PMID: 20336295 PMCID: PMC11030766 DOI: 10.1007/s00262-010-0843-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are promising antigen presenting cells for cancer treatment. Previously, we showed that the combination of monophosphoryl lipid A (MPLA) with IFNgamma generates mature DCs that produce IL-12 and polarize CD4(+) T cells towards a Th1 phenotype. Here, we extended these observations by showing that the DCs generated with the clinical grade maturation cocktail of MPLA/IFNgamma induce superior tumour antigen-specific CD8(+) CTL responses compared to the cytokine cocktail matured DCs that are currently used in the clinic. MPLA/IFNgamma DCs can induce CTL responses in healthy individuals as well as in melanoma patients. The CTL induction was mainly dependent on the IL-12 produced by the MPLA/IFNgamma DCs. The high amounts of induced CTLs are functional as they produce IFNgamma and lyse target cells and this cytolytic activity is antigen specific and HLA restricted. Furthermore, the CTLs proved to kill tumour cells expressing endogenous tumour antigen in vitro. Therefore, MPLA/IFNgamma DCs are very promising for the use in future cancer immunotherapy.
Collapse
Affiliation(s)
- Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, P.O. Box 9190, 1006 AD, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
72
|
Commonly used prophylactic vaccines as an alternative for synthetically produced TLR ligands to mature monocyte-derived dendritic cells. Blood 2010; 116:564-74. [DOI: 10.1182/blood-2009-11-251884] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Currently dendritic cell (DC)–based vaccines are explored in clinical trials, predominantly in cancer patients. Murine studies showed that only maturation with Toll-like receptor (TLR) ligands generates mature DCs that produce interleukin-12 and promote optimal T-cell help. Unfortunately, the limited availability of clinical-grade TLR ligands significantly hampers the translation of these findings into DC-based vaccines. Therefore, we explored 15 commonly used preventive vaccines as a possible source of TLR ligands. We have identified a cocktail of the vaccines BCG-SSI, Influvac, and Typhim that contains TLR ligands and is capable of optimally maturing DCs. These DCs (vaccine DCs) showed high expression of CD80, CD86, and CD83 and secreted interleukin-12. Although vaccine DCs exhibited an impaired migratory capacity, this could be restored by addition of prostaglandin E2 (PGE2; vaccine PGE2 DCs). Vaccine PGE2 DCs are potent inducers of T-cell proliferation and induce Th1 polarization. In addition, vaccine PGE2 DCs are potent inducers of tumor antigen-specific CD8+ effector T cells. Finally, vaccine PGE2–induced DC maturation is compatible with different antigen-loading strategies, including RNA electroporation. These data thus identify a new clinical application for a mixture of commonly used preventive vaccines in the generation of Th1-inducing clinical-grade mature DCs.
Collapse
|
73
|
Nakai N, Hartmann G, Kishimoto S, Katoh N. Dendritic cell vaccination in human melanoma: relationships between clinical effects and vaccine parameters. Pigment Cell Melanoma Res 2010; 23:607-19. [DOI: 10.1111/j.1755-148x.2010.00736.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
74
|
Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood 2010; 116:2277-85. [PMID: 20566893 DOI: 10.1182/blood-2010-02-268425] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of dendritic cells (DCs) in therapeutic cancer vaccination requires their loading with tumor-specific antigen(s). DEC-205, a phagocytosis receptor mediating antigen uptake, is associated with CD8(+) T-cell responses in mice. Here we fused an anti-DEC-205scFv to an HLA-DP4-restricted epitope from the tumor antigen MAGE-A3, and examined the suitability and efficacy of DEC-205 to deliver a helper epitope to human monocyte-derived DCs (moDCs). The construct specifically bound DEC-205 on human moDCs without negative impact on DC phenotype and function. We measured antigen presentation with specific autologous CD4(+) T cells, generated by TCR-RNA transfection. DEC-205 targeting resulted in significant major histocompatibility complex class II-restricted antigen presentation, and was superior to loading DCs by electroporation of mRNA encoding endosome-targeted MAGE-A3-DCLAMP or by direct peptide pulsing. Anti-DEC-205scFv-MAGE-A3 was presented 100 times more efficiently than the control constructs. DC maturation before or during incubation with anti-DEC-205scFv-MAGE-A3 reduced the interleukin-10/interleukin-2 ratio. Moreover, we successfully applied the DEC-205 targeting strategy to moDCs from malignant melanoma patients. Again, DEC-205-targeted mature DCs (mDCs) presented the antigen more efficiently than peptide-pulsed DCs and maintained their stimulatory capacity after cryoconservation. Thus, DEC-205 targeting represents a feasible and effective method to deliver helper epitopes to DCs in anticancer vaccine strategies, which may also be suitable for DC targeting in vivo.
Collapse
|
75
|
Yewdall AW, Drutman SB, Jinwala F, Bahjat KS, Bhardwaj N. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells. PLoS One 2010; 5:e11144. [PMID: 20585396 PMCID: PMC2886840 DOI: 10.1371/journal.pone.0011144] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 05/25/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs) that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression. METHODOLOGY/PRINCIPAL FINDINGS We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells. CONCLUSIONS/SIGNIFICANCE This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs.
Collapse
Affiliation(s)
- Alice W. Yewdall
- Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Scott B. Drutman
- Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Felecia Jinwala
- Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Keith S. Bahjat
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
76
|
Kim HJ, Kim HO, Lee K, Baek EJ, Kim HS. Two-step maturation of immature DCs with proinflammatory cytokine cocktail and poly(I:C) enhances migratory and T cell stimulatory capacity. Vaccine 2010; 28:2877-86. [PMID: 20156531 DOI: 10.1016/j.vaccine.2010.01.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/22/2010] [Accepted: 01/28/2010] [Indexed: 12/22/2022]
Abstract
Effective induction of cell-mediated immune responses strongly depends on the ability of dendritic cells (DCs) to produce Th1-polarizing cytokines, migrate to lymph nodes and stimulate T cells through antigen-presenting complex and costimulatory molecules. While various protocols for optimizing DC maturation with single or multiple stimuli mimicking infections or inflammatory milieu have been proposed for the generation of DCs with features desired for clinical application, stepwise maturation of DCs by these multiple stimuli has not been systemically assessed. Among the combinations of several immune-modulating factors with known effects on DC maturation, we found that stepwise DC maturation with cytokine cocktail (TNF-alpha+IL-6+IL-1 beta+PGE(2)) followed by poly(I:C) stimulation enhanced the production of IL-12 with strong allostimulatory capacity. While there were no significant differences between DC matured by simultaneous or sequential activation by cytokine cocktail and poly(I:C) in expression of markers and costimulatory molecules of mature DCs, the delivery of inflammatory signal prior to poly(I:C) results in sustained interleukin-12 expression with reduced IL-10 than DC matured by simultaneous stimulation. This sequential stimulation significantly increased migratory capacity in response to CCL21 and CXCL12 compared to DC matured with cytokine cocktail. Furthermore, these DCs retained their responsiveness to CD40L stimulation in secondary IL-12 production and efficiently generated autologous antigen-specific effector T cells as evidenced by ELISPOT assay. Thus, we propose a novel DC maturation protocol in which stimulation of DCs with cytokine cocktail and subsequently with poly(I:C) generates DCs with a high migratory capacity with a preferential Th1 inducing capacity.
Collapse
Affiliation(s)
- Hyung Jin Kim
- Division of Cardiovascular and Rare Disease, Korea Center for Disease Control and Prevention 194 Tongillo, Eunpyung-gu, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
77
|
Nakai N, Kishida T, Hartmann G, Katoh N, Imanishi J, Kishimoto S, Mazda O. Mitf silencing cooperates with IL-12 gene transfer to inhibit melanoma in mice. Int Immunopharmacol 2010; 10:540-5. [PMID: 20074674 DOI: 10.1016/j.intimp.2009.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/15/2009] [Accepted: 12/28/2009] [Indexed: 11/15/2022]
Abstract
Malignant melanoma is a malignant neoplasm originating from the melanocyte lineage. Microphthalmia-associated transcription factor (Mitf) is crucially involved in the melanin synthesis as well as proliferation and survival of melanocyte and melanoma. We previously showed that short interfering RNA (siRNA) that is specific for the Mitf gene (Mitf-siRNA) significantly inhibited growth of B16 melanoma after electro-transfected in vivo into preestablished tumor in mice. Here we assessed efficacy of electroporation-mediated co-transfection of Mitf-siRNA and IL-12 gene in the treatment of murine melanoma. As results, the tumor growth was more strongly inhibited by intratumor co-transfection with Mitf-siRNA and IL-12-encoding plasmid DNA than by transfection with either of the molecules alone. The co-transfection induced intratumor infiltration of CD4+ and CD8+ T cells, and hampered neoangiogenesis in the tumor. The findings suggest that the RNAi/cytokine gene combination therapy by means of electroporation may become a novel and efficacious therapeutic modality to treat neoplasms including melanoma.
Collapse
Affiliation(s)
- Noriaki Nakai
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto 602-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
78
|
Van Nuffel AMT, Corthals J, Neyns B, Heirman C, Thielemans K, Bonehill A. Immunotherapy of cancer with dendritic cells loaded with tumor antigens and activated through mRNA electroporation. Methods Mol Biol 2010; 629:405-52. [PMID: 20387165 DOI: 10.1007/978-1-60761-657-3_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. Considerable progress has been made in enhancing the efficacy of therapeutic anticancer vaccines. First, dendritic cells (DCs) have been identified as the key players in orchestrating primary immune responses. A better understanding of their biology and the development of procedures to generate vast amounts of DCs in vitro have accelerated the development of potent immunotherapeutic strategies for cancer. Second, tumor-associated antigens have been identified which are either selectively or preferentially expressed by tumor cells and can be recognized by the immune system. Finally, several studies have been performed on the genetic modification of DCs with tumor antigens. In this regard, loading the DCs with mRNA, which enables them to produce/process and present the tumor antigens themselves, has emerged as a promising strategy. Here, we will first overview the different aspects that must be taken into account when generating an mRNA-based DC vaccine and the published clinical studies exploiting mRNA-loaded DCs. Second, we will give a detailed description of a novel procedure to generate a vaccine consisting of tumor antigen-expressing dendritic cells with an in vitro superior capacity to induce anti-tumor immune responses. Here, immature DCs are electroporated with mRNAs encoding a tumor antigen, CD40 ligand (CD40L), CD70, and constitutively active (caTLR4) to generate mature antigen-presenting DCs.
Collapse
Affiliation(s)
- An M T Van Nuffel
- Laboratory of Molecular and Cellular Therapy, Department of Physiology - Immunology, Medical School of the Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
79
|
Macke L, Garritsen HSP, Meyring W, Hannig H, Pägelow U, Wörmann B, Piechaczek C, Geffers R, Rohde M, Lindenmaier W, Dittmar KEJ. Evaluating maturation and genetic modification of human dendritic cells in a new polyolefin cell culture bag system. Transfusion 2009; 50:843-55. [PMID: 20003054 DOI: 10.1111/j.1537-2995.2009.02520.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Dendritic cells (DCs) are applied worldwide in several clinical studies of immune therapy of malignancies, autoimmune diseases, and transplantations. Most legislative bodies are demanding high standards for cultivation and transduction of cells. Closed-cell cultivating systems like cell culture bags would simplify and greatly improve the ability to reach these cultivation standards. We investigated if a new polyolefin cell culture bag enables maturation and adenoviral modification of human DCs in a closed system and compare the results with standard polystyrene flasks. STUDY DESIGN AND METHODS Mononuclear cells were isolated from HLA-A*0201-positive blood donors by leukapheresis. A commercially available separation system (CliniMACS, Miltenyi Biotec) was used to isolate monocytes by positive selection using CD14-specific immunomagnetic beads. The essentially homogenous starting cell population was cultivated in the presence of granulocyte-macrophage-colony-stimulating factor and interleukin-4 in a closed-bag system in parallel to the standard flask cultivation system. Genetic modification was performed on Day 4. After induction of maturation on Day 5, mature DCs could be harvested and cryopreserved on Day 7. During the cultivation period comparative quality control was performed using flow cytometry, gene expression profiling, and functional assays. RESULTS Both flasks and bags generated mature genetically modified DCs in similar yields. Surface membrane markers, expression profiles, and functional testing results were comparable. The use of a closed-bag system facilitated clinical applicability of genetically modified DCs. CONCLUSIONS The polyolefin bag-based culture system yields DCs qualitatively and quantitatively comparable to the standard flask preparation. All steps including cryopreservation can be performed in a closed system facilitating standardized, safe, and reproducible preparation of therapeutic cells.
Collapse
Affiliation(s)
- Lars Macke
- Department of Molecular Biotechnology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Correll A, Tuettenberg A, Becker C, Jonuleit H. Increased regulatory T-cell frequencies in patients with advanced melanoma correlate with a generally impaired T-cell responsiveness and are restored after dendritic cell-based vaccination. Exp Dermatol 2009; 19:e213-21. [DOI: 10.1111/j.1600-0625.2009.01055.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
81
|
Van Gool S, Maes W, Ardon H, Verschuere T, Van Cauter S, De Vleeschouwer S. Dendritic cell therapy of high-grade gliomas. Brain Pathol 2009; 19:694-712. [PMID: 19744041 DOI: 10.1111/j.1750-3639.2009.00316.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The prognosis of patients with malignant glioma is poor in spite of multimodal treatment approaches consisting of neurosurgery, radiochemotherapy and maintenance chemotherapy. Among innovative treatment strategies like targeted therapy, antiangiogenesis and gene therapy approaches, immunotherapy emerges as a meaningful and feasible treatment approach for inducing long-term survival in at least a subpopulation of these patients. Setting up immunotherapy for an inherent immunosuppressive tumor located in an immune-privileged environment requires integration of a lot of scientific input and knowledge of both tumor immunology and neuro-oncology. The field of immunotherapy is moving into the direction of active specific immunotherapy using autologous dendritic cells (DCs) as vehicle for immunization. In the translational research program of the authors, the whole cascade from bench to bed to bench of active specific immunotherapy for malignant glioma is covered, including proof of principle experiments to demonstrate immunogenicity of patient-derived mature DCs loaded with autologous tumor lysate, preclinical in vivo experiments in a murine orthotopic glioma model, early phase I/II clinical trials for relapsing patients, a phase II trial for patients with newly diagnosed glioblastoma (GBM) for whom immunotherapy is integrated in the current multimodal treatment, and laboratory analyses of patient samples. The strategies and results of this program are discussed in the light of the internationally available scientific literature in this fast-moving field of basic science and translational clinical research.
Collapse
Affiliation(s)
- Stefaan Van Gool
- Laboratory of Experimental Immunology, and Department of Child & Woman, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
82
|
Gervais A, Eymard JC, Toulmonde E, Bernard J. Selected allogeneic dendritic cells markedly enhance human tumour antigen-specific T cell response in vitro. Cancer Immunol Immunother 2009; 58:1831-41. [PMID: 19330330 PMCID: PMC11030287 DOI: 10.1007/s00262-009-0694-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 03/07/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alloreaction is known to accumulate several theoretical advantages that can improve dendritic cell (DC)-based anti-infective or antitumour strategies. Allogeneic DC have already been tested in experimental and clinical studies, but their efficacy compared with their autologous counterparts was rarely investigated and conclusions diverge. OBJECTIVE This study compared antigen-specific T cell responses following priming with autologous versus allogeneic DC and examined the possibility of screening these responses in order to select allogeneic DC that lead to a great amplification. RESULTS Allogeneic DC obtained from donors matched with the single HLA-A2 allele were efficient in generating in vitro peptide-specific T cell responses. When randomly chosen, allogeneic DC generated a broad range of antigen-specific T cell responses in comparison with autologous DC. When screened and selected, allogeneic DC markedly enhanced peptide-specific T cell priming and allowed a more efficient boosting of resulting T cells. These selected allogeneic DC provided a favourable cytokinic and cellular environment that can help concurrent antigen-specific responses. CONCLUSION Ex vivo selected allogeneic DC provide adjuvant effects that lead to amplification of concomitant antigen-specific T cell responses.
Collapse
Affiliation(s)
- Alban Gervais
- Institut Jean Godinot, Unité de Thérapie Cellulaire, Reims, France.
| | | | | | | |
Collapse
|
83
|
Schadendorf D, Algarra SM, Bastholt L, Cinat G, Dreno B, Eggermont AMM, Espinosa E, Guo J, Hauschild A, Petrella T, Schachter J, Hersey P. Immunotherapy of distant metastatic disease. Ann Oncol 2009; 20 Suppl 6:vi41-50. [PMID: 19617297 PMCID: PMC2712591 DOI: 10.1093/annonc/mdp253] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy of metastatic melanoma consists of various approaches leading to specific or non-specific immunomodulation. The use of FDA-approved interleukin (IL)-2 alone, in combination with interferon alpha, and/or with various chemotherapeutic agents (biochemotherapy) is associated with significant toxicity and poor efficacy that does not improve overall survival of 96% of patients. Many studies with allogeneic and autologous vaccines have demonstrated no clinical benefit, and some randomised trials even showed a detrimental effect in the vaccine arm. The ongoing effort to develop melanoma vaccines based on dendritic cells and peptides is driven by advances in understanding antigen presentation and processing, and by new techniques of vaccine preparation, stabilisation and delivery. Several agents that have shown promising activity in metastatic melanoma including IL-21 and monoclonal antibodies targeting cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA-4) or CD137 are discussed. Recent advances of intratumour gene transfer technologies and adoptive immunotherapy, which represents a promising although technically challenging direction, are also discussed.
Collapse
Affiliation(s)
- D Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Thacker EE, Nakayama M, Smith BF, Bird RC, Muminova Z, Strong TV, Timares L, Korokhov N, O'Neill AM, de Gruijl TD, Glasgow JN, Tani K, Curiel DT. A genetically engineered adenovirus vector targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific immune responses in vivo. Vaccine 2009; 27:7116-24. [PMID: 19786146 DOI: 10.1016/j.vaccine.2009.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/02/2009] [Accepted: 09/16/2009] [Indexed: 01/06/2023]
Abstract
Targeting viral vectors encoding tumor-associated antigens to dendritic cells (DCs) in vivo is likely to enhance the effectiveness of immunotherapeutic cancer vaccines. We have previously shown that genetic modification of adenovirus (Ad) 5 to incorporate CD40 ligand (CD40L) rather than native fiber allows selective transduction and activation of DCs in vitro. Here, we examine the capacity of this targeted vector to induce immune responses to the tumor antigen CEA in a stringent in vivo canine model. CD40-targeted Ad5 transduced canine DCs via the CD40-CD40L pathway in vitro, and following vaccination of healthy dogs, CD40-targeted Ad5 induced strong anti-CEA cellular and humoral responses. These data validate the canine model for future translational studies and suggest targeting of Ad5 vectors to CD40 for in vivo delivery of tumor antigens to DCs is a feasible approach for successful cancer therapy.
Collapse
Affiliation(s)
- Erin E Thacker
- Division of Human Gene Therapy, Department of Medicine, Birmingham, AL 35294, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Stoeckle C, Gleske AK. Immunotherapy: from basic research to clinical applications. Cancer Immunol Immunother 2009; 58:1129-36. [PMID: 18584173 PMCID: PMC11031055 DOI: 10.1007/s00262-008-0544-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 06/04/2008] [Indexed: 12/12/2022]
Affiliation(s)
- Christina Stoeckle
- Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany.
| | | |
Collapse
|
86
|
Efficient Activation of LRH-1–specific CD8+ T-cell Responses From Transplanted Leukemia Patients by Stimulation With P2X5 mRNA-electroporated Dendritic Cells. J Immunother 2009; 32:539-51. [DOI: 10.1097/cji.0b013e3181987c22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
Schuurhuis DH, Lesterhuis WJ, Kramer M, Looman MGM, van Hout-Kuijer M, Schreibelt G, Boullart ACI, Aarntzen EHJG, Benitez-Ribas D, Figdor CG, Punt CJA, de Vries IJM, Adema GJ. Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells. Cancer Immunol Immunother 2009; 58:1109-15. [PMID: 19018531 PMCID: PMC11030274 DOI: 10.1007/s00262-008-0626-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 10/30/2008] [Indexed: 12/15/2022]
Abstract
Tumor-derived peptides are used frequently as antigen (Ag) source in dendritic cell (DC) therapy in cancer patients. An alternative is to load DC with tumor-associated Ag (TAA)-encoding RNA. RNA-loading obviates prior knowledge of CTL and Th epitopes in the Ag. Multiple epitopes for many HLA alleles (both MHC class I and class II) are encoded by the RNA and loading is independent of the patient's HLA make-up. Herein, we determined the optimal conditions for mRNA-electroporation of monocyte-derived DC for clinical application in relation to different maturation cocktails. The data demonstrate that TAA carcinoembryonic antigen, gp100 and tyrosinase are expressed already 30 min after electroporation with the encoding mRNA. Moreover, gp100-specific CTL are activated by gp100 mRNA-electroporated DC. Importantly, we show here that the presence of polyinosinic-polycytidylic acid [poly(I:C)] in the maturation cocktail prevents effective protein expression of the electroporated mRNA as well as subsequent CTL recognition. This effect of poly(I:C) correlates with the induction of IFN-induced genes and innate anti-viral effector molecules in DC. Together these data show that electroporation of mature DC with TAA-encoding mRNA is attractive for use in DC vaccination protocols in cancer patients, but protein expression should be tested for each maturation cocktail.
Collapse
Affiliation(s)
- Danita H Schuurhuis
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abe T, Fuse I, Narita M, Takahashi M, Aizawa Y. Combination use of immune complexes and a Ca2(+) channel blocker azelnidipine enhances interleukin-12 p40 secretion without T helper type 17 cytokine secretion in human monocyte-derived dendritic cells. Clin Exp Immunol 2009; 156:405-12. [PMID: 19438591 DOI: 10.1111/j.1365-2249.2009.03911.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Immune complexes (ICs) improve the capacity of priming specific CD8(+) cytotoxic T cell responses of dendritic cells (DCs). ICs induce phosphorylation of mitogen-activated protein kinases (MAPK) and calcium influx, although the precise regulating mechanism still remains unclear. In the present study, we investigated the effect of a Ca2(+) channel blocker on the phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) in immature monocyte-derived DCs stimulated with lipopolysaccharide (LPS) or LPS-ICs, and the production of interleukin (IL)-12 family members (p40, p70, IL-23), T helper type 17 (Th17) cytokines (IL-6 and IL-23), tumour necrosis factor (TNF)-alpha and IL-10 were also investigated. In comparison with LPS stimulation, LPS-ICs stimulation enhanced p38 MAPK phosphorylation significantly, which was associated with an increase in IL-12 p40 monomer/homodimer secretion. LPS-ICs also enhanced TNF-alpha and IL-6 secretion, but suppressed IL-23 secretion. The use of azelnidipine (Aze), a long-acting L-type Ca2(+) channel blocker with a high lipid solubility, suppressed p38 MAPK phosphorylation stimulated with LPS or LPS-ICs, but surprisingly enhanced IL-12 p40 monomer/homodimer secretion stimulated with LPS-ICs. This IL-12 p40 secretion-enhancing effect was not accompanied by IL-10 or IL-23 production, but was associated with ERK phosphorylation. The use of Aze did not affect IL-12 p70 production. These results suggest that the use of Aze enhances ICs-mediated IL-12 p40 secretion without additional IL-23 secretion. Therefore, the use of Aze and ICs could be a new therapeutic approach to immunomolecular therapy, as it does not cause Th17 differentiation which induces autoimmunity or reduces anti-tumour immunity.
Collapse
Affiliation(s)
- T Abe
- Niigata University Graduate School of Medicine and Dental Science, Division of Hematology, Department of Regenerative and Transplant Medicine, Niigata, Japan.
| | | | | | | | | |
Collapse
|
89
|
Bonehill A, Van Nuffel AM, Corthals J, Tuyaerts S, Heirman C, François V, Colau D, van der Bruggen P, Neyns B, Thielemans K. Single-Step Antigen Loading and Activation of Dendritic Cells by mRNA Electroporation for the Purpose of Therapeutic Vaccination in Melanoma Patients. Clin Cancer Res 2009; 15:3366-75. [DOI: 10.1158/1078-0432.ccr-08-2982] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
90
|
Verdijk P, Aarntzen EH, Lesterhuis WJ, Boullart AI, Kok E, van Rossum MM, Strijk S, Eijckeler F, Bonenkamp JJ, Jacobs JF, Blokx W, vanKrieken JHJ, Joosten I, Boerman OC, Oyen WJ, Adema G, Punt CJ, Figdor CG, de Vries IJM. Limited Amounts of Dendritic Cells Migrate into the T-Cell Area of Lymph Nodes but Have High Immune Activating Potential in Melanoma Patients. Clin Cancer Res 2009; 15:2531-40. [DOI: 10.1158/1078-0432.ccr-08-2729] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
91
|
Abstract
Dendritic cells (DC) have profound abilities to induce and coordinate T-cell immunity. This makes them ideal biological agents for use in immunotherapeutic strategies to augment T-cell immunity to HIV infection. Current clinical trials are administering DC-HIV antigen preparations carried out ex vivo as proof of principle that DC immunotherapy is safe and efficacious in HIV-infected patients. These trials are largely dependent on preclinical studies that will provide knowledge and guidance about the types of DC, form of HIV antigen, method of DC maturation, route of DC administration, measures of anti-HIV immune function and ultimately control of HIV replication. Additionally, promising immunotherapy approaches are being developed based on targeting of DC with HIV antigens in vivo. The objective is to define a safe and effective strategy for enhancing control of HIV infection in patients undergoing antiretroviral therapy.
Collapse
Affiliation(s)
- C R Rinaldo
- Department of Infectious Diseases, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
92
|
Grolleau-Julius A, Abernathy L, Harning E, Yung RL. Mechanisms of murine dendritic cell antitumor dysfunction in aging. Cancer Immunol Immunother 2008; 58:1935-9. [PMID: 19082999 DOI: 10.1007/s00262-008-0636-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/23/2008] [Indexed: 11/28/2022]
Abstract
Effective cancer immunotherapy depends on the body's ability to generate tumor antigen-presenting cells and tumor-reactive effector lymphocytes. As the most potent antigen presenting cells (APCs), dendritic cells (DCs) are capable of sensitizing T cells to new and recall antigens. Clinical trials of antigen-pulsed autologous DCs have been conducted in patients with a number of hematological and solid cancers, including malignant melanoma, lymphoma, myeloma, and non-small cell lung cancer. These studies suggest that antigen-loaded DC vaccination is a potentially safe and effective cancer therapy. However, the clinical results have been variable. Since the elderly are preferentially affected by diseases targeted by DC-directed immunotherapy, it is quite striking that few studies to date have focused on the effect of aging on DC function, a key aspect of optimal immunotherapy design in an aging population. In the present paper, we will discuss the consequences of aging on murine bone marrow-derived DC function and their use in cancer immunotherapy.
Collapse
Affiliation(s)
- Annabelle Grolleau-Julius
- Divisions of Geriatric Medicine and Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0940, USA.
| | | | | | | |
Collapse
|
93
|
Gaymalov ZZ, Yang Z, Pisarev VM, Alakhov VY, Kabanov AV. The effect of the nonionic block copolymer pluronic P85 on gene expression in mouse muscle and antigen-presenting cells. Biomaterials 2008; 30:1232-45. [PMID: 19064283 DOI: 10.1016/j.biomaterials.2008.10.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 10/31/2008] [Indexed: 11/29/2022]
Abstract
DNA vaccines can be greatly improved by polymer agents that simultaneously increase transgene expression and activate immunity. We describe here Pluronic P85 (P85), a triblock copolymer of ethylene oxide (EO) and propylene oxide (PO) EO(26)-PO(40)-EO(26). Using a mouse model we demonstrate that co-administration of a bacterial plasmid DNA with P85 in a skeletal muscle greatly increases gene expression in the injection site and distant organs, especially the draining lymph nodes and spleen. The reporter expression colocalizes with the specific markers of myocytes and keratinocytes in the muscle, as well as dendritic cells (DCs) and macrophages in the muscle, lymph nodes and spleen. Furthermore, DNA/P85 and P85 alone increase the systemic expansion of CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural killer) cell populations. DNA/P85 (but not P85) also increases maturation of local DC (CD11c+ CD86+, CD11c+ CD80 +, and CD11c+ CD40+. We suggest that DNA/P85 promotes the activation and recruitment of the antigen-presenting cells, which further incorporate, express and carry the transgene to the immune system organs.
Collapse
Affiliation(s)
- Zagit Z Gaymalov
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, United States
| | | | | | | | | |
Collapse
|
94
|
Roediger B, Ng LG, Smith AL, Fazekas de St Groth B, Weninger W. Visualizing dendritic cell migration within the skin. Histochem Cell Biol 2008; 130:1131-46. [PMID: 18987873 DOI: 10.1007/s00418-008-0531-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2008] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) within the skin are a heterogeneous population of cells, including Langerhans cells of the epidermis and at least three subsets of dermal DCs. Collectively, these DCs play important roles in the initiation of adaptive immune responses following antigen challenge of the skin as well as being mediators of tolerance to self-antigen. A key functional aspect of cutaneous DCs is their migration both within the skin and into lymphatic vessels, resulting in their emigration to draining lymph nodes. Here, we discuss our current understanding of the requirements for successful DC migration in and from the skin, and introduce some of the microscopic techniques developed in our laboratory to facilitate a better understanding of this process. In particular, we detail our current use of multi-photon excitation (MPE) microscopy of murine skin to dissect the migratory behavior of DCs in vivo.
Collapse
Affiliation(s)
- Ben Roediger
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, NSW, Australia.
| | | | | | | | | |
Collapse
|
95
|
Anderson AE, Swan DJ, Sayers BL, Harry RA, Patterson AM, von Delwig A, Robinson JH, Isaacs JD, Hilkens CMU. LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells. J Leukoc Biol 2008; 85:243-50. [PMID: 18971286 PMCID: PMC2700018 DOI: 10.1189/jlb.0608374] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Autoimmune pathologies are caused by a breakdown in self-tolerance. Tolerogenic dendritic cells (tolDC) are a promising immunotherapeutic tool for restoring self-tolerance in an antigen-specific manner. Studies about tolDC have focused largely on generating stable maturation-resistant DC, but few have fully addressed questions about the antigen-presenting and migratory capacities of these cells, prerequisites for successful immunotherapy. Here, we investigated whether human tolDC, generated with dexamethasone and the active form of vitamin D3, maintained their tolerogenic function upon activation with LPS (LPS-tolDC), while acquiring the ability to present exogenous autoantigen and to migrate in response to the CCR7 ligand CCL19. LPS activation led to important changes in the tolDC phenotype and function. LPS-tolDC, but not tolDC, expressed the chemokine receptor CCR7 and migrated in response to CCL19. Furthermore, LPS-tolDC were superior to tolDC in their ability to present type II collagen, a candidate autoantigen in rheumatoid arthritis. tolDC and LPS-tolDC had low stimulatory capacity for allogeneic, naïve T cells and skewed T cell polarization toward an anti-inflammatory phenotype, although LPS-tolDC induced significantly higher levels of IL-10 production by T cells. Our finding that LPS activation is essential for inducing migratory and antigen-presenting activity in tolDC is important for optimizing their therapeutic potential.
Collapse
Affiliation(s)
- Amy E Anderson
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Cancerous lesions promote tumor growth, motility, invasion, and angiogenesis via oncogene-driven immunosuppressive leukocyte infiltrates, mainly myeloid-derived suppressor cells, tumor-associated macrophages, and immature dendritic cells (DCs). In addition, many tumors express or induce immunosuppressive cytokines such as TGF-beta and IL-10. As a result, tumor-antigen crosspresentation by DCs induces T cell anergy or deletion and regulatory T cells instead of antitumor immunity. Tumoricidal effector cells can be generated after vigorous DC activation by Toll-like receptor ligands or CD40 agonists. However, no single immunotherapeutic modality is effective in established cancer. Rather, chemotherapies, causing DC activation, enhanced crosspresentation, lymphodepletion, and reduction of immunosuppressive leukocytes, act synergistically with vaccines or adoptive T cell transfer. Here, I discuss the considerations for generating promising therapeutic antitumor vaccines that use DCs.
Collapse
Affiliation(s)
- Cornelis J M Melief
- Department of Immunohematology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; ISA Pharmaceuticals, 3723 MB Bilthoven, the Netherlands
| |
Collapse
|
97
|
de Gruijl TD, van den Eertwegh AJM, Pinedo HM, Scheper RJ. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother 2008; 57:1569-77. [PMID: 18523771 PMCID: PMC2491427 DOI: 10.1007/s00262-008-0536-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 05/12/2008] [Indexed: 12/24/2022]
Abstract
The field of tumor vaccination is currently undergoing a shift in focus, from individualized tailor-made vaccines to more generally applicable vaccine formulations. Although primarily predicated by financial and logistic considerations, stemming from a growing awareness that clinical development for wide-scale application can only be achieved through backing from major pharmaceutical companies, these new approaches are also supported by a growing knowledge of the intricacies and minutiae of antigen presentation and effector T-cell activation. Here, the development of whole-cell tumor and dendritic cell (DC)-based vaccines from an individualized autologous set-up to a more widely applicable allogeneic approach will be discussed as reflected by translational studies carried out over the past two decades at our laboratories and clinics in the vrije universiteit medical center (VUmc) in Amsterdam, The Netherlands.
Collapse
Affiliation(s)
- Tanja D de Gruijl
- Department of Medical Oncology, Vrije Universiteit medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|