51
|
McCarthy C, Sacco J, Fedele S, Ho M, Porter S, Liloglou T, Greenhalf B, Robinson M, Young B, Cicconi S, Chauhan S, Tesfaye B, Jackson R, Sherratt F, Shaw R. SAVER: sodium valproate for the epigenetic reprogramming of high-risk oral epithelial dysplasia-a phase II randomised control trial study protocol. Trials 2021; 22:428. [PMID: 34225765 PMCID: PMC8256209 DOI: 10.1186/s13063-021-05373-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Background Sodium valproate (VPA) has been associated with a reduced risk of head and neck cancer development. The potential protective mechanism of action is believed to be via inhibition of histone deacetylase and subsequent epigenetic reprogramming. SAVER is a phase IIb open-label, randomised control trial of VPA as a chemopreventive agent in patients with high-risk oral epithelial dysplasia (OED). The aim of the trial is to gather preliminary evidence of the clinical and biological effects of VPA upon OED and assess the feasibility and acceptability of such a trial, with a view to inform a future definitive phase III study. Methods One hundred and ten patients with high-risk OED will be recruited from up to 10 secondary care sites in the UK and randomised into either VPA or observation only for 4 months. Women of childbearing potential will be excluded due to the teratogenic properties of VPA. Tissue and blood samples will be collected prior to randomisation and on the last day of the intervention/observation-only period (end of 4 months). Clinical measurement and additional safety bloods will be taken at multiple time points during the trial. The primary outcome will be a composite, surrogate endpoint of change in lesion size, change in grade of dysplasia and change in LOH profile at 8 key microsatellite regions. Feasibility outcomes will include recruitment targets, compliance with the study protocol and adverse effects. A qualitative sub-study will explore patient experience and perception of the trial. Discussion The current management options for patients with high-risk OED are limited and mostly include surgical resection and clinical surveillance. However, there remains little evidence whether surgery can effectively lead to a notable reduction in the risk of oral cancer development. Similarly, surveillance is associated with concerns regarding delayed diagnosis of OED progressing to malignancy. The SAVER trial provides an opportunity to investigate the effects of a repurposed, inexpensive and well-tolerated medication as a potential chemopreventive strategy for patients with high-risk OED. The clinical and biological findings of SAVER will inform the appropriateness, design and feasibility of a definitive phase III trial. Trial registration The trial is registered with the European Clinical Trials Database (Eudra-CT 2018-000197-30). (http://www.isrctn.com/ISRCTN12448611). The trial was prospectively registered on 24/04/2018. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05373-8.
Collapse
Affiliation(s)
- Caroline McCarthy
- Department of Oral Medicine, Liverpool University Dental Hospital, Pembroke Place, Liverpool, L3 5PS, UK.
| | - Joseph Sacco
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Stefano Fedele
- University College London, UCL Eastman Dental Institute and NIHR UCLH Biomedical Research Centre, 21 University Street, London, WC1E 6DE, UK
| | - Michael Ho
- Leeds Teaching Hospitals NHS Trust, Oral and Maxillofacial Surgery, Leeds Dental Institute, Clarendon Way, Leeds, LS2 9LU, UK
| | - Stephen Porter
- University College London, UCL Eastman Dental Institute, 21 University Street, London, WC1E 6DE, UK
| | - Triantafillos Liloglou
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Bill Greenhalf
- GCP Laboratory Facility, Molecular and Clinical Cancer Medicine, University of Liverpool, 3rd Floor UCD Block, Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | - Max Robinson
- Dept of Cellular Pathology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Bridget Young
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Whelan Building, Brownlow Hill, Liverpool, L69 3GB, UK
| | - Silvia Cicconi
- Liverpool Clinical Trials Centre, Block C, Waterhouse Building, 1-3 Brownlow Street, Liverpool, L69 3GL, UK
| | - Seema Chauhan
- Liverpool Health Partners SPARK, 1st Floor IC3, Liverpool Science Park, 131 Mount Pleasant, Liverpool, L3 5TF, UK
| | - Binyam Tesfaye
- Liverpool Clinical Trials Centre, University of Liverpool, 1st Floor, Mersey Bio, Liverpool, L69 7ZB, UK
| | - Richard Jackson
- Liverpool Clinical Trials Centre, Block C, Waterhouse Building, 1-3 Brownlow Street, Liverpool, L69 3GL, UK
| | - Frances Sherratt
- Department of Public Health, Policy and Systems, University of Liverpool, B209, 2nd Floor Block B, Waterhouse Building, 1-5 Dover Street, Liverpool, L3 5DA, UK
| | - Richard Shaw
- Liverpool Head and Neck Centre; Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, 200 London Road, Liverpool, L3 9TA, UK
| |
Collapse
|
52
|
Oh JS, Park J, Kim K, Jeong HH, Oh YM, Choi S, Choi KH. HSP70-mediated neuroprotection by combined treatment of valproic acid with hypothermia in a rat asphyxial cardiac arrest model. PLoS One 2021; 16:e0253328. [PMID: 34138955 PMCID: PMC8211226 DOI: 10.1371/journal.pone.0253328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
It has been reported that valproic acid (VPA) combined with therapeutic hypothermia can improve survival and neurologic outcomes in a rat asphyxial cardiac arrest model. However, neuroprotective mechanisms of such combined treatment of valproic acid with hypothermia remains unclear. We hypothesized that epigenetic regulation of HSP70 by histone acetylation could increase HSP70-mediated neuroprotection suppressed under hypothermia. Male Sprague-Dawley rats that achieved return of spontaneous circulation (ROSC) from asphyxial cardiac arrest were randomized to four groups: normothermia (37°C ± 1°C), hypothermia (33°C ± 1°C), normothermia + VPA (300 mg/kg IV initiated 5 minutes post-ROSC and infused over 20 min), and hypothermia + VPA. Three hours after ROSC, acetyl-histone H3 was highly expressed in VPA-administered groups (normothermia + VPA, hypothermia + VPA). Four hours after ROSC, HSP70 mRNA expression levels were significantly higher in normothermic groups (normothermia, normothermia + VPA) than in hypothermic groups (hypothermia, hypothermia + VPA). The hypothermia + VPA group showed significantly higher HSP70 mRNA expression than the hypothermia group. Similarly, at five hours after ROSC, HSP70 protein levels were significantly higher in normothermic groups than in hypothermic groups. HSP70 levels were significantly higher in the hypothermia + VPA group than in the hypothermia group. Only the hypothermia + VPA group showed significantly attenuated cleaved caspase-9 levels than the normothermia group. Hypothermia can attenuate the expression of HSP70 at transcriptional level. However, VPA administration can induce hyperacetylation of histone H3, leading to epigenetic transcriptional activation of HSP70 even in a hypothermic status. Combining VPA treatment with hypothermia may compensate for reduced activation of HSP70-mediated anti-apoptotic pathway.
Collapse
Affiliation(s)
- Joo Suk Oh
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Jungtaek Park
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Kiwook Kim
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Hyun Ho Jeong
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Young Min Oh
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Semin Choi
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Kyoung Ho Choi
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| |
Collapse
|
53
|
Cui Y, Cai J, Wang W, Wang S. Regulatory Effects of Histone Deacetylase Inhibitors on Myeloid-Derived Suppressor Cells. Front Immunol 2021; 12:690207. [PMID: 34149732 PMCID: PMC8208029 DOI: 10.3389/fimmu.2021.690207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are antitumor drugs that are being developed for use in clinical settings. HDACIs enhance histone or nonhistone acetylation and promote gene transcription via epigenetic regulation. Importantly, these drugs have cytotoxic or cytostatic properties and can directly inhibit tumor cells. However, how HDACIs regulate immunocytes in the tumor microenvironment, such as myeloid-derived suppressor cells (MDSCs), has yet to be elucidated. In this review, we summarize the effects of different HDACIs on the immunosuppressive function and expansion of MDSCs based on the findings of relevant studies.
Collapse
Affiliation(s)
- Yudan Cui
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingshan Cai
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenxin Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
54
|
Jin L, Duan W, Cai Z, Lim D, Feng Z. Valproic acid triggers radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment in a rat model of breast cancer. JOURNAL OF RADIATION RESEARCH 2021:rrab037. [PMID: 34050356 DOI: 10.1093/jrr/rrab037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/18/2021] [Indexed: 06/12/2023]
Abstract
An abscopal effect occurs when localized radiotherapy causes the regression of tumors distant from the irradiated site. However, such a clinically detectable abscopal effect from radiotherapy alone is rare. This study investigated whether valproic acid ([VPA], a histone deacetylase inhibitor [HDACi]) treatment can stimulate radiation-induced abscopal effect. We used 7,12-dimethylbenz[a]anthracene, a typical environmental carcinogen, to establish a rat model with multiple breast tumors. Only one tumor received 8 Gy fractionated doses of X-rays (2 Gy daily fractions over four days) and 200 mg/kg VPA was administered intraperitoneally. We monitored the growth of both irradiated and unirradiated tumors after treatments. The unirradiated tumor was collected for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC) (CD8, Granzyme B, Cleaved Caspase-3, BrdU, Ki67, F4/80 and CD68), double immunofluorescence (F4/80 and CD86), Western blot (Cleaved Caspase-3) and qRT-PCR (CD86, CD163, IL-1β, IL-6, IL-12, IL-23, IL-10, TGF-β) analysis. We found ionizing radiation (IR) + VPA treatment inhibited both irradiated and unirradiated tumor growth as compared to IR alone. Such observe abscopal effect was mediated by the recruitment of activated CD8+ T cells into the unirradiated tumor sites, which released Granzyme B to cause tumor cell apoptosis. Furthermore, IR + VPA treatment led to macrophages infiltration into the unirradiated tumor sites and polarization to M1 phenotype, resulted in increased levels of pro-inflammatory cytokines such as IL-1β and IL-12, and decreased levels of anti-inflammatory cytokines such as IL-10 and TGF-β. Our data supports the proposition that VPA may be a potential therapeutic candidate to trigger radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment.
Collapse
Affiliation(s)
- Liya Jin
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenhua Duan
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown 2560, Australia
- College of Medicine and Public Health, Flinders University, Bedford Place 5042, Australia
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
55
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
56
|
Anti-seizure medication is not associated with an increased risk to develop cancer in epilepsy patients. J Neurol 2021; 268:2185-2191. [PMID: 33484324 PMCID: PMC8179889 DOI: 10.1007/s00415-020-10379-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022]
Abstract
Objective Whether anti-seizure medication (ASM) increases the risk for cancer has been debated for decades. While for some ASM, a carcinoma-promoting effect has been suspected, carcinoma-protective effects have been shown for other ASM. However, the issue remains unresolved as data from preclinical and clinical studies have been inconsistent and contradictory. Methods We collected anonymous patient data from practice neurologists throughout Germany between 2009 and 2018 using the IMS Disease Analyzer database (QuintilesIMS, Frankfurt, Germany). People with epilepsy (PWE) with an initial cancer diagnosis and antiepileptic therapy prior to the index date were 1:1 matched with a control group of PWE without cancer according to age, gender, index year, Charlson Comorbidity Index, and treating physician. For both groups, the risk to develop cancer under treatment with different ASMs was analyzed using three different models (ever use vs. never use (I), effect per one (II) and per five therapy years (III). Results A total of 3152 PWE were included (each group, n = 1,576; age = 67.3 ± 14.0 years). The risk to develop cancer was not significantly elevated for any ASM. Carbamazepine was associated with a decreased cancer risk (OR Model I: 0.699, p < .0001, OR Model II: 0.952, p = .4878, OR Model III: 0.758, p < .0004). Significance Our findings suggest that ASM use does not increase the risk of cancer in epilepsy patients. Supplementary Information The online version of this article (10.1007/s00415-020-10379-4) contains supplementary material, which is available to authorized users.
Collapse
|
57
|
Canberk S, Lima AR, Pinto M, Soares P, Máximo V. Epigenomics in Hurthle Cell Neoplasms: Filling in the Gaps Towards Clinical Application. Front Endocrinol (Lausanne) 2021; 12:674666. [PMID: 34108939 PMCID: PMC8181423 DOI: 10.3389/fendo.2021.674666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
It has been widely described that cancer genomes have frequent alterations to the epigenome, including epigenetic silencing of various tumor suppressor genes with functions in almost all cancer-relevant signalling pathways, such as apoptosis, cell proliferation, cell migration and DNA repair. Epigenetic alterations comprise DNA methylation, histone modification, and microRNAs dysregulated expression and they play a significant role in the differentiation and proliferation properties of TC. In this review, our group assessed the published evidence on the tumorigenic role of epigenomics in Hurthle cell neoplasms (HCN), highlighting the yet limited, heteregeneous and non-validated data preventing its current use in clinical practice, despite the well developed assessment techniques available. The identified evidence gaps call for a joint endeavour by the medical community towards a deeper and more systematic study of HCN, aiming at defining epigenetic markers in early diagnose, allowing for accurate stratification of maligancy and disease risk and for effective systemic treatment.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Mafalda Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- *Correspondence: Valdemar Máximo,
| |
Collapse
|
58
|
Li T, Yu Y, Shi H, Cao Y, Liu X, Hao Z, Ren Y, Qin G, Huang Y, Wang B. Magnesium in Combinatorial With Valproic Acid Suppressed the Proliferation and Migration of Human Bladder Cancer Cells. Front Oncol 2020; 10:589112. [PMID: 33363019 PMCID: PMC7759627 DOI: 10.3389/fonc.2020.589112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
Magnesium, the second most predominant intracellular cation, plays a crucial role in many physiological functions; magnesium-based biomaterials have been widely used in clinical application. In a variety of cancer types, the high intracellular concentration of magnesium contributes to cancer initiation and progression. Therefore, we initiated this study to investigate the likelihood of confounding magnesium with cancer therapy. In this study, the anti-tumor activity of magnesium and underlying mechanisms were assessed in bladder cancer both in vitro and in vivo. The results indicated that the proliferation of bladder cancer cells was inhibited by treatment with a high concentration of MgCl2 or MgSO4. The apoptosis, G0/G1 cell cycle arrest, autophagy, and ER stress were promoted following treatment with MgCl2. However, the migratory ability of MgCl2 treated cells was similar to that of control cells, as revealed by the trans-well assay. Besides, no significant difference was observed in the proportion of CD44 or CD133 positive cells between the control and MgCl2 treated cells. Thus, to improve the therapeutic effect of magnesium, VPA was used to treat cancer cells in combination with MgCl2. As expected, combination treatment with MgCl2 and VPA could markedly reduce proliferation, migration, and in vivo tumorigenicity of UC3 cells. Moreover, the Wnt signaling was down-regulated, and ERK signaling was activated in the cells treated with combination treatment. In conclusion, the accurate utilization of MgCl2 in targeting autophagy might be beneficial in cancer therapy. Although further studies are warranted, the combination treatment of MgCl2 with VPA is an effective strategy to improve the outcome of chemotherapy.
Collapse
Affiliation(s)
- Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hang Shi
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yuhua Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiangfu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhenzhen Hao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yuping Ren
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
59
|
Valiyaveettil D, Malik M, Joseph DM, Ahmed SF, Kothwal SA, Vijayasaradhi M. Effect of valproic acid on survival in glioblastoma: A prospective single-arm study. South Asian J Cancer 2020; 7:159-162. [PMID: 30112328 PMCID: PMC6069328 DOI: 10.4103/sajc.sajc_188_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Retrospective evidence suggests that valproic acid (VPA), an antiepileptic drug, is associated with improved outcomes in glioblastoma. The exact mechanism of interaction of VPA with radiation and temozolomide (TMZ) is still unclear. Laboratory studies show that VPA can enhance tumor cell kill while at the same time protect the normal neural tissue. The aim of this study was to prospectively evaluate the benefit of VPA on outcomes in glioblastoma. Materials and Methods: In this single-arm prospective study, patients of glioblastoma were started on seizure prophylaxis with VPA (15–20 mg/kg/day) following maximal safe resection. All patients were treated with chemoradiation to a dose of 60 Gy in 30 fractions with concurrent TMZ followed by adjuvant TMZ for 6 cycles. VPA was continued during adjuvant treatment and follow-up. Survival analysis was done using Kaplan–Meier analysis. Results: Twenty patients were enrolled in the study. Median age was 47 years. M:F ratio was 3:1. Treatment was well tolerated with no grade 3/4 adverse events. 8/20 patients experience seizure episodes during treatment and/or follow-up which needed additional antiepileptic drugs for control. Median progression-free survival (PFS) and overall survival (OS) were 10 months and 16 months, respectively. Younger patients (age ≤45 years) showed a significantly better OS (25 months) versus older patients (8 months) (P = 0.002). Conclusions: Incidence of seizures on VPA prophylaxis was 40%. Median PFS and OS were comparable to historical controls. There was no significant treatment-related toxicity. The results need validation in larger prospective randomized studies.
Collapse
Affiliation(s)
- Deepthi Valiyaveettil
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Monica Malik
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Deepa M Joseph
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Syed Fayaz Ahmed
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Syed Akram Kothwal
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - M Vijayasaradhi
- Department of Neurosurgery, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
60
|
Mak MP, Pasini FS, Diao L, Garcia FOT, Takahashi TK, Nakazato D, Martins RE, Almeida CM, Kulcsar MAV, Lamounier VA, Nunes EM, de Souza IC, Garcia MRT, Amadio AV, Siqueira SAC, Snitcovsky IML, Sichero L, Wang J, de Castro G. Valproic acid combined with cisplatin-based chemoradiation in locally advanced head and neck squamous cell carcinoma patients and associated biomarkers. Ecancermedicalscience 2020; 14:1155. [PMID: 33574900 PMCID: PMC7864693 DOI: 10.3332/ecancer.2020.1155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Background Cisplatin-based chemoradiation (CCRT) offers locally advanced head and neck squamous cell carcinoma (LAHNSCC) patients high local control rate, however, relapses are frequent. Our goal was to evaluate if association of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, with CCRT improved response rate (RR) and associated biomarkers. Methods This phase II trial included patients with unresectable locally advanced (LA) oropharynx (OP) squamous cell carcinoma. CCRT began after 2 weeks of VPA (P1). Primary goal was RR at 8 weeks after chemoradiation (CRT)+VPA (P2). Biomarkers included microRNA (miR) polymerase chain reaction (PCR)-array profiling in plasma compared to healthy controls by two-sample t-test. Distribution of p-values was analysed by beta-uniform mixture. Findings were validated by real-time PCR quantitative polymerase chain reaction (qPCR) for selected miRs in plasma and saliva. p16, HDAC2 and RAD23 Homolog B, Nucleotide Excision Repair Protein (HR23B) tumour immunohistochemistry were evaluated. Results Given significant toxicities, accrual was interrupted after inclusion of ten LA p16 negative OP patients. All were male, smokers/ex-smokers, aged 41–65 and with previous moderate/high alcohol intake. Nine evaluable patients yielded a RR of 88%. At false discovery rate of 5%, 169 miRs were differentially expressed between patients and controls, including lower expression of tumour suppressors (TSs) such as miR-31, -222, -let-7a/b/e and -145. miR-let-7a/e expression was validated by qPCR using saliva. A HDAC2 H-score above 170 was 90% accurate in predicting 6-month disease-free survival. Conclusions VPA and CRT offered high RR; however, with prohibitive toxicities, which led to early trial termination. Patients and controls had a distinct pattern of miR expression, mainly with low levels of TS miRs targeting Tumor protein P53 (TP53). miR-let-7a/e levels were lower in patients compared to controls, which reinforces the aggressive nature of such tumours (NCT01695122).
Collapse
Affiliation(s)
- Milena Perez Mak
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Fatima Solange Pasini
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, 1400 Pressler St. Floor 4, FCT4.6000, Houston, Texas, USA
| | - Fabyane O Teixeira Garcia
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Tiago Kenji Takahashi
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Denyei Nakazato
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Renata Eiras Martins
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Cristiane Maria Almeida
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Marco Aurelio Vamondes Kulcsar
- Head and Neck Surgery Department, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Valdelania Aparecida Lamounier
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Emily Montosa Nunes
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Isabela Cristina de Souza
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Marcio Ricardo Taveira Garcia
- Department of Radiology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Alex Vieira Amadio
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Sheila Aparecida C Siqueira
- Department of Pathology, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Eneas de Carvalho Aguiar, 255, CEP 05403-000, Sao Paulo, SP, Brazil
| | - Igor Moysés Longo Snitcovsky
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Laura Sichero
- Center for Translational Investigation in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Jing Wang
- Head and Neck Surgery Department, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| | - Gilberto de Castro
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Av Dr Arnaldo, 251 12th floor, CEP 01246-000, Sao Paulo, SP, Brazil
| |
Collapse
|
61
|
Stritzelberger J, Lainer J, Gollwitzer S, Graf W, Jost T, Lang JD, Mueller TM, Schwab S, Fietkau R, Hamer HM, Distel L. Ex vivo radiosensitivity is increased in non-cancer patients taking valproate. BMC Neurol 2020; 20:390. [PMID: 33099323 PMCID: PMC7585294 DOI: 10.1186/s12883-020-01966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/16/2020] [Indexed: 11/25/2022] Open
Abstract
Background Valproate (VPA) is a commonly prescribed antiepileptic drug for patients experiencing epileptic seizures due to brain tumors. VPA increases radiation sensitivity in various tumor cells in vitro due to complex mechanisms. This could make tumors more vulnerable to ionizing radiation or overcome radioresistance. Yet, clinical data on possible improvement of tumor control by adding VPA to tumor therapy is controversial. Potentially radiosensitizing effects of VPA on healthy tissue remain unclear. To determine individual radiosensitivity, we analyzed blood samples of individuals taking VPA. Methods Ex vivo irradiated blood samples of 31 adult individuals with epilepsy were studied using 3-color fluorescence in situ hybridization. Aberrations in chromosomes 1, 2 and 4 were analyzed. Radiosensitivity was determined by the mean breaks per metaphase (B/M) and compared to age-matched (2:1) healthy donors. Results The patient cohort (n = 31; female: 38.7%) showed an increase of their average B/M value compared to healthy individuals (n = 61; female: 56.9%; B/M: 0.480 ± 0.09 vs. 0.415 ± 0.07; p = .001). The portion of radiosensitive (B/M > 0.500) and distinctly radiosensitive individuals (B/M > 0.600) was increased in the VPA group (54.9% vs. 11.3 and 9.7% vs. 0.0%; p < .001). In 3/31 patients, radiosensitivity was determined prior to and after VPA treatment and radiosensitivity was increased by VPA-treatment. Conclusions In our study, we confirmed that patients treated with VPA had an increased radiosensitivity compared to the control group. This could be considered in patients taking VPA prior to the beginning of radiotherapy to avoid toxic side effects of VPA-treatment.
Collapse
Affiliation(s)
- Jenny Stritzelberger
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Jennifer Lainer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Universitaetsstraße 27, 91054, Erlangen, Germany
| | - Stefanie Gollwitzer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Wolfgang Graf
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tina Jost
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Universitaetsstraße 27, 91054, Erlangen, Germany
| | - Johannes D Lang
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tamara M Mueller
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stefan Schwab
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Universitaetsstraße 27, 91054, Erlangen, Germany
| | - Hajo M Hamer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Universitaetsstraße 27, 91054, Erlangen, Germany
| |
Collapse
|
62
|
Valproic acid inhibits interferon-γ production by NK cells and increases susceptibility to Listeria monocytogenes infection. Sci Rep 2020; 10:17802. [PMID: 33082490 PMCID: PMC7576816 DOI: 10.1038/s41598-020-74836-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Valproic acid (VPA) is a drug commonly used for epileptic seizure control. Recently, it has been shown that VPA alters the activation of several immune cells, including Natural Killer (NK) cells, which play an important role in the containment of viruses and intracellular bacteria. Although VPA can increase susceptibility to extracellular pathogens, it is unknown whether the suppressor effect of VPA could affect the course of intracellular bacterial infection. This study aimed to evaluate the role of VPA during Listeria monocytogenes (L.m) infection, and whether NK cell activation was affected. We found that VPA significantly augmented mortality in L.m infected mice. This effect was associated with increased bacterial load in the spleen, liver, and blood. Concurrently, decreased levels of IFN-γ in serum and lower splenic indexes were observed. Moreover, in vitro analysis showed that VPA treatment decreased the frequency of IFN-γ-producing NK cells within L.m infected splenocytes. Similarly, VPA inhibited the production of IFN-γ by NK cells stimulated with IL-12 and IL-18, which is a crucial system for early IFN-γ production in listeriosis. Finally, VPA decreased the phosphorylation of STAT4, p65, and p38, without affecting the expression of IL-12 and IL-18 receptors. Altogether, our results indicate that VPA increases the susceptibility to Listeria monocytogenes infection and suggest that NK cell is one of the main targets of VPA, but further work is needed to ascertain this effect.
Collapse
|
63
|
Warawdekar UM, Jain V, Patel H, Nanda A, Kamble V. Modifying gap junction communication in cancer therapy. Curr Res Transl Med 2020; 69:103268. [PMID: 33069641 DOI: 10.1016/j.retram.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
AIM Drug delivery is crucial for therapeutic efficacy and gap junction communication channels (GJIC) facilitate movement within the tumour. Pro-drug activation, a modality of cancer therapy leads to Ganciclovir triphosphate (GCV-TP) incorporation into newly synthesized DNA resulting in cell death. The objective was to enhance, with Histone deacetylase inhibitors (HDACi) and All Trans Retinoic Acid (ATRA), GJIC, crucial for drug delivery, and with combination, abrogate the observed detrimental effect of Dexamethasone (DXM). METHODS Cell lines (NT8E, and HeLa) were pre-treated with Valproic Acid (VPA) (1 mM), 4 Phenyl Butyrate (4PB) (2 mM), ATRA (10 μM) and Dexamethasone (1 μM). Protein quantitated with the Bicinchoninic (BCA) assay for cell lysates, membrane and soluble fractions was assessed with Western blotting for Connexins (43, 26 and 32) and E-Cadherin. A qRT-PCR was done for CX 43-GJA1, CX 26-GJB2, CX 32-GJB1 and E-Cadherin, and normalized with Glyceraldehyde Phosphate dehydrogenase (GAPDH). Further, localization of Connexins (CX) and E-Cadherin, GJIC competence, pre-clinical in-vitro studies and the mechanism of cell death were evaluated. RESULTS There was no toxicity or change in growth patterns observed with the drugs. In both the cell lines CX 43 localized to the membrane whereas CX 32 and CX 26 were present but not membrane bound. E-Cadherin was present on the membrane in NT8E and completely absent in HeLa cells. Effects of HDACi, DXM and ATRA were seen on the expression of Connexins and E-Cadherin in both the cell lines. NT8E and HeLa cell lines showed enhanced GJIC with 4PB [30 %], VPA [36 %] and ATRA [54 %] with a 60 % increase in cytotoxicity and an abrogation of Dexamethasone inhibition on combination with VPA or ATRA. CONCLUSION An enhancement of GJIC function by HDACi and ATRA increased cytotoxicity and could be effective in the presence of Dexamethasone, when combined with ATRA or VPA.
Collapse
Affiliation(s)
- Ujjwala M Warawdekar
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| | - Vaishali Jain
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Himani Patel
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Adyasha Nanda
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vishal Kamble
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
64
|
Oleaga C, Bridges LR, Persaud K, McAleer CW, Long CJ, Hickman JJ. A functional long-term 2D serum-free human hepatic in vitro system for drug evaluation. Biotechnol Prog 2020; 37:e3069. [PMID: 32829524 DOI: 10.1002/btpr.3069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023]
Abstract
Human in vitro hepatic models generate faster drug toxicity data with higher human predictability compared to animal models. However, for long-term studies, current models require the use of serum and 3D architecture, limiting their utility. Maintaining a functional long-term human in vitro hepatic culture that avoids complex structures and serum would improve the value of such systems for preclinical studies. This would also enable a more straightforward integration with current multi-organ devices to study human systemic toxicity to generate an alternative model to chronic animal evaluations. A human primary hepatocyte culture system was characterized for 28 days in 2D and serum-free defined conditions. Under the studied conditions, human primary hepatocytes maintained their characteristic morphology, hepatic markers and functions for 28 days. The acute and chronic administration of known drugs validated the sensitivity of the system for drug testing. This human 2D model represents a realistic system to evaluate hepatic function for long-term drug studies, without the need of animal serum, confounding variable in most models, and with less complexity and resultant cost compared to most 3D models. The defined culture conditions can easily be integrated into complex multi-organ in vitro models for studying systemic effects driven by the liver function for long-term evaluations.
Collapse
Affiliation(s)
- Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - L Richard Bridges
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Keisha Persaud
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | | | - Christopher J Long
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
65
|
Yao X, Watkins NH, Brown-Harding H, Bierbach U. A membrane transporter determines the spectrum of activity of a potent platinum-acridine hybrid anticancer agent. Sci Rep 2020; 10:15201. [PMID: 32939009 PMCID: PMC7494928 DOI: 10.1038/s41598-020-72099-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 01/22/2023] Open
Abstract
Cytotoxic drugs that are mechanistically distinct from current chemotherapies are attractive components of personalized combination regimens for combatting aggressive forms of cancer. To gain insight into the cellular mechanism of a potent platinum-acridine anticancer agent (compound 1), a correlation analysis of NCI-60 compound screening results and gene expression profiles was performed. A plasma membrane transporter, the solute carrier (SLC) human multidrug and toxin extrusion protein 1 (hMATE1, SLC47A1), emerged as the dominant predictor of cancer cell chemosensitivity to the hybrid agent (Pearson correlation analysis, p < 10-5) across a wide range of tissues of origin. The crucial role of hMATE1 was validated in lung adenocarcinoma cells (A549), which expresses high levels of the membrane transporter, using transporter inhibition assays and transient knockdown of the SLC47A1 gene, in conjunction with quantification of intracellular accumulation of compound 1 and cell viability screening. Preliminary data also show that HCT-116 colon cancer cells, in which hMATE1 is epigenetically repressed, can be sensitized to compound 1 by priming the cells with the drugs EPZ-6438 (tazemetostat) and EED226. Collectively, these results suggest that hMATE1 may have applications as a pan-cancer molecular marker to identify and target tumors that are likely to respond to platinum-acridines.
Collapse
Affiliation(s)
- Xiyuan Yao
- Department of Chemistry, Wake Forest University, Wake Forest Innovation Quarter, 455 Vine St., Winston-Salem, NC, 27101, USA
| | - Noah H Watkins
- Department of Chemistry, Wake Forest University, Wake Forest Innovation Quarter, 455 Vine St., Winston-Salem, NC, 27101, USA
| | - Heather Brown-Harding
- Department of Biology, Wake Forest University, Wake Forest Innovation Quarter, 455 Vine St., Winston-Salem, NC, 27101, USA
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Wake Forest Innovation Quarter, 455 Vine St., Winston-Salem, NC, 27101, USA.
- Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
66
|
Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challenges. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:291-301. [PMID: 32074065 DOI: 10.2478/acph-2020-0021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 01/19/2023]
Abstract
Results from numerous pre-clinical studies suggest that a well known anticonvulsant drug valproic acid (VPA) and other short-chain fatty acids (SCFAs) cause significant inhibition of cancer cell proliferation by modulating multiple signaling pathways. First of all, they act as histone deacetylase (HDAC) inhibitors (HDIs), being involved in the epigenetic regulation of gene expression. Afterward, VPA is shown to induce apoptosis and cell differentiation, as well as regulate Notch signaling. Moreover, it up-regulates the expression of certain G protein-coupled receptors (GPCRs), which are involved in various signaling pathways associated with cancer. As a consequence, some pre-clinical and clinical trials were carried out to estimate anticancer effectiveness of VPA, in monotherapy and in new drug combinations, while other SCFAs were tested in pre-clinical studies. The present manuscript summarizes the most important information from the literature about their potent anticancer activities to show some future perspectives related to epigenetic therapy.
Collapse
|
67
|
Differential Expression of Multiple Disease-Related Protein Groups Induced by Valproic Acid in Human SH-SY5Y Neuroblastoma Cells. Brain Sci 2020; 10:brainsci10080545. [PMID: 32806546 PMCID: PMC7465595 DOI: 10.3390/brainsci10080545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022] Open
Abstract
Valproic acid (VPA) is a multifunctional medication used for the treatment of epilepsy, mania associated with bipolar disorder, and migraine. The pharmacological effects of VPA involve a variety of neurotransmitter and cell signaling systems, but the molecular mechanisms underlying its clinical efficacy is to date largely unknown. In this study, we used the isobaric tags for relative and absolute quantitation shotgun proteomic analysis to screen differentially expressed proteins in VPA-treated SH-SY5Y cells. We identified changes in the expression levels of multiple proteins involved in Alzheimer’s disease, Parkinson’s disease, chromatin remodeling, controlling gene expression via the vitamin D receptor, ribosome biogenesis, ubiquitin-mediated proteolysis, and the mitochondrial oxidative phosphorylation and electron transport chain. Our data indicate that VPA may modulate the differential expression of proteins involved in mitochondrial function and vitamin D receptor-mediated chromatin transcriptional regulation and proteins implicated in the pathogenesis of neurodegenerative diseases.
Collapse
|
68
|
Avallone A, Piccirillo MC, Di Gennaro E, Romano C, Calabrese F, Roca MS, Tatangelo F, Granata V, Cassata A, Cavalcanti E, Maurea N, Maiolino P, Silvestro L, De Stefano A, Giuliani F, Rosati G, Tamburini E, Aprea P, Vicario V, Nappi A, Vitagliano C, Casaretti R, Leone A, Petrillo A, Botti G, Delrio P, Izzo F, Perrone F, Budillon A. Randomized phase II study of valproic acid in combination with bevacizumab and oxaliplatin/fluoropyrimidine regimens in patients with RAS-mutated metastatic colorectal cancer: the REVOLUTION study protocol. Ther Adv Med Oncol 2020; 12:1758835920929589. [PMID: 32849914 PMCID: PMC7425244 DOI: 10.1177/1758835920929589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/04/2020] [Indexed: 01/30/2023] Open
Abstract
Background Despite effective treatments, metastatic colorectal cancer (mCRC) prognosis is still poor, mostly in RAS-mutated tumors, thus suggesting the need for novel combinatorial therapies. Epigenetic alterations play an important role in initiation and progression of cancers, including CRC. Histone-deacetylase inhibitors (HDACi) have shown activity in combination with chemotherapy in the treatment of solid tumors. Owing to its HDACi activity and its safe use for epileptic disorders, valproic acid (VPA) is a good candidate for anticancer therapy that we have largely explored preclinically translating our findings in currently ongoing clinical studies. We have shown in CRC models that HDACi, including VPA, induces synergistic antitumor effects in combination with fluoropyrimidines. Furthermore, unpublished results from our group demonstrated that VPA induces differentiation and sensitization of CRC stem cells to oxaliplatin. Moreover, preclinical and clinical data suggest that HDACi may prevent/reverse anti-angiogenic resistance. Methods/Design A randomized, open-label, two-arm, multicenter phase-II study will be performed to explore whether the addition of VPA to first line bevacizumab/oxaliplatin/fluoropyrimidine regimens (mFOLFOX-6/mOXXEL) might improve progression-free survival (PFS) in RAS-mutated mCRC patients. A sample size of 200 patients was calculated under the hypothesis that the addition of VPA to chemotherapy/bevacizumab can improve PFS from 9 to 12 months, with one-sided alpha of 0.20 and a power of 0.80. Secondary endpoints are overall survival, objective response rate, metastases resection rate, toxicity, and quality of life. Moreover, the study will explore several prognostic and predictive biomarkers on blood samples, primary tumors, and on resected metastases. Discussion The "Revolution" study aims to improve the treatment efficacy of RAS-mutated mCRC through an attractive strategy evaluating the combination of VPA with standard cancer treatment. Correlative studies could identify novel biomarkers and could add new insight in the mechanism of interaction between VPA, fluoropyrimidine, oxaliplatin, and bevacizumab. Trial Registration EudraCT: 2018-001414-15; ClinicalTrials.gov identifier: NCT04310176.
Collapse
Affiliation(s)
- Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Via M. Semmola, Napoli, 80131, Italy
| | | | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Carmela Romano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Filomena Calabrese
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Fabiana Tatangelo
- Pathology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Vincenza Granata
- Radiology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Antonio Cassata
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Nicola Maurea
- Cardiology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Lucrezia Silvestro
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Alfonso De Stefano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | | | - Gerardo Rosati
- Medical Oncology Unit, S. Carlo Hospital, Potenza, Italy
| | - Emiliano Tamburini
- Dipartimento di Oncologia e Cure Palliative, Azienda Ospedaliera Cardinale G. Panico, Tricase-Lecce, Italy
| | - Pasquale Aprea
- Vascular Access Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Valeria Vicario
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Anna Nappi
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Rossana Casaretti
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Antonella Petrillo
- Radiology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Paolo Delrio
- Colorectal Oncological Surgery, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgery Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Via M. Semmola, Napoli, 80131, Italy
| |
Collapse
|
69
|
Hegedűs L, Rittler D, Garay T, Stockhammer P, Kovács I, Döme B, Theurer S, Hager T, Herold T, Kalbourtzis S, Bankfalvi A, Schmid KW, Führer D, Aigner C, Hegedűs B. HDAC Inhibition Induces PD-L1 Expression in a Novel Anaplastic Thyroid Cancer Cell Line. Pathol Oncol Res 2020; 26:2523-2535. [PMID: 32591993 PMCID: PMC7471186 DOI: 10.1007/s12253-020-00834-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
While papillary thyroid cancer (PTC) has largely favorable prognosis, anaplastic thyroid cancer (ATC) is a rare but extremely aggressive malignancy with grim clinical outcome. Even though new therapeutic options are emerging for ATC, additional preclinical models and novel combinations are needed for specific subsets of patients. We established a novel cell line (PF49) from the malignant pleural effusion of a 68-year-old male patient with ATC that rapidly transformed from a BRAF and TERT promoter mutant PTC. PF49 cells demonstrated a robust migratory activity in vitro and strong invasive capacity in vivo in a pleural carcinosis model. Combined BRAF and MEK inhibition decreased the proliferation and migration of PF49 cells, however could not induce cell death. Importantly, HDAC inhibitor treatment with SAHA or valproic acid induced cell cycle arrest and strongly increased PD-L1 expression of the tumor cells. Induction of PD-L1 expression was also present when paclitaxel-cisplatin chemotherapeutic treatment was combined with HDAC inhibitor treatment. Increased PD-L1 expression after HDAC inhibition was recapitulated in an international ATC cell model. Our data suggest that HDAC inhibition alone or in combination with standard chemotherapy may potentiate anaplastic thyroid cancer cells for immunotherapy.
Collapse
Affiliation(s)
- Luca Hegedűs
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Dominika Rittler
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Paul Stockhammer
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Ildikó Kovács
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Balázs Döme
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Semmelweis University-National Institute of Oncology, Budapest, Hungary
| | - Sarah Theurer
- Institute of Pathology, University Clinic Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Clinic Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Clinic Essen, University Duisburg-Essen, Essen, Germany
| | - Stavros Kalbourtzis
- Institute of Pathology, University Clinic Essen, University Duisburg-Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Clinic Essen, University Duisburg-Essen, Essen, Germany
| | - Kurt W Schmid
- Institute of Pathology, University Clinic Essen, University Duisburg-Essen, Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, University Clinic Essen, University Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Balázs Hegedűs
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany. .,2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
70
|
Rodríguez-López GM, Soria-Castro R, Campillo-Navarro M, Pérez-Tapia SM, Flores-Borja F, Wong-Baeza I, Muñoz-Cruz S, López-Santiago R, Estrada-Parra S, Estrada-García I, Chávez-Blanco AD, Chacón-Salinas R. The histone deacetylase inhibitor valproic acid attenuates phospholipase Cγ2 and IgE-mediated mast cell activation. J Leukoc Biol 2020; 108:859-866. [PMID: 32480423 DOI: 10.1002/jlb.3ab0320-547rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Mast cell activation through the high-affinity IgE receptor (FcεRI) plays a central role in allergic reactions. FcεRI-mediated activation triggers multiple signaling pathways leading to degranulation and synthesis of different inflammatory mediators. IgE-mediated mast cell activation can be modulated by different molecules, including several drugs. Herein, we investigated the immunomodulatory activity of the histone deacetylase inhibitor valproic acid (VPA) on IgE-mediated mast cell activation. To this end, bone marrow-derived mast cells (BMMC) were sensitized with IgE and treated with VPA followed by FcεRI cross-linking. The results indicated that VPA reduced mast cell IgE-dependent degranulation and cytokine release. VPA also induced a significant reduction in the cell surface expression of FcεRI and CD117, but not other mast cell surface molecules. Interestingly, VPA treatment inhibited the phosphorylation of PLCγ2, a key signaling molecule involved in IgE-mediated degranulation and cytokine secretion. However, VPA did not affect the phosphorylation of other key components of the FcεRI signaling pathway, such as Syk, Akt, ERK1/2, or p38. Altogether, our data demonstrate that VPA affects PLCγ2 phosphorylation, which in turn decreases IgE-mediated mast cell activation. These results suggest that VPA might be a key modulator of allergic reactions and might be a promising therapeutic candidate.
Collapse
Affiliation(s)
- Gloria Mariana Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Fabián Flores-Borja
- Centre for Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Samira Muñoz-Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rubén López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | | | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| |
Collapse
|
71
|
Ye R, Tan C, Chen B, Li R, Mao Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front Chem 2020; 8:402. [PMID: 32509730 PMCID: PMC7248183 DOI: 10.3389/fchem.2020.00402] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
DNA is considered to be the primary target of platinum-based anticancer drugs which have gained great success in clinics, but DNA-targeted anticancer drugs cause serious side-effects and easily acquired drug resistance. This has stimulated the search for novel therapeutic targets. In the past few years, substantial research has demonstrated that zinc-containing metalloenzymes play a vital role in the occurrence and development of cancer, and they have been identified as alternative targets for metal-based anticancer agents. Metal complexes themselves have also exhibited a lot of appealing features for enzyme inhibition, such as: (i) the facile construction of 3D structures that can increase the enzyme-binding selectivity and affinity; (ii) the intriguing photophysical and photochemical properties, and redox activities of metal complexes can offer possibilities to design enzyme inhibitors with multiple modes of action. In this review, we discuss recent examples of zinc-containing metalloenzyme inhibition of metal-based anticancer agents, especially three zinc-containing metalloenzymes overexpressed in tumors, including histone deacetylases (HDACs), carbonic anhydrases (CAs), and matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Caiping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bichun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
72
|
Cucchiara F, Pasqualetti F, Giorgi FS, Danesi R, Bocci G. Epileptogenesis and oncogenesis: An antineoplastic role for antiepileptic drugs in brain tumours? Pharmacol Res 2020; 156:104786. [PMID: 32278037 DOI: 10.1016/j.phrs.2020.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The first description of epileptic seizures due to brain tumours occurred in 19th century. Nevertheless, after over one hundred years, scientific literature is still lacking on how epilepsy and its treatment can affect tumour burden, progression and clinical outcomes. In patients with brain tumours, epilepsy dramatically impacts their quality of life (QoL). Even antiepileptic therapy seems to affect tumor lesion development. Numerous studies suggest that certain actors involved in epileptogenesis (inflammatory changes, glutamate and its ionotropic and metabotropic receptors, GABA-A and its GABA-AR receptor, as well as certain ligand- and voltage-gated ion channel) may also contribute to tumorigenesis. Although some antiepileptic drugs (AEDs) are known operating on such mechanisms underlying epilepsy and tumor development, few preclinical and clinical studies have tried to investigate them as targets of pharmacological tools acting to control both phenomena. The primary aim of this review is to summarize known determinants and pathophysiological mechanisms of seizures, as well as of cell growth and spread, in patients with brain tumors. Therefore, a special focus will be provided on the anticancer effects of commonly prescribed AEDs (including levetiracetam, valproic acid, oxcarbazepine and others), with an overview of both preclinical and clinical data. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- U.O. Radioterapia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - Filippo Sean Giorgi
- U.O. Neurologia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Pisa, Italy; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Romano Danesi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
73
|
Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. J Comput Aided Mol Des 2020; 34:857-878. [PMID: 32180123 DOI: 10.1007/s10822-020-00304-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 03/07/2020] [Indexed: 12/30/2022]
Abstract
Valproic acid (VPA) is a compound currently used in clinical practice for the treatment of epilepsy as well as bipolar and mood disorders. VPA targets histone deacetylases (HDACs), which participate in the removal of acetyl groups from lysine in several proteins, regulating a wide variety of functions within the organism. An imbalance or malfunction of these enzymes is associated with the development and progression of several diseases, such as cancer and neurodegenerative diseases. HDACs are divided into four classes, but VPA only targets Class I (HDAC1-3 and 8) and Class IIa (HDAC4-5, 7 and 9) HDACs; however, structural and energetic information regarding the manner by which VPA inhibits these HDACs is lacking. Here, the structural and energetic features that determine this recognition were studied using molecular docking and molecular dynamics (MD) simulation. It was found that VPA reaches the catalytic site in HDAC1-3 and 7, whereas in HDAC6, VPA only reaches the catalytic tunnel. In HDAC4, VPA was bound adjacent to L1 and L2, a zone that participates in corepressor binding, and in HDAC8, VPA was bound to the hydrophobic active site channel (HASC), in line with previous reports.
Collapse
|
74
|
Romoli M, Mazzocchetti P, D'Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P, Costa C. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol 2020; 17:926-946. [PMID: 30592252 PMCID: PMC7052829 DOI: 10.2174/1570159x17666181227165722] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
After more than a century from its discovery, valproic acid (VPA) still represents one of the most efficient antiepi-leptic drugs (AEDs). Pre and post-synaptic effects of VPA depend on a very broad spectrum of actions, including the regu-lation of ionic currents and the facilitation of GABAergic over glutamatergic transmission. As a result, VPA indirectly mod-ulates neurotransmitter release and strengthens the threshold for seizure activity. However, even though participating to the anticonvulsant action, such mechanisms seem to have minor impact on epileptogenesis. Nonetheless, VPA has been reported to exert anti-epileptogenic effects. Epigenetic mechanisms, including histone deacetylases (HDACs), BDNF and GDNF modulation are pivotal to orientate neurons toward a neuroprotective status and promote dendritic spines organization. From such broad spectrum of actions comes constantly enlarging indications for VPA. It represents a drug of choice in child and adult with epilepsy, with either general or focal seizures, and is a consistent and safe IV option in generalized convulsive sta-tus epilepticus. Moreover, since VPA modulates DNA transcription through HDACs, recent evidences point to its use as an anti-nociceptive in migraine prophylaxis, and, even more interestingly, as a positive modulator of chemotherapy in cancer treatment. Furthermore, VPA-induced neuroprotection is under investigation for benefit in stroke and traumatic brain injury. Hence, VPA has still got its place in epilepsy, and yet deserves attention for its use far beyond neurological diseases. In this review, we aim to highlight, with a translational intent, the molecular basis and the clinical indications of VPA.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Petra Mazzocchetti
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Renato D'Alonzo
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Victoria Elisa Rinaldi
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila - San Salvatore Hospital, L'Aquila, Italy
| | - Paolo Calabresi
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,IRCCS "Santa Lucia", Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
75
|
Phillips AM, Pombeiro AJ. Transition Metal-Based Prodrugs for Anticancer Drug Delivery. Curr Med Chem 2020; 26:7476-7519. [DOI: 10.2174/0929867326666181203141122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
:
Transition metal complexes, of which the platinum(II) complex cisplatin is an example,
have been used in medicine to treat cancer for more than 40 years. Although many successes have
been achieved, there are problems associated with the use of these drugs, such as side effects and
drug resistance. Converting them into prodrugs, to make them more inert, so that they can travel to
the tumour site unchanged and release the drug in its active form only there, is a strategy which is
the subject of much research nowadays. The new prodrugs may be activated and release the cytotoxic
agent by differences in oxygen concentration or in pH, by the action of overexpressed enzymes,
by differences in metabolic rates, etc., which characteristically distinguish cancer cells from
normal ones, or even by the input of radiation, which can be visible light. Converting a metal complex
into a prodrug may also be used to improve its pharmacological properties. In some cases, the
metal complex is a carrier which transports the active drug as a ligand. Some platinum prodrugs
have reached clinical trials. So far platinum, ruthenium and cobalt have been the most studied metals.
This review presents the recent developments in this area, including the types of complexes
used, the mechanisms of drug action and in some cases the techniques applied to monitor drug delivery
to cells.
Collapse
Affiliation(s)
- Ana M.F. Phillips
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J.L. Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
76
|
Sun J, Piao J, Li N, Yang Y, Kim K, Lin Z. Valproic acid targets HDAC1/2 and HDAC1/PTEN/Akt signalling to inhibit cell proliferation via the induction of autophagy in gastric cancer. FEBS J 2019; 287:2118-2133. [DOI: 10.1111/febs.15122] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/28/2019] [Accepted: 11/03/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jie Sun
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Junjie Piao
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Nan Li
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Yang Yang
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Ki‐Yeol Kim
- Dental Education Research Center BK21 PLUS Project Yonsei University College of Dentistry Seoul Korea
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| |
Collapse
|
77
|
Duan YT, Sangani CB, Liu W, Soni KV, Yao Y. New Promises to Cure Cancer and Other Genetic Diseases/Disorders: Epi-drugs Through Epigenetics. Curr Top Med Chem 2019; 19:972-994. [DOI: 10.2174/1568026619666190603094439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/05/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
All the heritable alterations in gene expression and chromatin structure due to chemical modifications that do not involve changes in the primary gene nucleotide sequence are referred to as epigenetics. DNA methylation, histone modifications, and non-coding RNAs are distinct types of epigenetic inheritance. Epigenetic patterns have been linked to the developmental stages, environmental exposure, and diet. Therapeutic strategies are now being developed to target human diseases such as cancer with mutations in epigenetic regulatory genes using specific inhibitors. Within the past two decades, seven epigenetic drugs have received regulatory approval and many others show their candidature in clinical trials. The current article represents a review of epigenetic heritance, diseases connected with epigenetic alterations and regulatory approved epigenetic drugs as future medicines.
Collapse
Affiliation(s)
- Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Kunjal V. Soni
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, 362024, India
| | - Yongfang Yao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
78
|
Uitrakul S, Hutton C, Veal GJ, Jamieson D. A novel imaging flow cytometry method for the detection of histone H4 acetylation in myeloid cells. Eur J Clin Invest 2019; 49:e13115. [PMID: 30929275 DOI: 10.1111/eci.13115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The histone deacetylase inhibitor (HDACI) valproic acid has been shown to inhibit the growth of multiple paediatric tumour types and is well tolerated in a childhood cancer setting. The current study was designed to develop a novel imaging flow cytometry method for the detection of histone H4 acetylation in white blood cells obtained from childhood cancer patients treated with valproic acid. MATERIALS AND METHODS HL-60 cells and whole blood samples from healthy volunteers were incubated with valproic acid (0-8 mM) for 0-24 hours, with additional blood samples collected from ependymoma patients receiving valproic acid on the SIOP Ependymoma II clinical trial. An imaging flow cytometry method was developed using an ImageStream®χ flow cytometer, collecting 100 000 images per sample following excitation of PE tagged acH4 antibody and DAPI. RESULTS The mean percentage of acH4-positive cells increased to a greater extent than increases in mean and median fluorescence intensity following incubation with valproic acid. Comparable results were observed for in vitro and ex vivo experiments, and the assay was shown to be appropriate for clinical sample analysis. Myeloid cells exhibited a smaller proportion of acH4-positive cells than the lymphoid population, but a greater fold increase above basal levels. CONCLUSIONS The percentage of acH4-positive myeloid cells has the potential to be used as a robust pharmacodynamic biomarker for the measurement of acH4 for HDACIs. The developed assay is now being utilised in a clinical trial involving the treatment of childhood ependymoma patients with valproic acid.
Collapse
Affiliation(s)
- Suriyon Uitrakul
- Newcastle Cancer Centre Pharmacology Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Hutton
- Newcastle Cancer Centre Pharmacology Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Gareth J Veal
- Newcastle Cancer Centre Pharmacology Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - David Jamieson
- Newcastle Cancer Centre Pharmacology Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
79
|
Exploring the Drug Repurposing Versatility of Valproic Acid as a Multifunctional Regulator of Innate and Adaptive Immune Cells. J Immunol Res 2019; 2019:9678098. [PMID: 31001564 PMCID: PMC6437734 DOI: 10.1155/2019/9678098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.
Collapse
|
80
|
Inoue K, Gan G, Ciarleglio M, Zhang Y, Tian X, Pedigo CE, Cavanaugh C, Tate J, Wang Y, Cross E, Groener M, Chai N, Wang Z, Justice A, Zhang Z, Parikh CR, Wilson FP, Ishibe S. Podocyte histone deacetylase activity regulates murine and human glomerular diseases. J Clin Invest 2019; 129:1295-1313. [PMID: 30776024 DOI: 10.1172/jci124030] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
We identified 2 genes, histone deacetylase 1 (HDAC1) and HDAC2, contributing to the pathogenesis of proteinuric kidney diseases, the leading cause of end-stage kidney disease. mRNA expression profiling from proteinuric mouse glomeruli was linked to Connectivity Map databases, identifying HDAC1 and HDAC2 with the differentially expressed gene set reversible by HDAC inhibitors. In numerous progressive glomerular disease models, treatment with valproic acid (a class I HDAC inhibitor) or SAHA (a pan-HDAC inhibitor) mitigated the degree of proteinuria and glomerulosclerosis, leading to a striking increase in survival. Podocyte HDAC1 and HDAC2 activities were increased in mice podocytopathy models, and podocyte-associated Hdac1 and Hdac2 genetic ablation improved proteinuria and glomerulosclerosis. Podocyte early growth response 1 (EGR1) was increased in proteinuric patients and mice in an HDAC1- and HDAC2-dependent manner. Loss of EGR1 in mice reduced proteinuria and glomerulosclerosis. Longitudinal analysis of the multicenter Veterans Aging Cohort Study demonstrated a 30% reduction in mean annual loss of estimated glomerular filtration rate, and this effect was more pronounced in proteinuric patients receiving valproic acid. These results strongly suggest that inhibition of HDAC1 and HDAC2 activities may suppress the progression of human proteinuric kidney diseases through the regulation of EGR1.
Collapse
Affiliation(s)
| | - Geliang Gan
- Yale School of Public Health, Department of Biostatistics, Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Ciarleglio
- Yale School of Public Health, Department of Biostatistics, Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital.,Department of Cardiology, Nanfang Hospital, and.,Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | - Corey Cavanaugh
- Department of Internal Medicine, and.,Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janet Tate
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ying Wang
- Department of Internal Medicine, and
| | | | | | | | - Zhen Wang
- Department of Internal Medicine, and
| | - Amy Justice
- Department of Internal Medicine, and.,VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital.,Department of Cardiology, Nanfang Hospital, and.,Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chirag R Parikh
- Department of Internal Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Francis P Wilson
- Department of Internal Medicine, and.,Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
81
|
Qiu X, Rong X, Yang J, Lu Y. Evaluation of the antioxidant effects of different histone deacetylase inhibitors (HDACis) on human lens epithelial cells (HLECs) after UVB exposure. BMC Ophthalmol 2019; 19:42. [PMID: 30717701 PMCID: PMC6360693 DOI: 10.1186/s12886-019-1056-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND To compare the protective effects of the histone deacetylase inhibitors (HDACis) β-hydroxybutyrate (βOHB), trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA) on human lens epithelial cells(HLECs) following ultraviolet-B (UVB) exposure. METHODS HLECs were divided into subgroups: four HDACi groups, a control group, a UVB-treated group and a DMSO group (cells treated with DMSO and UVB irradiation). In the HDACi groups, HLECs were cultured with different concentrations of HDACis 12 h prior to UVB irradiation. The protective effects of the HDACis were evaluated by assessing apoptosis rates, cell activity and expression levels of genes associated with apotosis (caspase-3, Bcl-2, BAX, SOD1, FOXO3A and MT2). The levels of superoxide dismutase (SOD), reactive oxygen species (ROS), malondialdehyde (MDA) and total antioxidant capacity (T-AOC) were detected in order to evaluate oxidative stress. RESULTS The results showed that SAHA (1 μmol/L, 2 μmol/L) and TSA (0.2 μmol/L) had mild protective effects on cell viability. βOHB (4 mmol/L) and TSA (0.2 mol/L) demonstrated protective effects on BCL-2 expression. TSA (0.2 mol/L) showed protective effects on SOD1 expression. TSA (0.2 mol/L) and SAHA (1 μmol/L) suppressed BAX and caspase-3 expression. TSA (0.2 mol/L, 0.8 mol/L) and SAHA (1 μmol/L, 2 μmol/L) suppressed the expression of FOXO3A and MT2. SOD levels were increased after treatment with βOHB (4 mmol/L), SAHA (8 μmol/L) and TSA (0.1 mol/L, 0.2 mol/L). T-AOC levels were increased in UVB-treated HLECs after treatment with SAHA (2 μmol/L). MDA levels decreased in UVB-treated HLECs following treatment with TSA (0.2 mol/L, 0.8 mol/L). ROS levels decreased in UVB-treated HLECs following treatment with βOHB (4 mmol/L), SAHA (1 μmol/L, 2 μmol/L) and TSA (0.2 mol/L). Western blotting results demonstrated that SOD1 levels significantly increased in the βOHB (4 mmol/L), SAHA (1 μmol/L, 2 μmol/L), TSA (0.1 mol/L, 0.2 mol/L) and VPA (5 mmol/L) groups. Only SAHA (1 μmol/L) had an anti-apoptotic effect on UVB-treated HLECs. CONCLUSIONS Our findings indicate that low concentrations of HDACis (1 μmol/L of SAHA) mildly inhibit oxidative stress, thus protecting HLECs from oxidation. These results may suggest that there is a possibility to explore the clinical applications of HDACis for treatment and prevention of cataracts.
Collapse
Affiliation(s)
- Xiaodi Qiu
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031, People's Republic of China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Key NHC key Laboratory of Myopia, Fudan University, Shanghai, 200031, People's Republic of China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, People's Republic of China
| | - Xianfang Rong
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031, People's Republic of China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Key NHC key Laboratory of Myopia, Fudan University, Shanghai, 200031, People's Republic of China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, People's Republic of China
| | - Jin Yang
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China. .,Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031, People's Republic of China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Key NHC key Laboratory of Myopia, Fudan University, Shanghai, 200031, People's Republic of China. .,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, People's Republic of China.
| | - Yi Lu
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China. .,Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031, People's Republic of China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Key NHC key Laboratory of Myopia, Fudan University, Shanghai, 200031, People's Republic of China. .,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
82
|
Sambath K, Zhao T, Wan Z, Zhang Y. Photo-uncaging of BODIPY oxime ester for histone deacetylases induced apoptosis in tumor cells. Chem Commun (Camb) 2019; 55:14162-14165. [DOI: 10.1039/c9cc07199g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new photo-uncaging platform to guide drug delivery with enhanced therapeutic effect.
Collapse
Affiliation(s)
- Karthik Sambath
- Department of Chemistry and Environmental Science
- College of Science and Liberal Arts
- New Jersey Institute of Technology
- Newark
- USA
| | - Tinghan Zhao
- Department of Chemistry and Environmental Science
- College of Science and Liberal Arts
- New Jersey Institute of Technology
- Newark
- USA
| | - Zhaoxiong Wan
- Department of Chemistry and Environmental Science
- College of Science and Liberal Arts
- New Jersey Institute of Technology
- Newark
- USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science
- College of Science and Liberal Arts
- New Jersey Institute of Technology
- Newark
- USA
| |
Collapse
|
83
|
Nieto-Patlán E, Serafín-López J, Wong-Baeza I, Pérez-Tapia SM, Cobos-Marín L, Estrada-Parra S, Estrada-García I, Chávez-Blanco AD, Chacón-Salinas R. Valproic acid promotes a decrease in mycobacterial survival by enhancing nitric oxide production in macrophages stimulated with IFN-γ. Tuberculosis (Edinb) 2019; 114:123-126. [DOI: 10.1016/j.tube.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 12/17/2022]
|
84
|
Tun N, Shibata Y, Soe MT, Htun MW, Koji T. Histone deacetylase inhibitors suppress transdifferentiation of gonadotrophs to prolactin cells and proliferation of prolactin cells induced by diethylstilbestrol in male mouse pituitary. Histochem Cell Biol 2018; 151:291-303. [DOI: 10.1007/s00418-018-1760-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 01/11/2023]
|
85
|
Zarkesh M, Zadeh-Vakili A, Azizi F, Foroughi F, Akhavan MM, Hedayati M. Altered Epigenetic Mechanisms in Thyroid Cancer Subtypes. Mol Diagn Ther 2018; 22:41-56. [PMID: 28986854 DOI: 10.1007/s40291-017-0303-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thyroid carcinoma (TC) is the most frequent malignant neoplasm of the endocrine system. Molecular methods for diagnosis of invasive thyroid disease can be effectively adopted. Epigenetic factors play an important role in the diversity patterns of gene expression and the phenotypic and biological characteristics of TC subtypes. We aimed to review epigenetic changes in the main subtypes of TC, along with a presentation of the methods that have examined these changes, and active clinical trials for the treatment of advanced TCs targeting epigenetic changes. A literature analysis was performed in MEDLINE using PubMed, Elsevier, and Google Scholar for studies published up to 2016, using the keywords: "Epigenetic alterations" OR "Epigenetic changes", "thyroid cancers", "papillary thyroid cancer", "medullary thyroid cancer", "follicular thyroid cancer", and "anaplastic thyroid cancer", which resulted in 310 articles in English. All related abstracts were reviewed and studies were included that were published in English, had available full text, and determined the details of the methods and materials associated with the epigenetic patterns of TC and its subtypes (100 articles). Analysis of epigenetic alterations in TC subtypes helps to identify pathogenesis and can play an important role in the classification and diagnosis of tumors. Epigenetic mechanisms, especially aberrant methylation of DNA and microRNAs (miRs), are likely to play an important role in thyroid tumorigenesis. Further studies are required to elucidate the role of histone modification mechanisms in TC development.
Collapse
Affiliation(s)
- Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foroughi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Mohammad Akhavan
- Skin Research Center School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| |
Collapse
|
86
|
Liu TP, Hsieh YY, Chou CJ, Yang PM. Systematic polypharmacology and drug repurposing via an integrated L1000-based Connectivity Map database mining. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181321. [PMID: 30564416 PMCID: PMC6281908 DOI: 10.1098/rsos.181321] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/02/2018] [Indexed: 05/19/2023]
Abstract
Drug repurposing aims to find novel indications of clinically used or experimental drugs. Because drug data already exist, drug repurposing may save time and cost, and bypass safety concerns. Polypharmacology, one drug with multiple targets, serves as a basis for drug repurposing. Large-scale databases have been accumulated in recent years, and utilization and integration of these databases would be highly helpful for polypharmacology and drug repurposing. The Connectivity Map (CMap) is a database collecting gene-expression profiles of drug-treated human cancer cells, which has been widely used for investigation of polypharmacology and drug repurposing. In this study, we integrated the next-generation L1000-based CMap and an analytic Web tool, the L1000FWD, for systematic analyses of polypharmacology and drug repurposing. Two different types of anti-cancer drugs were used as proof-of-concept examples, including histone deacetylase (HDAC) inhibitors and topoisomerase inhibitors. We identified KM-00927 and BRD-K75081836 as novel HDAC inhibitors and mitomycin C as a topoisomerase IIB inhibitor. Our study provides a prime example of utilization and integration of the freely available public resources for systematic polypharmacology analysis and drug repurposing.
Collapse
Affiliation(s)
- Tsang-Pai Liu
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China
- Liver Medical Center, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan, Republic of China
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, Republic of China
| | - Yao-Yu Hsieh
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, Republic of China
- Division of Hematology and Oncology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan, Republic of China
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Chia-Jung Chou
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, Republic of China
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic of China
- TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan, Republic of China
| | - Pei-Ming Yang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, Republic of China
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic of China
- TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan, Republic of China
- Author for correspondence: Pei-Ming Yang e-mail:
| |
Collapse
|
87
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
88
|
Hoogeveen RM, Nahrendorf M, Riksen NP, Netea MG, de Winther MPJ, Lutgens E, Nordestgaard BG, Neidhart M, Stroes ESG, Catapano AL, Bekkering S. Monocyte and haematopoietic progenitor reprogramming as common mechanism underlying chronic inflammatory and cardiovascular diseases. Eur Heart J 2018; 39:3521-3527. [PMID: 29069365 PMCID: PMC6174026 DOI: 10.1093/eurheartj/ehx581] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022] Open
Abstract
A large number of cardiovascular events are not prevented by current therapeutic regimens. In search for additional, innovative strategies, immune cells have been recognized as key players contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate immune cells is of major interest, following the recent paradigm shift that innate immunity, long considered to be incapable of learning, does exhibit immunological memory mediated via epigenetic reprogramming. Compelling evidence shows that atherosclerotic risk factors promote immune cell migration by pre-activation of circulating innate immune cells. Innate immune cell activation via metabolic and epigenetic reprogramming perpetuates a systemic low-grade inflammatory state in cardiovascular disease (CVD) that is also common in other chronic inflammatory disorders. This opens a new therapeutic area in which metabolic or epigenetic modulation of innate immune cells may result in decreased systemic chronic inflammation, alleviating CVD, and its co-morbidities.
Collapse
Affiliation(s)
- Renate M Hoogeveen
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, 55 Fruit Street Boston, MA, USA
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Pettenkoferstraße 9, Munich, Germany
| | - Børge G Nordestgaard
- The Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Ringvej 75, Herlev, Copenhagen, Denmark
| | - Michel Neidhart
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Via Balzaretti, Milano, Italy
| | - Siroon Bekkering
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| |
Collapse
|
89
|
Sanaei M, Kavoosi F, Roustazadeh A, Shahsavani H. In Vitro Effect of the Histone Deacetylase Inhibitor Valproic Acid on Viability and Apoptosis of the PLC/PRF5 Human Hepatocellular Carcinoma Cell Line. Asian Pac J Cancer Prev 2018; 19:2507-2510. [PMID: 30256044 PMCID: PMC6249479 DOI: 10.22034/apjcp.2018.19.9.2507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nucleosome is the fundamental building block of eukaryotic chromatin formed by DNA and histone proteins. Chromatin modifications such as acetylation, methylation, and phosphorylation are necessary for protection, replication, and gene transcription. Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups to re-establish positive charges on histones and aberrant deacetylation may lead to tumorigenesis in different tissues. Histone deacetylase inhibitors (HDACIs) are a class of chemotherapeutic agent that can reactivate gene expression and inhibit the growth of tumor cells by histone deacetylase inhibition. HDACI valproic acid (VPA) has shown potent anticancer effects in vitro and in vivo. Previously, we reported that VAP can inhibit the growth and induce apoptosis of human colon carcinoma HT 29 and hepatocellular carcinoma HepG 2 cells. The aim of the present study was to access the effect of VPA on proliferation and apoptosis of the human hepatocellular carcinoma (HCC) PLC/PRF5 cell line.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | | | | | | |
Collapse
|
90
|
Xie Z, Ago Y, Okada N, Tachibana M. Valproic acid attenuates immunosuppressive function of myeloid-derived suppressor cells. J Pharmacol Sci 2018; 137:359-365. [PMID: 30177294 DOI: 10.1016/j.jphs.2018.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoint blockade (ICB) is a promising novel therapy for multiple cancer types; however, most patients show limited or no clinical response. Accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are a major factor responsible for immunosuppression in patients with cancer. Therefore, identifying effective therapies that deplete or modulate MDSCs is essential. In this study, we focus on the anticonvulsant drug valproic acid (VPA), which has additional activities including anticancer and immunoregulation by inhibition of histone deacetylases. We showed that VPA decreased the proportion of polymorphonuclear (PMN)-MDSCs in vitro and showed for the first time that VPA greatly attenuated the immunosuppressive function of MDSCs in a dose-dependent manner. Moreover, we demonstrated that in vitro differentiated VPA-conditioned MDSCs exhibited impaired ability to stimulate tumor progression in vivo. We also showed the possible involvement of several mechanisms in the VPA-induced attenuation of the immunosuppressive function of MDSCs, including the interleukin-4 receptor-α (IL-4Rα)/arginase axis, programmed cell death 1 ligand 1 (PD-L1) and toll-like receptor 4 (TLR4) signaling pathways, and retinoblastoma 1 (Rb1) derepression. This research highlights the potential of combining VPA with ICB in cancer treatment.
Collapse
Affiliation(s)
- Zhiqi Xie
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Masashi Tachibana
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
91
|
Lin CC, Hsieh TC, Wu LSH. Long-term use of valproic acid and the prevalence of cancers in bipolar disorder patients in a Taiwanese population: An association analysis using the National Health Insurance Research Database (NHIRD). J Affect Disord 2018; 232:103-108. [PMID: 29481993 DOI: 10.1016/j.jad.2018.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Epigenetic events play a major role in the carcinogenesis of many cancers. A retrospective cohort study had been performed to evaluate the effects of exposure to the anticonvulsant agent valproic acid (VPA), a histone deacetylase inhibitor, on the risk of developing cancers. METHODS The study was based on the 1998 through 2009 National Health Insurance Research Database (NHIRD), provided by the Taiwan National Health Research Institute. Patients with a diagnosis of bipolar disorder (ICD-9-CM codes 296.0, 296.1, 296.4-8) from 1998 to 2009 were identified. VPA and lithium were the primary index drugs. Patients treated with anticonvulsants who did not use VPA or lithium were selected as the control group. Competing risk regression analysis were used to estimate hazards ratios (HR) and 95% confidence intervals (95% CI) reflecting the association between use of VPA and cancer incidence. RESULTS The cancer incidence of bipolar disorder patients treated with VPA was no significant difference than treated with lithium and other anticonvulsants. In subgroup analysis, VPA associated to higher risk of genitourinary cancer in the duration < 1 year group (HR: 3.49; 95%CI: 1.04, 11.67). No significant differences in other cancers incidence in any duration of VPA treatment. LIMITATIONS The cancer prevalence in selected bipolar disorder patients was still low. The sample size was not enough for some types of cancer. CONCLUSIONS A role of VPA in cancer prevention was not found in this study. An increased subgroup risk of genitourinary cancer was observed.
Collapse
Affiliation(s)
- Cheng Chia Lin
- Department of Urology, Chang Gung Memorial Hospital, Keelung Division Taiwan, ROC
| | - Tsung-Cheng Hsieh
- Institute of Medical Sciences, Tzu Chi University, #701, Zhongyang Road, Section 3, Hualien 97004, Taiwan, ROC
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, #91 Hsueh-Shih Road, Taichung, Taiwan, ROC.
| |
Collapse
|
92
|
Kratzsch T, Kuhn SA, Joedicke A, Hanisch UK, Vajkoczy P, Hoffmann J, Fichtner I. Treatment with 5-azacitidine delay growth of glioblastoma xenografts: a potential new treatment approach for glioblastomas. J Cancer Res Clin Oncol 2018; 144:809-819. [PMID: 29427211 DOI: 10.1007/s00432-018-2600-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/30/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults. The epigenetically active ribonucleoside analog 5-azacitidine is a new therapy option that changes tumor cell chromatin, which is frequently modified by methylation and deacetylation in malignant gliomas. METHODS In vitro, we analyzed cell viability, cell apoptosis, and migration of human GBM cells. In vivo, we established subcutaneous and intracerebral GBM mouse models originating from U87MG, U373MG, and primary GBM cells as well as one patient-derived xenograft. Xenografts were treated with 5-azacitidine as well as valproic acid, bevacizumab, temozolomide, and phosphate buffered saline. The tumor sizes and Ki67 proliferation indices were determined. Glioma angiogenesis was examined immunohistochemically by expression analysis of endothelial cells (CD31) and pericytes (PDGFRβ). RESULTS In vitro, 5-azacitidine treatment significantly reduced human glioblastoma cell viability, increased cellular apoptosis, and reduced cellular migration. In vivo, 5-azacitidine significantly reduced growth in two intracerebral GBM models. Notably, this was also shown for a xenograft established from a patient surgery sample; whereas, epigenetically acting valproic acid did not show any growth reduction. Highly vascularized tumors responded to treatment, whereas low-vascularized xenografts showed no response. Furthermore, intracerebral glioblastomas treated with 5-azacitidine showed a clearly visible reduction of tumor angiogenesis and lower numbers of endothelial cells and tumor vessel pericytes. CONCLUSIONS Our data show significant growth inhibition as well as antiangiogenic effects in intracerebral as well as patient-derived GBM xenografts. This encourages to investigate in detail the multifactorial effects of 5-azacitidine on glioblastomas.
Collapse
Affiliation(s)
- Tobias Kratzsch
- Department of Neurosurgery, Charité University Hospital, Chariteplatz 1, 10117, Berlin, Germany.
| | - Susanne Antje Kuhn
- Department of Neurosurgery, Ernst von Bergmann Hospital, Potsdam, Germany
| | - Andreas Joedicke
- Department of Neurosurgery, Vivantes Hospital Berlin Neukölln, Berlin, Germany
| | - Uwe Karsten Hanisch
- Institute of Neuropathology, University Hospital, Göttingen, Germany
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Chariteplatz 1, 10117, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Iduna Fichtner
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
93
|
Roney MSI, Park SK. Antipsychotic dopamine receptor antagonists, cancer, and cancer stem cells. Arch Pharm Res 2018; 41:384-408. [PMID: 29556831 DOI: 10.1007/s12272-018-1017-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Cancer is one of the deadliest diseases in the world. Despite extensive studies, treating metastatic cancers remains challenging. Years of research have linked a rare set of cells known as cancer stem cells (CSCs) to drug resistance, leading to the suggestion that eradication of CSCs might be an effective therapeutic strategy. However, few drug candidates are active against CSCs. New drug discovery is often a lengthy process. Drug screening has been advantageous in identifying drug candidates. Current understanding of cancer biology has revealed various clues to target cancer from different points of view. Many studies have found dopamine receptors (DRs) in various cancers. Therefore, DR antagonists have attracted a lot of attention in cancer research. Recently, a group of antipsychotic DR antagonists has been demonstrated to possess remarkable abilities to restrain and sensitize CSCs to existing chemotherapeutics by a process called differentiation approach. In this review, we will describe current aspects of CSC-targeting therapeutics, antipsychotic DR antagonists, and their extraordinary abilities to fight cancer.
Collapse
Affiliation(s)
- Md Saiful Islam Roney
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
- Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul, 08308, Republic of Korea.
| |
Collapse
|
94
|
Schneider NFZ, Cerella C, Lee JY, Mazumder A, Kim KR, de Carvalho A, Munkert J, Pádua RM, Kreis W, Kim KW, Christov C, Dicato M, Kim HJ, Han BW, Braga FC, Simões CMO, Diederich M. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death. Front Pharmacol 2018; 9:70. [PMID: 29545747 PMCID: PMC5838923 DOI: 10.3389/fphar.2018.00070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
Cardiac glycosides (CGs) are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV) out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC) and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion) were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.
Collapse
Affiliation(s)
- Naira F Z Schneider
- Laboratorio de Virologia Applicada, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg.,Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jin-Young Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Aloran Mazumder
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Kyung Rok Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Annelise de Carvalho
- Laboratorio de Virologia Applicada, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Jennifer Munkert
- Department of Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Rodrigo M Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Wolfgang Kreis
- Department of Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Kyu-Won Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Byung Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Fernão C Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia M O Simões
- Laboratorio de Virologia Applicada, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
95
|
Xi W, Chen X, Sun J, Wang W, Huo Y, Zheng G, Wu J, Li Y, Yang A, Wang T. Combined Treatment with Valproic Acid and 5-Aza-2'-Deoxycytidine Synergistically Inhibits Human Clear Cell Renal Cell Carcinoma Growth and Migration. Med Sci Monit 2018; 24:1034-1043. [PMID: 29457966 PMCID: PMC5827631 DOI: 10.12659/msm.906020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Histone acetylation and DNA methylation are important mammalian epigenetic modifications that participate in the regulation of gene expression. Because dysregulation of histone deacetylase and DNA methyltransferases are hallmarks of malignancy, they have become promising therapeutic targets. In this study, we explored the anti-tumor activity of valproic acid (VPA), a histone deacetylase inhibitor (HDACi) and 5-Aza-2′-deoxycytidine (5-Aza), an inhibitor of DNA methyltransferases, on renal cell carcinoma (RCC) cell lines 786-O and 769-P. Material/Methods The cell proliferation was detected by xCELLigence RTCA DP Instrument, viability by CCK8 assay, cell apoptosis and cell cycle by flow cytometry, and cell migration by wound healing assay, Transwell assay and xCELLigence RTCA DP Instrument. Results We discovered that VPA and 5-Aza could individually induce decreased viability and have an inhibitory effect on the proliferation of 786-O and 769-P cells. This anti-growth effect was more pronounced when the cells were treated with both VPA and 5-Aza. The combination of VPA and 5-Aza also elicited more apoptosis and produced more cell cycle arrest in the G1 phase for both cell lines. On the other hand, treatment of RCC cells with VPA, 5-Aza, or a combination of both resulted in slow wound healing and impaired migration. Conclusions These findings clearly demonstrated that VPA combined with 5-Aza could significantly increase anti-RCC effects by inhibiting cellular proliferation, inducing apoptosis, promoting cell cycle arrest and prohibiting the migration of human RCC cells.
Collapse
Affiliation(s)
- Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Yufang Li
- Nuclear Medicine Diagnostic Center, Shaanxi Provincial Peple's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Angang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
96
|
Huang J, Zhao D, Liu Z, Liu F. Repurposing psychiatric drugs as anti-cancer agents. Cancer Lett 2018; 419:257-265. [PMID: 29414306 DOI: 10.1016/j.canlet.2018.01.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/11/2023]
Abstract
Cancer is a major public health problem and one of the leading contributors to the global disease burden. The high cost of development of new drugs and the increasingly severe burden of cancer globally have led to increased interest in the search and development of novel, affordable anti-neoplastic medications. Antipsychotic drugs have a long history of clinical use and tolerable safety; they have been used as good targets for drug repurposing. Being used for various psychiatric diseases for decades, antipsychotic drugs are now reported to have potent anti-cancer properties against a wide variety of malignancies in addition to their antipsychotic effects. In this review, an overview of repurposing various psychiatric drugs for cancer treatment is presented, and the putative mechanisms for the anti-neoplastic actions of these antipsychotic drugs are reviewed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, 410011, China; Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, 410011, China
| | - Danwei Zhao
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
97
|
van Breda SG, Claessen SM, van Herwijnen M, Theunissen DH, Jennen DG, de Kok TM, Kleinjans JC. Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology 2018; 393:160-170. [DOI: 10.1016/j.tox.2017.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
|
98
|
Bai ZT, Bai B, Zhu J, Di CX, Li X, Zhou WC. Epigenetic actions of environmental factors and promising drugs for cancer therapy. Oncol Lett 2017; 15:2049-2056. [PMID: 29434904 DOI: 10.3892/ol.2017.7597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2017] [Indexed: 01/15/2023] Open
Abstract
Carcinogenesis is known to be primarily associated with gene mutations. Recently, increasing evidence has suggested that epigenetic events also serve crucial roles in tumor etiology. Environmental factors, including nutrition, toxicants and ethanol, are involved in carcinogenesis through inducing epigenetic modifications, such as DNA methylation, histone deacetylase and miRNA regulation. Studying epigenetic mechanisms has facilitated the development of early diagnostic strategies and potential therapeutic avenues. Modulation at the epigenetic level, including reversing epigenetic modifications using targeted drugs, has demonstrated promise in cancer therapy. Therefore, identifying novel epigenetic biomarkers and therapeutic targets has potential for the future of cancer therapy. The present review discusses the environmental factors involved in epigenetic modifications and potential drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Zhong-Tian Bai
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bing Bai
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jun Zhu
- Pathology Department of Donggang Branch Courts, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Cui-Xia Di
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Ce Zhou
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
99
|
Zhu B, Sun L, Luo W, Li M, Coy DH, Yu L, Yu W. Activated Notch signaling augments cell growth in hepatocellular carcinoma via up-regulating the nuclear receptor NR4A2. Oncotarget 2017; 8:23289-23302. [PMID: 28423575 PMCID: PMC5410304 DOI: 10.18632/oncotarget.15576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant cancers. Conventional therapies are limited due to the human liver being such a unique organ and easily showing side-effects. The unclear molecular mechanisms are tough challenges for scientists searching for new and effective anti-HCC targeting drugs. We identified that the nuclear receptor NR4A2 is a novel oncogene in HCC progression. In this study, we show that NR4A2 and the notch recceptor Notch1 were expressed highly in primary HCC tissues and immortal HCC cells by using qPCR, western blot and immuno-histochemistry assays. Both genes were observed to stimulate HCC cell proliferation, anti-apoptosis and cell cycle arrest by using cell proliferation assays and FACS assays. We also observed that the four notch receptor subtypes (Notch1-4) displayed different effects on HCC cell growth. The over-expression of Notch1 by transiently transfecting the intracellular domain of Notch1 (ICN1, Notch1 active form) increased the expression of NR4A2, with the knockdown of Notch1 decreasing NR4A2. This indicates that NR4A2 is one of the Notch-mediated downstream genes. Moreover, both NR4A2 and Notch1 suppressed the expression of tumor suppressors p21 and p63. These findings support that Notch1/NR4A2 co-regulate HCC cell functions by playing oncogenic roles and regulating the associated downstream signaling pathways. Novel Notch1/NR4A2-mediated oncogenic signaling may provide us a great opportunity for anti-HCC drug development.
Collapse
Affiliation(s)
- Bo Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lichun Sun
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Medicine, School of Medicine, Tulane Health Sciences Center, New Orleans, LA 70112-2699, USA
| | - Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Min Li
- Department of Medicine, School of Medicine, Tulane Health Sciences Center, New Orleans, LA 70112-2699, USA.,Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - David H Coy
- Department of Medicine, School of Medicine, Tulane Health Sciences Center, New Orleans, LA 70112-2699, USA
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
100
|
Alfurhood JA, Sun H, Kabb CP, Tucker BS, Matthews JH, Luesch H, Sumerlin BS. Poly( N-(2-Hydroxypropyl) Methacrylamide)-Valproic Acid Conjugates as Block Copolymer Nanocarriers. Polym Chem 2017; 8:4983-4987. [PMID: 28959359 PMCID: PMC5612619 DOI: 10.1039/c7py00196g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report nanoassemblies based on block copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) in which drug cleavage enhances the biological compatibility of the original polymer carrier by regeneration of HPMA units. Drug release via ester hydrolysis suggests this approach offers potential for stimuli-responsive drug delivery under acidic conditions.
Collapse
Affiliation(s)
- Jawaher A Alfurhood
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Hao Sun
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Christopher P Kabb
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Bryan S Tucker
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - James H Matthews
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610-7200, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610-7200, USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| |
Collapse
|