51
|
Dardente H, Hazlerigg DG, Ebling FJP. Thyroid hormone and seasonal rhythmicity. Front Endocrinol (Lausanne) 2014; 5:19. [PMID: 24616714 PMCID: PMC3935485 DOI: 10.3389/fendo.2014.00019] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/10/2014] [Indexed: 12/15/2022] Open
Abstract
Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, UMR085, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut français du cheval et de l’équitation, Nouzilly, France
- *Correspondence: Hugues Dardente, INRA, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, UMR7247, Université François Rabelais de Tours, IFCE, F-37380 Nouzilly, France e-mail:
| | - David G. Hazlerigg
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | | |
Collapse
|
52
|
Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc Natl Acad Sci U S A 2013; 110:16651-6. [PMID: 24067648 DOI: 10.1073/pnas.1310643110] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In seasonally breeding vertebrates, changes in day length induce categorically distinct behavioral and reproductive phenotypes via thyroid hormone-dependent mechanisms. Winter photoperiods inhibit reproductive neuroendocrine function but cannot sustain this inhibition beyond 6 mo, ensuring vernal reproductive recrudescence. This genomic plasticity suggests a role for epigenetics in the establishment of seasonal reproductive phenotypes. Here, we report that DNA methylation of the proximal promoter for the type III deiodinase (dio3) gene in the hamster hypothalamus is reversible and critical for photoperiodic time measurement. Short photoperiods and winter-like melatonin inhibited hypothalamic DNA methyltransferase expression and reduced dio3 promoter DNA methylation, which up-regulated dio3 expression and induced gonadal regression. Hypermethylation attenuated reproductive responses to short photoperiods. Vernal refractoriness to short photoperiods reestablished summer-like methylation of the dio3 promoter, dio3 expression, and reproductive competence, revealing a dynamic and reversible mechanism of DNA methylation in the mammalian brain that plays a central role in physiological orientation in time.
Collapse
|
53
|
Tsujino K, Narumi R, Masumoto KH, Susaki EA, Shinohara Y, Abe T, Iigo M, Wada A, Nagano M, Shigeyoshi Y, Ueda HR. Establishment of TSH β real-time monitoring system in mammalian photoperiodism. Genes Cells 2013; 18:575-88. [PMID: 23758111 PMCID: PMC3738941 DOI: 10.1111/gtc.12063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/23/2013] [Indexed: 02/01/2023]
Abstract
Organisms have seasonal physiological changes in response to day length. Long-day stimulation induces thyroid-stimulating hormone beta subunit (TSHβ) in the pars tuberalis (PT), which mediates photoperiodic reactions like day-length measurement and physiological adaptation. However, the mechanism of TSHβ induction for day-length measurement is largely unknown. To screen candidate upstream molecules of TSHβ, which convey light information to the PT, we generated Luciferase knock-in mice, which quantitatively report the dynamics of TSHβ expression. We cultured brain slices containing the PT region from adult and neonatal mice and measured the bioluminescence activities from each slice over several days. A decrease in the bioluminescence activities was observed after melatonin treatment in adult and neonatal slices. These observations indicate that the experimental system possesses responsiveness of the TSHβ expression to melatonin. Thus, we concluded that our experimental system monitors TSHβ expression dynamics in response to external stimuli.
Collapse
Affiliation(s)
- Kaori Tsujino
- Laboratory for Systems Biology, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Hodson DJ, Townsend J, Tortonese DJ. Cells co-expressing luteinising hormone and thyroid-stimulating hormone are present in the ovine pituitary pars distalis but not the pars tuberalis: implications for the control of endogenous circannual rhythms of prolactin. Neuroendocrinology 2013; 97:355-62. [PMID: 23548370 DOI: 10.1159/000350790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/18/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS A mammalian circannual pacemaker responsible for regulating the seasonal pattern of prolactin has been recently described in sheep. This pacemaker resides within the pars tuberalis, an area of the pituitary gland that densely expresses melatonin receptors. However, the chemical identity of the cell type which acts as the pacemaker remains elusive. Mathematical-modelling approaches have established that this cell must be responsive to the static melatonin signal as well as prolactin negative feedback. Considering that in sheep the gonadotroph is the only cell in the pars tuberalis which expresses the prolactin receptor, and that in other photoperiodic species the thyrotroph is the only cell expressing the melatonin receptor in this tissue, a cell type which expresses both proteins would fulfil the theoretical criteria of a circannual pacemaker. METHODS Pituitary glands were obtained from female sheep under short days (breeding season) and long days (non-breeding season) and double immunofluorescent staining was conducted to determine the prevalence of bi-hormonal cells in the pars distalis and pars tuberalis using specific antibodies to luteinising hormone-β and thyroid-stimulating hormone-β. RESULTS The results reveal that whilst such a bihormonal cell is clearly present in the pars distalis and constitute 4% of the gonadotroph population in this region, the same cell type is completely absent from the pars tuberalis even though LH gonadotrophs are abundantly expressed. CONCLUSIONS Based on these findings, together with existing data, we are able to propose an alternative model where the gonadotroph itself is controlled indirectly by neighbouring melatonin responsive cells, allowing it to act as a pacemaker.
Collapse
Affiliation(s)
- David J Hodson
- Department of Anatomy, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
55
|
West A, Dupré SM, Yu L, Paton IR, Miedzinska K, McNeilly AS, Davis JRE, Burt DW, Loudon ASI. Npas4 is activated by melatonin, and drives the clock gene Cry1 in the ovine pars tuberalis. Mol Endocrinol 2013; 27:979-89. [PMID: 23598442 PMCID: PMC3689899 DOI: 10.1210/me.2012-1366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Seasonal mammals integrate changes in the duration of nocturnal melatonin secretion to drive annual physiologic cycles. Melatonin receptors within the proximal pituitary region, the pars tuberalis (PT), are essential in regulating seasonal neuroendocrine responses. In the ovine PT, melatonin is known to influence acute changes in transcriptional dynamics coupled to the onset (dusk) and offset (dawn) of melatonin secretion, leading to a potential interval-timing mechanism capable of decoding changes in day length (photoperiod). Melatonin offset at dawn is linked to cAMP accumulation, which directly induces transcription of the clock gene Per1. The rise of melatonin at dusk induces a separate and distinct cohort, including the clock-regulated genes Cry1 and Nampt, but little is known of the up-stream mechanisms involved. Here, we used next-generation sequencing of the ovine PT transcriptome at melatonin onset and identified Npas4 as a rapidly induced basic helix-loop-helix Per-Arnt-Sim domain transcription factor. In vivo we show nuclear localization of NPAS4 protein in presumptive melatonin target cells of the PT (α-glycoprotein hormone-expressing cells), whereas in situ hybridization studies identified acute and transient expression in the PT of Npas4 in response to melatonin. In vitro, NPAS4 forms functional dimers with basic helix loop helix-PAS domain cofactors aryl hydrocarbon receptor nuclear translocator (ARNT), ARNT2, and ARNTL, transactivating both Cry1 and Nampt ovine promoter reporters. Using a combination of 5′-deletions and site-directed mutagenesis, we show NPAS4-ARNT transactivation to be codependent upon two conserved central midline elements within the Cry1 promoter. Our data thus reveal NPAS4 as a candidate immediate early-response gene in the ovine PT, driving molecular responses to melatonin.
Collapse
Affiliation(s)
- A West
- University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Sáenz de Miera C, Hanon EA, Dardente H, Birnie M, Simonneaux V, Lincoln GA, Hazlerigg DG. Circannual variation in thyroid hormone deiodinases in a short-day breeder. J Neuroendocrinol 2013; 25:412-21. [PMID: 23282080 DOI: 10.1111/jne.12013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/09/2012] [Accepted: 12/20/2012] [Indexed: 01/14/2023]
Abstract
At temperate latitudes, many mammals and birds show internally timed, long-term changes in seasonal physiology, synchronised to the seasons by changing day length (photoperiod). Photoperiodic control of thyroid hormone levels in the hypothalamus dictates the timing. This is effected through reciprocal regulation of thyroid hormone deiodinase gene expression. The local synthesis of type 2 deiodinase (Dio2) promotes triiodothyronine (T3) production and summer biology, whereas type 3 deiodinase (Dio3) promotes T3 degradation and winter biology. In the present study, we investigated the extent to which the hypothalamic expression of Dio2 and Dio3 is circannually regulated in the Soay sheep, a short-day breeding mammal. Male sheep were exposed to a long photoperiod (LP; 16 : 24 h light/dark cycle) or a short photoperiod (SP; 8 : 24 h light/dark cycle), for up to 28 weeks to establish four different endocrine states: (i) LP animals in a spring/summer-like state of reproductive arrest; (ii) LP refractory (LPR) animals showing spontaneous reproductive reactivation; (iii) SP animals showing autumn/winter-like reproductive activation; and (iv) SP refractory (SPR) animals showing spontaneous reproductive arrest. A complex pattern of hypothalamic Dio2 and Dio3 expression was observed, revealing distinctive photoperiod-driven and internally timed effects for both genes. The patterns of expression differed both spatially and temporally, with phases of peak Dio2 expression in the median eminence and tuberoinfundibular sulcus, as well as in the paraventricular zone (PVZ) (maximal under LP), whereas Dio3 expression was always confined to the PVZ (maximal under SP). These effects likely reflect the distinct roles of these enzymes in the localised control of hypothalamic T3 levels. The spontaneous decline in Dio2 and spontaneous increase in Dio3 in LPR animals occurred with a corresponding decline in thyroid-stimulating hormone β expression in the neighbouring pars tuberalis (PT), although this relationship did not hold for the corresponding Dio2 increase/Dio3 decrease seen in SPR animals. We conclude that internally timed and spatially regulated changes in Dio2 and Dio3 expression may drive the cycling between breeding and nonbreeding states in long-lived seasonal species, and may be either PT-dependent or PT-independent at different phases of the circannual cycle.
Collapse
Affiliation(s)
- C Sáenz de Miera
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | | | |
Collapse
|
57
|
Tadjuidje E, Hegde RS. The Eyes Absent proteins in development and disease. Cell Mol Life Sci 2012; 70:1897-913. [PMID: 22971774 DOI: 10.1007/s00018-012-1144-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/24/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
The Eyes Absent (EYA) proteins, first described in the context of fly eye development, are now implicated in processes as disparate as organ development, innate immunity, DNA damage repair, photoperiodism, angiogenesis, and cancer metastasis. These functions are associated with an unusual combination of biochemical activities: tyrosine phosphatase and threonine phosphatase activities in separate domains, and transactivation potential when associated with a DNA-binding partner. EYA mutations are linked to multiorgan developmental disorders, as well as to adult diseases ranging from dilated cardiomyopathy to late-onset sensorineural hearing loss. With the growing understanding of EYA biochemical and cellular activity, biological function, and association with disease, comes the possibility that the EYA proteins are amenable to the design of targeted therapeutics. The availability of structural information, direct links to disease states, available animal models, and the fact that they utilize unconventional reaction mechanisms that could allow specificity, suggest that EYAs are well-positioned for drug discovery efforts. This review provides a summary of EYA structure, activity, and function, as they relate to development and disease, with particular emphasis on recent findings.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
58
|
Fischer C, Christ E, Korf HW, von Gall C. Tafa-3 encoding for a secretory peptide is expressed in the mouse pars tuberalis and is affected by melatonin 1 receptor deficiency. Gen Comp Endocrinol 2012; 177:98-103. [PMID: 22426341 DOI: 10.1016/j.ygcen.2012.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 11/22/2022]
Abstract
The hypophysial pars tuberalis (PT) is an important interface between neuroendocrine brain centers (hypothalamus, pineal organ) and the anterior lobe of the hypophysis (PD). The best investigated role of the PT is the control of seasonally changing functions. In mammals, melatonin secreted from the pineal organ represents a major input signal to the PT. By acting upon melatonin type 1 receptors (MT1) melatonin controls the functional activity of the PT. Most interestingly, the PT sends its output signals in two directions: via a "retrograde" pathway to the hypothalamus and via an "anterograde" pathway to the PD. TSH has been identified as "retrograde" messenger, while endocannabinoids function as messengers of the "anterograde" pathway. Here we show in mice that the PT expresses Tafa-3 encoding for a secretory peptide. In the PT of wild type mice Tafa-3 mRNA levels varied between day and night: they were low at mid-day and high at mid-night. This day/night difference was not observed in the PT of mice with a targeted deletion of the MT1 receptor indicating that Tafa-3 mRNA expression in the PT is controlled by melatonin acting through the MT1 receptor. Notably, Tafa-3 expression was not restricted to the PT, but was also found in other brain regions, such as the hippocampus, the habenular and thalamic nuclei. In these regions, Tafa-3 expression did not display a day/night difference and was not affected by MT1-deficiency. Thus, Tafa-3 expression appears to be controlled by region-specific mechanisms. Our data suggest that TAFA-3 is a signaling molecule from the PT and provides further evidence for the emerging concept that the PT rather than relying upon highly organ-specific messengers employs a cocktail of signaling molecules that also operate in other brain systems.
Collapse
Affiliation(s)
- Claudia Fischer
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt/M, Germany
| | | | | | | |
Collapse
|
59
|
Abstract
Seasonal mammals typically of temperate or boreal habitats use the predictable annual cycle of daylength to initiate a suite of physiological and behavioural changes in anticipation of adverse environmental winter conditions, unfavourable for survival and reproduction. Daylength is encoded as the duration of production of the pineal hormone melatonin, but how the melatonin signal is decoded has been elusive. From the studies carried out in birds and mammals together with the advent of technologies such as microarray analysis of gene expression, progress has been achieved to demystify how seasonal physiology is regulated in response to the duration of melatonin signalling. The critical tissue for the action of melatonin is the pars tuberalis (PT) where melatonin receptors are located. At the molecular level, regulation of cyclic adenosine monophosphate (cAMP) signalling in this tissue is likely to be a key event for melatonin action, either an acute inhibitory action or sensitization of this pathway by prolonged stimulation of melatonin receptors reflecting durational melatonin presence. Melatonin action at the PT has been shown to have both positive and negative effects on gene transcription, incorporating components of the circadian clock as part of the mechanism of decoding the melatonin signal and regulating thyrotrophin-stimulating hormone (TSH) expression, a key output hormone of the PT. Microarray analysis of gene expression of PT tissue exposed to long and short photoperiods has identified important new genes that may be regulated by melatonin and contributing to the seasonal regulation of TSH production by this tissue. In the brain, tanycytes lining the third ventricle of the hypothalamus and regulation of thyroid hormone synthesis by PT-derived TSH in these cells are now established as an important component of the pathway leading to seasonal changes in physiology. Beyond the tanycyte, identified changes in gene expression for neuropeptides, receptors and other signalling molecules pinpoint some of the areas of the brain, the hypothalamus in particular, that are likely to be involved in the regulation of seasonal physiology.
Collapse
Affiliation(s)
- Perry Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK.
| | | |
Collapse
|
60
|
Dardente H. Melatonin-dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J Neuroendocrinol 2012; 24:249-66. [PMID: 22070540 DOI: 10.1111/j.1365-2826.2011.02250.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most mammals living at temperate latitudes exhibit marked seasonal variations in reproduction. In long-lived species, it is assumed that timely physiological alternations between a breeding season and a period of sexual rest depend upon the ability of day length (photoperiod) to synchronise an endogenous timing mechanism called the circannual clock. The sheep has been extensively used to characterise the time-measurement mechanisms of seasonal reproduction. Melatonin, secreted only during the night, acts as the endocrine transducer of the photoperiodic message. The present review is concerned with the endocrine mechanisms of seasonal reproduction in sheep and the evidence that long day length and thyroid hormones are mandatory to their proper timing. Recent evidence for a circadian-based molecular mechanism within the pars tuberalis of the pituitary, which ties the short duration melatonin signal reflecting long day length to the hypothalamic increase of triiodothyronine (T3) through a thyroid-stimulating hormone/deiodinase2 paracrine mechanism is presented and evaluated in this context. A parallel is also drawn with the golden hamster, a long-day breeder, aiming to demonstrate that features of seasonality appear to be phylogenetically conserved. Finally, potential mechanisms of T3 action within the hypothalamus/median eminence in relationship to seasonal timing are examined.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA UMR85, CNRS UMR6175, Université de Tours, Nouzilly, Haras Nationaux France.
| |
Collapse
|
61
|
Abstract
Circannual rhythms are innately timed long-term (tau ≈ 12 months) cycles of physiology and behavior, crucial for life in habitats ranging from the equator to the Poles. Here the authors propose that circannual rhythm generation depends on tissue-autonomous, reiterated cycles of cell division, functional differentiation, and cell death. They see the feedback control influencing localized stem cell niches as crucial to this cyclical histogenesis hypothesis. Analogous to multi-oscillator circadian organization, circannual rhythm generation occurs in multiple tissues with hypothalamic and pituitary sites serving as central pacemakers. Signals including day length, nutrition, and social factors can synchronize circannual rhythms through hormonal influences, notably via the thyroid and glucocorticoid axes, which have profound effects on histogenesis. The authors offer 4 arguments in support of this hypothesis: (1) Cyclical histogenesis is a prevalent process in seasonal remodeling of physiology. It operates over long time domains and exhibits tissue autonomy in its regulation. (2) Experiments in which selected peripheral endocrine signals are held constant indicate that circannual rhythms are not primarily the product of interacting hormonal feedback loops. (3) Hormones known to control cell proliferation, differentiation, and organogenesis profoundly affect circannual rhythm expression. (4) The convergence point between photoperiodic input pathways and circannual rhythm expression occurs in histogenic regions of the hypothalamus and pituitary. In this review, the authors discuss how testing this hypothesis will depend on the use of cellular/molecular tools and animal models borrowed from developmental biology and neural stem cell research.
Collapse
Affiliation(s)
- David G. Hazlerigg
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Gerald A. Lincoln
- Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
62
|
Taylor WA, Evans NP, Hertz C, Skinner DC. Intra-pituitary administration revisited: development of a novel in vivo approach to investigate the ovine hypophysis. J Neurosci Methods 2011; 199:175-82. [PMID: 21376082 DOI: 10.1016/j.jneumeth.2011.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 11/17/2022]
Abstract
The anterior pituitary gland regulates physiological processes via the secretion of hormones, which are under the control of factors produced either in the hypothalamus or the pituitary gland itself. Studies investigating how the pituitary gland functions have employed both in vitro and in vivo approaches. Although in vitro analysis has the advantage that it is pituitary specific, the results may be incomplete because the tissue is isolated from other physiological inputs that could affect function under natural conditions. Without vascular input, such studies are inherently of short duration. Conversely, in vivo experiments that rely upon systemic hormone injections require high doses, are non-target specific and the precise hormone concentrations reaching the pituitary gland are difficult to control. Intracerebroventricular hormone infusions are reliant on assumptions that factors are transported to the pituitary gland from the cerebrospinal fluid and are without cerebral effects. Here we describe an innovative method to investigate anterior pituitary function in conscious sheep by direct infusion of peptides into the pituitary tissue surrounding the hypophyseal portal blood vessels. This approach is an adaptation of the hypophyseal portal cannulation technique whereby an indwelling cannula provides direct access to the rostral aspect of the adenohypophysis. Peptide infusions were achieved by insertion of a needle through the implanted cannula such that it penetrated the pituitary. Using this technique, infusion of TRH (17 ng/1 μl/min for up to 6h) induced a sustained rise in systemic prolactin levels that lasted for the duration of the infusion.
Collapse
Affiliation(s)
- W Andrew Taylor
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| | | | | | | |
Collapse
|
63
|
Dupré SM, Dardente H, Birnie MJ, Loudon ASI, Lincoln GA, Hazlerigg DG. Evidence for RGS4 modulation of melatonin and thyrotrophin signalling pathways in the pars tuberalis. J Neuroendocrinol 2011; 23:725-32. [PMID: 21623959 DOI: 10.1111/j.1365-2826.2011.02168.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In mammals, the pineal hormone melatonin is secreted nocturnally and acts in the pars tuberalis (PT) of the anterior pituitary to control seasonal neuroendocrine function. Melatonin signals through the type 1 Gi-protein coupled melatonin receptor (MT1), inhibiting adenylate cyclase (AC) activity and thereby reducing intracellular concentrations of the second messenger, cAMP. Because melatonin action ceases by the end of the night, this allows a daily rise in cAMP levels, which plays a key part in the photoperiodic response mechanism in the PT. In addition, melatonin receptor desensitisation and sensitisation of AC by melatonin itself appear to fine-tune this process. Opposing the actions of melatonin, thyroid-stimulating hormone (TSH), produced by PT cells, signals through its cognate Gs-protein coupled receptor (TSH-R), leading to increased cAMP production. This effect may contribute to increased TSH production by the PT during spring and summer, and is of considerable interest because TSH plays a pivotal role in seasonal neuroendocrine function. Because cAMP stands at the crossroads between melatonin and TSH signalling pathways, any protein modulating cAMP production has the potential to impact on photoperiodic readout. In the present study, we show that the regulator of G-protein signalling RGS4 is a melatonin-responsive gene, whose expression in the PT increases some 2.5-fold after melatonin treatment. Correspondingly, RGS4 expression is acutely sensitive to changing day length. In sheep acclimated to short days (SP, 8 h light/day), RGS4 expression increases sharply following dark onset, peaking in the middle of the night before declining to basal levels by dawn. Extending the day length to 16 h (LP) by an acute 8-h delay in lights off causes a corresponding delay in the evening rise of RGS4 expression, and the return to basal levels is delayed some 4 h into the next morning. To test the hypothesis that RGS4 expression modulates interactions between melatonin- and TSH-dependent cAMP signalling pathways, we used transient transfections of MT1, TSH-R and RGS4 in COS7 cells along with a cAMP-response element luciferase reporter (CRE-luc). RGS4 attenuated MT1-mediated inhibition of TSH-stimulated CRE-luc activation. We propose that RGS4 contributes to photoperiodic sensitivity in the morning induction of cAMP-dependent gene expression in the PT.
Collapse
Affiliation(s)
- S M Dupré
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
64
|
Yasuo S, Korf HW. The hypophysial pars tuberalis transduces photoperiodic signals via multiple pathways and messenger molecules. Gen Comp Endocrinol 2011; 172:15-22. [PMID: 21078321 DOI: 10.1016/j.ygcen.2010.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
Abstract
Located between the median eminence, the portal vessels, and the pars distalis (PD) of the hypophysis, the hypophysial pars tuberalis (PT) is an important center for transmission of photoperiodic information to neuroendocrine circuits involved in the control of reproduction, metabolism and behavior. Despite enormous and long lasting efforts, output pathways and messenger molecules from the PT have been unraveled only recently. Most interestingly, the PT sends its signals in two directions: via a "retrograde" pathway to the hypothalamus and via an "anterograde" pathway to the PD. TSH has been identified as a messenger of the "retrograde" pathway. As discovered in Japanese quail, TSH triggers molecular cascades mediating thyroid hormone conversion in the mediobasal hypothalamus (MBH) to activate the gonadal axis. These molecular mechanisms are conserved in photoperiodic mammals, and even in non-photoperiodic laboratory mice. The search for molecules of the "anterograde" pathway was for a long time focused on PT-specific neuropeptides, the so-called "tuberalins". The discovery of a PT-intrinsic endocannabinoid system in hamsters which is regulated by the photoperiod provides strong experimental evidence that the PT also synthesizes lipidergic messengers. To date, 2-arachidonoylglycerol (2-AG) appears as the most important lipidergic messenger from the PT. The primary target of 2-AG, the cannabinoid receptor 1 (CB1) is expressed in the hamster PD. A PT-intrinsic endocannabinoid system also exists in man and CB1 receptors are demonstrated in ACTH-producing cells and folliculo-stellate cells of the human PD. These data lend support to the hypothesis that endocannabinoids function as messengers of the anterograde pathway.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | | |
Collapse
|
65
|
Dupré SM. Encoding and decoding photoperiod in the mammalian pars tuberalis. Neuroendocrinology 2011; 94:101-12. [PMID: 21778697 DOI: 10.1159/000328971] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
In mammals, the nocturnal melatonin signal is well established as a key hormonal indicator of seasonal changes in day-length, providing the brain with an internal representation of the external photoperiod. The pars tuberalis (PT) of the pituitary gland is the major site of expression of the G-coupled receptor MT1 in the brain and is considered as the main site of integration of the photoperiodic melatonin signal. Recent studies have revealed how the photoperiodic melatonin signal is encoded and conveyed by the PT to the brain and the pituitary, but much remains to be resolved. The development of new animal models and techniques such as cDNA arrays or high throughput sequencing has recently shed the light onto the regulatory networks that might be involved. This review considers the current understanding of the mechanisms driving photoperiodism in the mammalian PT with a particular focus on the seasonal prolactin secretion.
Collapse
Affiliation(s)
- Sandrine M Dupré
- University of Manchester, Faculty of Life Sciences, Manchester, UK.
| |
Collapse
|
66
|
Dardente H, Wyse CA, Birnie MJ, Dupré SM, Loudon ASI, Lincoln GA, Hazlerigg DG. A molecular switch for photoperiod responsiveness in mammals. Curr Biol 2010; 20:2193-8. [PMID: 21129971 DOI: 10.1016/j.cub.2010.10.048] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 11/25/2022]
Abstract
Seasonal synchronization based on day length (photoperiod) allows organisms to anticipate environmental change. Photoperiodic decoding relies on circadian clocks, but the underlying molecular pathways have remained elusive [1]. In mammals and birds, photoperiodic responses depend crucially on expression of thyrotrophin β subunit RNA (TSHβ) in the pars tuberalis (PT) of the pituitary gland [2-4]. Now, using our well-characterized Soay sheep model [2], we describe a molecular switch governing TSHβ transcription through the circadian clock. Central to this is a conserved D element in the TSHβ promoter, controlled by the circadian transcription factor thyrotroph embryonic factor (Tef). In the PT, long-day exposure rapidly induces expression of the coactivator eyes absent 3 (Eya3), which synergizes with Tef to maximize TSHβ transcription. The pineal hormone melatonin, secreted nocturnally, sets the phase of rhythmic Eya3 expression in the PT to peak 12 hr after nightfall. Additionally, nocturnal melatonin levels directly suppress Eya3 expression. Together, these effects form a switch triggering a strong morning peak of Eya3 expression under long days. Species variability in the TSHβ D element influences sensitivity to TEF, reflecting species variability in photoperiodic responsiveness. Our findings define a molecular pathway linking the circadian clock to the evolution of seasonal timing in mammals.
Collapse
Affiliation(s)
- Hugues Dardente
- Institute of Biological and Environmental Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | | | | | | | | | | | |
Collapse
|
67
|
Masumoto KH, Ukai-Tadenuma M, Kasukawa T, Nagano M, Uno KD, Tsujino K, Horikawa K, Shigeyoshi Y, Ueda HR. Acute Induction of Eya3 by Late-Night Light Stimulation Triggers TSHβ Expression in Photoperiodism. Curr Biol 2010; 20:2199-206. [DOI: 10.1016/j.cub.2010.11.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 11/27/2022]
|
68
|
Endocrine mechanisms of seasonal adaptation in small mammals: from early results to present understanding. J Comp Physiol B 2010; 180:935-52. [PMID: 20640428 DOI: 10.1007/s00360-010-0498-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/01/2010] [Accepted: 07/03/2010] [Indexed: 12/16/2022]
Abstract
Seasonal adaptation is widespread among mammals of temperate and polar latitudes. The changes in physiology, morphology and behaviour are controlled by the photoneuroendocrine system that, as a first step, translates day lengths into a hormonal signal (melatonin). Decoding of the humoral melatonin signal, i.e. responses on the cellular level to slight alterations in signal duration, represents the prerequisite for appropriate timing of winter acclimatization in photoperiodic animals. Corresponding to the diversity of affected traits, several hormone systems are involved in the regulation downstream of the neural integration of photoperiodic time measurement. Results from recent studies provide new insights into seasonal control of reproduction and energy balance. Most intriguingly, the availability of thyroid hormone within hypothalamic key regions, which is a crucial determinant of seasonal transitions, appears to be regulated by hormone secretion from the pars tuberalis of the pituitary gland. This proposed neuroendocrine pathway contradicts the common view of the pituitary as a gland that acts downstream of the hypothalamus. In the present overview of (neuro)endocrine mechanisms underlying seasonal acclimatization, we are focusing on the dwarf hamster Phodopus sungorus (long-day breeder) that is known for large amplitudes in seasonal changes. However, important findings in other mammalian species such as Syrian hamsters and sheep (short-day breeder) are considered as well.
Collapse
|