51
|
Pacheco DA, Thiberge SY, Pnevmatikakis E, Murthy M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat Neurosci 2021; 24:93-104. [PMID: 33230320 PMCID: PMC7783861 DOI: 10.1038/s41593-020-00743-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/19/2020] [Indexed: 11/09/2022]
Abstract
Sensory pathways are typically studied by starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analyses of activity toward the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of ongoing movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.
Collapse
Affiliation(s)
- Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Eftychios Pnevmatikakis
- Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
52
|
Cheong HS, Siwanowicz I, Card GM. Multi-regional circuits underlying visually guided decision-making in Drosophila. Curr Opin Neurobiol 2020; 65:77-87. [PMID: 33217639 DOI: 10.1016/j.conb.2020.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Visually guided decision-making requires integration of information from distributed brain areas, necessitating a brain-wide approach to examine its neural mechanisms. New tools in Drosophila melanogaster enable circuits spanning the brain to be charted with single cell-type resolution. Here, we highlight recent advances uncovering the computations and circuits that transform and integrate visual information across the brain to make behavioral choices. Visual information flows from the optic lobes to three primary central brain regions: a sensorimotor mapping area and two 'higher' centers for memory or spatial orientation. Rapid decision-making during predator evasion emerges from the spike timing dynamics in parallel sensorimotor cascades. Goal-directed decisions may occur through memory, navigation and valence processing in the central complex and mushroom bodies.
Collapse
Affiliation(s)
- Han Sj Cheong
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, United States
| | - Igor Siwanowicz
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, United States
| | - Gwyneth M Card
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, United States.
| |
Collapse
|
53
|
Ferreiro DN, Amaro D, Schmidtke D, Sobolev A, Gundi P, Belliveau L, Sirota A, Grothe B, Pecka M. Sensory Island Task (SIT): A New Behavioral Paradigm to Study Sensory Perception and Neural Processing in Freely Moving Animals. Front Behav Neurosci 2020; 14:576154. [PMID: 33100981 PMCID: PMC7546252 DOI: 10.3389/fnbeh.2020.576154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
A central function of sensory systems is the gathering of information about dynamic interactions with the environment during self-motion. To determine whether modulation of a sensory cue was externally caused or a result of self-motion is fundamental to perceptual invariance and requires the continuous update of sensory processing about recent movements. This process is highly context-dependent and crucial for perceptual performances such as decision-making and sensory object formation. Yet despite its fundamental ecological role, voluntary self-motion is rarely incorporated in perceptual or neurophysiological investigations of sensory processing in animals. Here, we present the Sensory Island Task (SIT), a new freely moving search paradigm to study sensory processing and perception. In SIT, animals explore an open-field arena to find a sensory target relying solely on changes in the presented stimulus, which is controlled by closed-loop position tracking in real-time. Within a few sessions, animals are trained via positive reinforcement to search for a particular area in the arena (“target island”), which triggers the presentation of the target stimulus. The location of the target island is randomized across trials, making the modulated stimulus feature the only informative cue for task completion. Animals report detection of the target stimulus by remaining within the island for a defined time (“sit-time”). Multiple “non-target” islands can be incorporated to test psychometric discrimination and identification performance. We exemplify the suitability of SIT for rodents (Mongolian gerbil, Meriones unguiculatus) and small primates (mouse lemur, Microcebus murinus) and for studying various sensory perceptual performances (auditory frequency discrimination, sound source localization, visual orientation discrimination). Furthermore, we show that pairing SIT with chronic electrophysiological recordings allows revealing neuronal signatures of sensory processing under ecologically relevant conditions during goal-oriented behavior. In conclusion, SIT represents a flexible and easily implementable behavioral paradigm for mammals that combines self-motion and natural exploratory behavior to study sensory sensitivity and decision-making and their underlying neuronal processing.
Collapse
Affiliation(s)
- Dardo N Ferreiro
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of General Psychology and Education, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diana Amaro
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Andrey Sobolev
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paula Gundi
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lucile Belliveau
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anton Sirota
- Faculty of Medicine, Bernstein Center for Computational Neuroscience Munich, Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Pecka
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
54
|
Active vision shapes and coordinates flight motor responses in flies. Proc Natl Acad Sci U S A 2020; 117:23085-23095. [PMID: 32873637 DOI: 10.1073/pnas.1920846117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals use active sensing to respond to sensory inputs and guide future motor decisions. In flight, flies generate a pattern of head and body movements to stabilize gaze. How the brain relays visual information to control head and body movements and how active head movements influence downstream motor control remains elusive. Using a control theoretic framework, we studied the optomotor gaze stabilization reflex in tethered flight and quantified how head movements stabilize visual motion and shape wing steering efforts in fruit flies (Drosophila). By shaping visual inputs, head movements increased the gain of wing steering responses and coordination between stimulus and wings, pointing to a tight coupling between head and wing movements. Head movements followed the visual stimulus in as little as 10 ms-a delay similar to the human vestibulo-ocular reflex-whereas wing steering responses lagged by more than 40 ms. This timing difference suggests a temporal order in the flow of visual information such that the head filters visual information eliciting downstream wing steering responses. Head fixation significantly decreased the mechanical power generated by the flight motor by reducing wingbeat frequency and overall thrust. By simulating an elementary motion detector array, we show that head movements shift the effective visual input dynamic range onto the sensitivity optimum of the motion vision pathway. Taken together, our results reveal a transformative influence of active vision on flight motor responses in flies. Our work provides a framework for understanding how to coordinate moving sensors on a moving body.
Collapse
|
55
|
Haskins AJ, Mentch J, Botch TL, Robertson CE. Active vision in immersive, 360° real-world environments. Sci Rep 2020; 10:14304. [PMID: 32868788 PMCID: PMC7459302 DOI: 10.1038/s41598-020-71125-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022] Open
Abstract
How do we construct a sense of place in a real-world environment? Real-world environments are actively explored via saccades, head turns, and body movements. Yet, little is known about how humans process real-world scene information during active viewing conditions. Here, we exploited recent developments in virtual reality (VR) and in-headset eye-tracking to test the impact of active vs. passive viewing conditions on gaze behavior while participants explored novel, real-world, 360° scenes. In one condition, participants actively explored 360° photospheres from a first-person perspective via self-directed motion (saccades and head turns). In another condition, photospheres were passively displayed to participants while they were head-restricted. We found that, relative to passive viewers, active viewers displayed increased attention to semantically meaningful scene regions, suggesting more exploratory, information-seeking gaze behavior. We also observed signatures of exploratory behavior in eye movements, such as quicker, more entropic fixations during active as compared with passive viewing conditions. These results show that active viewing influences every aspect of gaze behavior, from the way we move our eyes to what we choose to attend to. Moreover, these results offer key benchmark measurements of gaze behavior in 360°, naturalistic environments.
Collapse
Affiliation(s)
- Amanda J Haskins
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Jeff Mentch
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thomas L Botch
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Caroline E Robertson
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
56
|
Persistent Firing and Adaptation in Optic-Flow-Sensitive Descending Neurons. Curr Biol 2020; 30:2739-2748.e2. [PMID: 32470368 DOI: 10.1016/j.cub.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
A general principle of sensory systems is that they adapt to prolonged stimulation by reducing their response over time. Indeed, in many visual systems, including higher-order motion sensitive neurons in the fly optic lobes and the mammalian visual cortex, a reduction in neural activity following prolonged stimulation occurs. In contrast to this phenomenon, the response of the motor system controlling flight maneuvers persists following the offset of visual motion. It has been suggested that this gap is caused by a lingering calcium signal in the output synapses of fly optic lobe neurons. However, whether this directly affects the responses of the post-synaptic descending neurons, leading to the observed behavioral output, is not known. We use extracellular electrophysiology to record from optic-flow-sensitive descending neurons in response to prolonged wide-field stimulation. We find that, as opposed to most sensory and visual neurons, and in particular to the motion vision sensitive neurons in the brains of both flies and mammals, the descending neurons show little adaption during stimulus motion. In addition, we find that the optic-flow-sensitive descending neurons display persistent firing, or an after-effect, following the cessation of visual stimulation, consistent with the lingering calcium signal hypothesis. However, if the difference in after-effect is compensated for, subsequent presentation of stimuli in a test-adapt-test paradigm reveals adaptation to visual motion. Our results thus show a combination of adaptation and persistent firing in the neurons that project to the thoracic ganglia and thereby control behavioral output.
Collapse
|
57
|
Ayhan I, Ozbagci D. Action-induced changes in the perceived temporal features of visual events. Vision Res 2020; 175:1-13. [PMID: 32623245 DOI: 10.1016/j.visres.2020.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 11/28/2022]
Abstract
Perceived duration can be subject to deviations around the time of a voluntary action. Whether the mechanisms underlying action-induced visual duration effects are effector-specific or require a more generalized action-linked multimodal calibration with the transient visual system, however, is a question yet to be answered. Here, we investigate this using dynamic visual stimuli presented as contingent upon the execution of an arbitrarily associated voluntary manual response. Our results demonstrate that the duration of intervals with arbitrarily associated keypress-visual event pair is perceived as shorter than the duration in a pure visual condition, where the same stimuli are rather passively observed without the execution of a concurrent action. Whereas the control experiments show that motor memory and attention cannot explain the action-induced changes in perceived temporal features, action-induced changes in perceived speed are dissociated from those in perceived duration, and that the duration compression disappears using isoluminant or static stimuli, which together provide evidence that these two effects can be modulated in the motion-processing units, although via separate neural mechanisms.
Collapse
Affiliation(s)
- Inci Ayhan
- Department of Psychology, Bogazici University, Istanbul, Turkey; Cognitive Science Program, Bogazici University, Istanbul, Turkey.
| | - Duygu Ozbagci
- Cognitive Science Program, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
58
|
Small eyes in dim light: Implications to spatio-temporal visual abilities in Drosophila melanogaster. Vision Res 2020; 169:33-40. [DOI: 10.1016/j.visres.2020.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
|
59
|
Lawson KKK, Srinivasan MV. Contrast sensitivity and visual acuity of Queensland fruit flies (Bactrocera tryoni). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:419-428. [PMID: 32016552 DOI: 10.1007/s00359-020-01404-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/01/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
This study examines the visual acuity of Queensland fruit flies (Bactrocera tryoni) by analysing their turning responses to an immersive visual stimulus consisting of a pattern of vertical stripes presented at various angular periods and rotational rates. The results infer that these flies possess an interommatidial angle of approximately [Formula: see text], and an ommatidial acceptance angle of approximately [Formula: see text]. This suggests that the visual acuity of Queensland fruit flies is substantially better than that of the classical vinegar fly (Drosophila melanogaster), and is comparable to those of the housefly (Musca domestica) and the honeybee (Apis mellifera). The contrast sensitivity of Queensland fruit flies is comparable to that of the housefly.
Collapse
Affiliation(s)
- Kiaran K K Lawson
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Mandyam V Srinivasan
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia.,The School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
60
|
Dynamic Signal Compression for Robust Motion Vision in Flies. Curr Biol 2020; 30:209-221.e8. [PMID: 31928873 DOI: 10.1016/j.cub.2019.10.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Sensory systems need to reliably extract information from highly variable natural signals. Flies, for instance, use optic flow to guide their course and are remarkably adept at estimating image velocity regardless of image statistics. Current circuit models, however, cannot account for this robustness. Here, we demonstrate that the Drosophila visual system reduces input variability by rapidly adjusting its sensitivity to local contrast conditions. We exhaustively map functional properties of neurons in the motion detection circuit and find that local responses are compressed by surround contrast. The compressive signal is fast, integrates spatially, and derives from neural feedback. Training convolutional neural networks on estimating the velocity of natural stimuli shows that this dynamic signal compression can close the performance gap between model and organism. Overall, our work represents a comprehensive mechanistic account of how neural systems attain the robustness to carry out survival-critical tasks in challenging real-world environments.
Collapse
|
61
|
Abstract
The trial-to-trial response variability in sensory cortices and the extent to which this variability can be coordinated among cortical units have strong implications for cortical signal processing. Yet, little is known about the relative contributions and dynamics of defined sources to the cortical response variability and their correlations across cortical units. To fill this knowledge gap, here we obtained and analyzed multisite local field potential (LFP) recordings from visual cortex of turtles in response to repeated naturalistic movie clips and decomposed cortical across-trial LFP response variability into three defined sources, namely, input, network, and local fluctuations. We found that input fluctuations dominate cortical response variability immediately following stimulus onset, whereas network fluctuations dominate the response variability in the steady state during continued visual stimulation. Concurrently, we found that the network fluctuations dominate the correlations of the variability during the ongoing and steady-state epochs, but not immediately following stimulus onset. Furthermore, simulations of various model networks indicated that (i) synaptic time constants, leading to oscillatory activity, and (ii) synaptic clustering and synaptic depression, leading to spatially constrained pockets of coherent activity, are both essential features of cortical circuits to mediate the observed relative contributions and dynamics of input, network, and local fluctuations to the cortical LFP response variability and their correlations across recording sites. In conclusion, these results show how a mélange of multiscale thalamocortical circuit features mediate a complex stimulus-modulated cortical activity that, when naively related to the visual stimulus alone, appears disguised as high and coordinated across-trial response variability.
Collapse
|
62
|
Akiba M, Sugimoto K, Aoki R, Murakami R, Miyashita T, Hashimoto R, Hiranuma A, Yamauchi J, Ueno T, Morimoto T. Dopamine modulates the optomotor response to unreliable visual stimuli in Drosophila melanogaster. Eur J Neurosci 2019; 51:822-839. [PMID: 31834948 DOI: 10.1111/ejn.14648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023]
Abstract
State-dependent modulation of sensory systems has been studied in many organisms and is possibly mediated through neuromodulators such as monoamine neurotransmitters. Among these, dopamine is involved in many aspects of animal behaviour, including movement control, attention, motivation and cognition. However, the precise neural mechanism underlying dopaminergic modulation of behaviour induced by sensory stimuli remains poorly understood. Here, we used Drosophila melanogaster to show that dopamine can modulate the optomotor response to moving visual stimuli including noise. The optomotor response is the head-turning response to moving objects, which is observed in most sight-reliant animals including mammals and insects. First, the effects of the dopamine system on the optomotor response were investigated in mutant flies deficient in dopamine receptors D1R1 or D1R2, which are involved in the modulation of sleep-arousal in flies. We examined the optomotor response in D1R1 knockout (D1R1 KO) and D1R2 knockout (D1R2 KO) flies and found that it was not affected in D1R1 KO flies; however, it was significantly reduced in D1R2 KO flies compared with the wild type. Using cell-type-specific expression of an RNA interference construct of D1R2, we identified the fan-shaped body, a part of the central complex, responsible for dopamine-mediated modulation of the optomotor response. In particular, pontine cells in the fan-shaped body seemed important in the modulation of the optomotor response, and their neural activity was required for the optomotor response. These results suggest a novel role of the central complex in the modulation of a behaviour based on the processing of sensory stimulations.
Collapse
Affiliation(s)
- Masumi Akiba
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kentaro Sugimoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo, Japan
| | - Risa Aoki
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ryo Murakami
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | - Riho Hashimoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Anna Hiranuma
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taro Ueno
- Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba, Japan
| | - Takako Morimoto
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
63
|
Williamson WR, Peek MY, Breads P, Coop B, Card GM. Tools for Rapid High-Resolution Behavioral Phenotyping of Automatically Isolated Drosophila. Cell Rep 2019; 25:1636-1649.e5. [PMID: 30404015 DOI: 10.1016/j.celrep.2018.10.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
Sparse manipulation of neuron excitability during free behavior is critical for identifying neural substrates of behavior. Genetic tools for precise neuronal manipulation exist in the fruit fly, Drosophila melanogaster, but behavioral tools are still lacking to identify potentially subtle phenotypes only detectible using high-throughput and high spatiotemporal resolution. We developed three assay components that can be used modularly to study natural and optogenetically induced behaviors. FlyGate automatically releases flies one at a time into an assay. FlyDetect tracks flies in real time, is robust to severe occlusions, and can be used to track appendages, such as the head. GlobeDisplay is a spherical projection system covering the fly's visual receptive field with a single projector. We demonstrate the utility of these components in an integrated system, FlyPEZ, by comprehensively modeling the input-output function for directional looming-evoked escape takeoffs and describing a millisecond-timescale phenotype from genetic silencing of a single visual projection neuron type.
Collapse
Affiliation(s)
| | - Martin Y Peek
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Patrick Breads
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Brian Coop
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gwyneth M Card
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
64
|
Neuromodulation of insect motion vision. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:125-137. [DOI: 10.1007/s00359-019-01383-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
|
65
|
Natesan D, Saxena N, Ekeberg Ö, Sane SP. Tuneable reflexes control antennal positioning in flying hawkmoths. Nat Commun 2019; 10:5593. [PMID: 31811150 PMCID: PMC6898381 DOI: 10.1038/s41467-019-13595-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 11/12/2019] [Indexed: 11/28/2022] Open
Abstract
Complex behaviours may be viewed as sequences of modular actions, each elicited by specific sensory cues in their characteristic timescales. From this perspective, we can construct models in which unitary behavioural modules are hierarchically placed in context of related actions. Here, we analyse antennal positioning reflex in hawkmoths as a tuneable behavioural unit. Mechanosensory feedback from two antennal structures, Böhm’s bristles (BB) and Johnston’s organs (JO), determines antennal position. At flight onset, antennae attain a specific position, which is maintained by feedback from BB. Simultaneously, JO senses deflections in flagellum-pedicel joint due to frontal airflow, to modulate its steady-state position. Restricting JO abolishes positional modulation but maintains stability against perturbations. Linear feedback models are sufficient to predict antennal dynamics at various set-points. We modelled antennal positioning as a hierarchical neural-circuit in which fast BB feedback maintains instantaneous set-point, but slow JO feedback modulates it, thereby elucidating mechanisms underlying its robustness and flexibility. Flying insects position their antennae by integrating multisensory inputs across different timescales. This study describes an underlying hierarchical neural circuit that maintains antennal position in a fast and robust manner, whilst retaining flexibility to incorporate slower feedback to modulate position.
Collapse
Affiliation(s)
- Dinesh Natesan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary road, Bangalore, 560065, India.,Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044, Stockholm, Sweden.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitesh Saxena
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary road, Bangalore, 560065, India
| | - Örjan Ekeberg
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary road, Bangalore, 560065, India.
| |
Collapse
|
66
|
de Andres-Bragado L, Sprecher SG. Mechanisms of vision in the fruit fly. CURRENT OPINION IN INSECT SCIENCE 2019; 36:25-32. [PMID: 31325739 DOI: 10.1016/j.cois.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Vision is essential to maximize the efficiency of daily tasks such as feeding, avoiding predators or finding mating partners. An advantageous model is Drosophila melanogaster, since it offers tools that allow genetic and neuronal manipulation with high spatial and temporal resolution, which can be combined with behavioral, anatomical and physiological assays. Recent advances have expanded our knowledge on the neural circuitry underlying such important behaviors as color vision (role of reciprocal inhibition to enhance color signal at the level of the ommatidia); motion vision (motion-detection neurones receive both excitatory and inhibitory input), and sensory processing (role of the central complex in spatial navigation, and in orchestrating the information from other senses and the inner state). Research on synergies between pathways is shaping the field.
Collapse
Affiliation(s)
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
67
|
Werkhoven Z, Rohrsen C, Qin C, Brembs B, de Bivort B. MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology. PLoS One 2019; 14:e0224243. [PMID: 31765421 PMCID: PMC6876843 DOI: 10.1371/journal.pone.0224243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Fast object tracking in real time allows convenient tracking of very large numbers of animals and closed-loop experiments that control stimuli for many animals in parallel. We developed MARGO, a MATLAB-based, real-time animal tracking suite for custom behavioral experiments. We demonstrated that MARGO can rapidly and accurately track large numbers of animals in parallel over very long timescales, typically when spatially separated such as in multiwell plates. We incorporated control of peripheral hardware, and implemented a flexible software architecture for defining new experimental routines. These features enable closed-loop delivery of stimuli to many individuals simultaneously. We highlight MARGO's ability to coordinate tracking and hardware control with two custom behavioral assays (measuring phototaxis and optomotor response) and one optogenetic operant conditioning assay. There are currently several open source animal trackers. MARGO's strengths are 1) fast and accurate tracking, 2) high throughput, 3) an accessible interface and data output and 4) real-time closed-loop hardware control for for sensory and optogenetic stimuli, all of which are optimized for large-scale experiments.
Collapse
Affiliation(s)
- Zach Werkhoven
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| | - Christian Rohrsen
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Chuan Qin
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Benjamin de Bivort
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
68
|
Werkhoven Z, Rohrsen C, Qin C, Brembs B, de Bivort B. MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology. PLoS One 2019; 14:e0224243. [PMID: 31765421 DOI: 10.1101/593046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/08/2019] [Indexed: 05/27/2023] Open
Abstract
Fast object tracking in real time allows convenient tracking of very large numbers of animals and closed-loop experiments that control stimuli for many animals in parallel. We developed MARGO, a MATLAB-based, real-time animal tracking suite for custom behavioral experiments. We demonstrated that MARGO can rapidly and accurately track large numbers of animals in parallel over very long timescales, typically when spatially separated such as in multiwell plates. We incorporated control of peripheral hardware, and implemented a flexible software architecture for defining new experimental routines. These features enable closed-loop delivery of stimuli to many individuals simultaneously. We highlight MARGO's ability to coordinate tracking and hardware control with two custom behavioral assays (measuring phototaxis and optomotor response) and one optogenetic operant conditioning assay. There are currently several open source animal trackers. MARGO's strengths are 1) fast and accurate tracking, 2) high throughput, 3) an accessible interface and data output and 4) real-time closed-loop hardware control for for sensory and optogenetic stimuli, all of which are optimized for large-scale experiments.
Collapse
Affiliation(s)
- Zach Werkhoven
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| | - Christian Rohrsen
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Chuan Qin
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Benjamin de Bivort
- Dept. of Organismic and Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
69
|
Differential Tuning to Visual Motion Allows Robust Encoding of Optic Flow in the Dragonfly. J Neurosci 2019; 39:8051-8063. [PMID: 31481434 DOI: 10.1523/jneurosci.0143-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 11/21/2022] Open
Abstract
Visual cues provide an important means for aerial creatures to ascertain their self-motion through the environment. In many insects, including flies, moths, and bees, wide-field motion-sensitive neurons in the third optic ganglion are thought to underlie such motion encoding; however, these neurons can only respond robustly over limited speed ranges. The task is more complicated for some species of dragonflies that switch between extended periods of hovering flight and fast-moving pursuit of prey and conspecifics, requiring motion detection over a broad range of velocities. Since little is known about motion processing in these insects, we performed intracellular recordings from hawking, emerald dragonflies (Hemicordulia spp.) and identified a diverse group of motion-sensitive neurons that we named lobula tangential cells (LTCs). Following prolonged visual stimulation with drifting gratings, we observed significant differences in both temporal and spatial tuning of LTCs. Cluster analysis of these changes confirmed several groups of LTCs with distinctive spatiotemporal tuning. These differences were associated with variation in velocity tuning in response to translated, natural scenes. LTCs with differences in velocity tuning ranges and optima may underlie how a broad range of motion velocities are encoded. In the hawking dragonfly, changes in LTC tuning over time are therefore likely to support their extensive range of behaviors, from hovering to fast-speed pursuits.SIGNIFICANCE STATEMENT Understanding how animals navigate the world is an inherently difficult and interesting problem. Insects are useful models for understanding neuronal mechanisms underlying these activities, with neurons that encode wide-field motion previously identified in insects, such as flies, hawkmoths, and butterflies. Like some Dipteran flies, dragonflies exhibit complex aerobatic behaviors, such as hovering, patrolling, and aerial combat. However, dragonflies lack halteres that support such diverse behavior in flies. To understand how dragonflies might address this problem using only visual cues, we recorded from their wide-field motion-sensitive neurons. We found these differ strongly in the ways they respond to sustained motion, allowing them collectively to encode the very broad range of velocities experienced during diverse behavior.
Collapse
|
70
|
Cao L, Händel B. Walking enhances peripheral visual processing in humans. PLoS Biol 2019; 17:e3000511. [PMID: 31603894 PMCID: PMC6808500 DOI: 10.1371/journal.pbio.3000511] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023] Open
Abstract
Cognitive processes are almost exclusively investigated under highly controlled settings during which voluntary body movements are suppressed. However, recent animal work suggests differences in sensory processing between movement states by showing drastically changed neural responses in early visual areas between locomotion and stillness. Does locomotion also modulate visual cortical activity in humans, and what are the perceptual consequences? Our study shows that walking increased the contrast-dependent influence of peripheral visual input on central visual input. This increase is prevalent in stimulus-locked electroencephalogram (EEG) responses (steady-state visual evoked potential [SSVEP]) alongside perceptual performance. Ongoing alpha oscillations (approximately 10 Hz) further positively correlated with the walking-induced changes of SSVEP amplitude, indicating the involvement of an altered inhibitory process during walking. The results predicted that walking leads to an increased processing of peripheral visual input. A second study indeed showed an increased contrast sensitivity for peripheral compared to central stimuli when subjects were walking. Our work shows complementary neurophysiological and behavioural evidence corroborating animal findings that walking leads to a change in early visual neuronal activity in humans. That neuronal modulation due to walking is indeed linked to specific perceptual changes extends the existing animal work.
Collapse
Affiliation(s)
- Liyu Cao
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Barbara Händel
- Department of Psychology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
71
|
Kirszenblat L, Yaun R, van Swinderen B. Visual experience drives sleep need in Drosophila. Sleep 2019; 42:zsz102. [PMID: 31100151 PMCID: PMC6612675 DOI: 10.1093/sleep/zsz102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Sleep optimizes waking behavior, however, waking experience may also influence sleep. We used the fruit fly Drosophila melanogaster to investigate the relationship between visual experience and sleep in wild-type and mutant flies. We found that the classical visual mutant, optomotor-blind (omb), which has undeveloped horizontal system/vertical system (HS/VS) motion-processing cells and are defective in motion and visual salience perception, showed dramatically reduced and less consolidated sleep compared to wild-type flies. In contrast, optogenetic activation of the HS/VS motion-processing neurons in wild-type flies led to an increase in sleep following the activation, suggesting an increase in sleep pressure. Surprisingly, exposing wild-type flies to repetitive motion stimuli for extended periods did not increase sleep pressure. However, we observed that exposing flies to more complex image sequences from a movie led to more consolidated sleep, particularly when images were randomly shuffled through time. Our results suggest that specific forms of visual experience that involve motion circuits and complex, nonrepetitive imagery, drive sleep need in Drosophila.
Collapse
Affiliation(s)
- Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Rebecca Yaun
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| |
Collapse
|
72
|
Ache JM, Namiki S, Lee A, Branson K, Card GM. State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila. Nat Neurosci 2019; 22:1132-1139. [PMID: 31182867 PMCID: PMC7444277 DOI: 10.1038/s41593-019-0413-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/22/2019] [Indexed: 11/11/2022]
Abstract
An approaching predator and self-motion towards an object can generate similar looming patterns on the retina, but these situations demand different rapid responses. How central circuits flexibly process visual cues to activate appropriate, fast motor pathways remains unclear. Here, we identify two descending neuron (DN) types that control landing and contribute to visuomotor flexibility in Drosophila. For each, silencing impairs visually-evoked landing, activation drives landing, and spike rate determines leg extension amplitude. Critically, visual responses of both DNs are severely attenuated during non-flight periods, effectively decoupling visual stimuli from the landing motor pathway when landing is inappropriate. The flight-dependence mechanism differs between DN types. Octopamine exposure mimics flight effects in one, whereas the other likely receives neuronal feedback from flight motor circuits. Thus, this sensorimotor flexibility arises from distinct mechanisms for gating action-specific descending pathways, such that sensory and motor networks are coupled or decoupled according to the behavioral state.
Collapse
Affiliation(s)
- Jan M Ache
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Shigehiro Namiki
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Allen Lee
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA.,Leap Scientific LLC, Hooksett, NH, USA
| | - Kristin Branson
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Gwyneth M Card
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA.
| |
Collapse
|
73
|
Olfactory and Neuromodulatory Signals Reverse Visual Object Avoidance to Approach in Drosophila. Curr Biol 2019; 29:2058-2065.e2. [PMID: 31155354 DOI: 10.1016/j.cub.2019.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/01/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
Behavioral reactions of animals to environmental sensory stimuli are sometimes reflexive and stereotyped but can also vary depending on contextual conditions. Engaging in active foraging or flight provokes a reversal in the valence of carbon dioxide responses from aversion to approach in Drosophila [1, 2], whereas mosquitoes encountering this same chemical cue show enhanced approach toward a small visual object [3]. Sensory plasticity in insects has been broadly attributed to the action of biogenic amines, which modulate behaviors such as olfactory learning, aggression, feeding, and egg laying [4-14]. Octopamine acts rapidly upon the onset of flight to modulate the response gain of directionally selective motion-detecting neurons in Drosophila [15]. How the action of biogenic amines might couple sensory modalities to each other or to locomotive states remains poorly understood. Here, we use a visual flight simulator [16] equipped for odor delivery [17] to confirm that flies avoid a small contrasting visual object in odorless air [18] but that the same animals reverse their preference to approach in the presence of attractive food odor. An aversive odor does not reverse object aversion. Optogenetic activation of either octopaminergic neurons or directionally selective motion-detecting neurons that express octopamine receptors elicits visual valence reversal in the absence of odor. Our results suggest a parsimonious model in which odor-activated octopamine release excites the motion detection pathway to increase the saliency of either a small object or a bar, eliciting tracking responses by both visual features.
Collapse
|
74
|
Kathman ND, Fox JL. Representation of Haltere Oscillations and Integration with Visual Inputs in the Fly Central Complex. J Neurosci 2019; 39:4100-4112. [PMID: 30877172 PMCID: PMC6529865 DOI: 10.1523/jneurosci.1707-18.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
The reduced hindwings of flies, known as halteres, are specialized mechanosensory organs that detect body rotations during flight. Primary afferents of the haltere encode its oscillation frequency linearly over a wide bandwidth and with precise phase-dependent spiking. However, it is not currently known whether information from haltere primary afferent neurons is sent to higher brain centers where sensory information about body position could be used in decision making, or whether precise spike timing is useful beyond the peripheral circuits that drive wing movements. We show that in cells in the central brain, the timing and rates of neural spiking can be modulated by sensory input from experimental haltere movements (driven by a servomotor). Using multichannel extracellular recording in restrained flesh flies (Sarcophaga bullata of both sexes), we examined responses of central complex cells to a range of haltere oscillation frequencies alone, and in combination with visual motion speeds and directions. Haltere-responsive units fell into multiple response classes, including those responding to any haltere motion and others with firing rates linearly related to the haltere frequency. Cells with multisensory responses showed higher firing rates than the sum of the unisensory responses at higher haltere frequencies. They also maintained visual properties, such as directional selectivity, while increasing response gain nonlinearly with haltere frequency. Although haltere inputs have been described extensively in the context of rapid locomotion control, we find haltere sensory information in a brain region known to be involved in slower, higher-order behaviors, such as navigation.SIGNIFICANCE STATEMENT Many animals use vision for navigation; however, these cues must be interpreted in the context of the body's position. In mammalian brains, hippocampal cells combine visual and vestibular information to encode head direction. A region of the arthropod brain, known as the central complex (CX), similarly encodes heading information, but it is unknown whether proprioceptive information is integrated here as well. We show that CX neurons respond to input from halteres, specialized proprioceptors in flies that detect body rotations. These neurons also respond to visual input, providing one of the few examples of multiple sensory modalities represented in individual CX cells. Haltere stimulation modifies neural responses to visual signals, providing a mechanism for integrating vision with proprioception.
Collapse
Affiliation(s)
- Nicholas D Kathman
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jessica L Fox
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
75
|
Creamer MS, Mano O, Tanaka R, Clark DA. A flexible geometry for panoramic visual and optogenetic stimulation during behavior and physiology. J Neurosci Methods 2019; 323:48-55. [PMID: 31103713 DOI: 10.1016/j.jneumeth.2019.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/11/2019] [Accepted: 05/12/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND To study visual processing, it is necessary to precisely control visual stimuli while recording neural and behavioral responses. It can be important to present stimuli over a broad area of the visual field, which can be technically difficult. NEW METHOD We present a simple geometry that can be used to display panoramic stimuli. A single digital light projector generates images that are reflected by mirrors onto flat screens that surround an animal. It can be used for behavioral and neurophysiological measurements, so virtually identical stimuli can be presented. Moreover, this geometry permits light from the projector to be used to activate optogenetic tools. RESULTS Using this geometry, we presented panoramic visual stimulation to Drosophila in three paradigms. We presented drifting contrast gratings while recording walking and turning speed. We used the same projector to activate optogenetic channels during visual stimulation. Finally, we used two-photon microscopy to record responses in direction-selective cells to drifting gratings. COMPARISON WITH EXISTING METHOD(S) Existing methods have typically required custom hardware or curved screens, while this method requires only flat back projection screens and a digital light projector. The projector generates images in real time and does not require pre-generated images. Finally, while many setups are large, this geometry occupies a 30 × 20 cm footprint with a 25 cm height. CONCLUSIONS This flexible geometry enables measurements of behavioral and neural responses to panoramic stimuli. This allows moderate throughput behavioral experiments with simultaneous optogenetic manipulation, with easy comparisons between behavior and neural activity using virtually identical stimuli.
Collapse
Affiliation(s)
- Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States; Department of Physics, Yale University, New Haven, CT, United States; Department of Neuroscience, Yale University, New Haven, CT, United States.
| |
Collapse
|
76
|
Aimon S, Katsuki T, Jia T, Grosenick L, Broxton M, Deisseroth K, Sejnowski TJ, Greenspan RJ. Fast near-whole-brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biol 2019; 17:e2006732. [PMID: 30768592 PMCID: PMC6395010 DOI: 10.1371/journal.pbio.2006732] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/28/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022] Open
Abstract
Whole-brain recordings give us a global perspective of the brain in action. In this study, we describe a method using light field microscopy to record near-whole brain calcium and voltage activity at high speed in behaving adult flies. We first obtained global activity maps for various stimuli and behaviors. Notably, we found that brain activity increased on a global scale when the fly walked but not when it groomed. This global increase with walking was particularly strong in dopamine neurons. Second, we extracted maps of spatially distinct sources of activity as well as their time series using principal component analysis and independent component analysis. The characteristic shapes in the maps matched the anatomy of subneuropil regions and, in some cases, a specific neuron type. Brain structures that responded to light and odor were consistent with previous reports, confirming the new technique's validity. We also observed previously uncharacterized behavior-related activity as well as patterns of spontaneous voltage activity.
Collapse
Affiliation(s)
- Sophie Aimon
- Kavli Institute for Brain and Mind, UCSD, La Jolla, California, United States of America
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- Neurobiology Section, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Takeo Katsuki
- Kavli Institute for Brain and Mind, UCSD, La Jolla, California, United States of America
| | - Tongqiu Jia
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Logan Grosenick
- Departments of Computer Science and Bioengineering, Stanford University, Stanford, California, United States of America
| | - Michael Broxton
- Departments of Computer Science and Bioengineering, Stanford University, Stanford, California, United States of America
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, Stanford, California, United States of America
| | - Terrence J. Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ralph J. Greenspan
- Kavli Institute for Brain and Mind, UCSD, La Jolla, California, United States of America
- Neurobiology Section, University of California, San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Cognitive Science, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
77
|
Rosner R, Pegel U, Homberg U. Responses of compass neurons in the locust brain to visual motion and leg motor activity. J Exp Biol 2019; 222:jeb.196261. [DOI: 10.1242/jeb.196261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/28/2019] [Indexed: 11/20/2022]
Abstract
The central complex, a group of midline neuropils in the insect brain, plays a key role in spatial orientation and navigation. Work in locusts, crickets, dung beetles, bees, and butterflies suggests that it harbors a network of neurons which determines the orientation of the insect relative to the pattern of polarized light in the blue sky. In locusts, these compass cells also respond to simulated approaching objects. Here we investigate in the locust Schistocerca gregaria whether compass cells change their activity when the animal experiences large-field visual motion or when the animal is engaged in walking behavior. We recorded intracellularly from these neurons while the tethered animals were allowed to perform walking movements on a slippery surface. We concurrently presented moving grating stimuli from the side or polarized light through a rotating polarizer from above. Large-field motion was combined with the simulation of approaching objects to evaluate whether responses differed from those presented on a stationary background. Here we show for the first time that compass cells are sensitive to large-field motion. Responses to looming stimuli were often more conspicuous during large-field motion. Walking activity influenced spiking rates at all stages of the network. The strength of responses to the plane of polarized light was affected in some compass cells during leg motor activity. The data show that signaling in compass cells of the locust central complex is modulated by visual context and locomotor activity.
Collapse
Affiliation(s)
- Ronny Rosner
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
- Present address: Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Uwe Homberg
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
78
|
Creamer MS, Mano O, Clark DA. Visual Control of Walking Speed in Drosophila. Neuron 2018; 100:1460-1473.e6. [PMID: 30415994 PMCID: PMC6405217 DOI: 10.1016/j.neuron.2018.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 10/27/2022]
Abstract
An animal's self-motion generates optic flow across its retina, and it can use this visual signal to regulate its orientation and speed through the world. While orientation control has been studied extensively in Drosophila and other insects, much less is known about the visual cues and circuits that regulate translational speed. Here, we show that flies regulate walking speed with an algorithm that is tuned to the speed of visual motion, causing them to slow when visual objects are nearby. This regulation does not depend strongly on the spatial structure or the direction of visual stimuli, making it algorithmically distinct from the classic computation that controls orientation. Despite the different algorithms, the visual circuits that regulate walking speed overlap with those that regulate orientation. Taken together, our findings suggest that walking speed is controlled by a hierarchical computation that combines multiple motion detectors with distinct tunings. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
79
|
Dürr V, Schilling M. Transfer of Spatial Contact Information Among Limbs and the Notion of Peripersonal Space in Insects. Front Comput Neurosci 2018; 12:101. [PMID: 30618693 PMCID: PMC6305554 DOI: 10.3389/fncom.2018.00101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Internal representation of far-range space in insects is well established, as it is necessary for navigation behavior. Although it is likely that insects also have an internal representation of near-range space, the behavioral evidence for the latter is much less evident. Here, we estimate the size and shape of the spatial equivalent of a near-range representation that is constituted by somatosensory sampling events. To do so, we use a large set of experimental whole-body motion capture data on unrestrained walking, climbing and searching behavior in stick insects of the species Carausius morosus to delineate ‘action volumes’ and ‘contact volumes’ for both antennae and all six legs. As these volumes are derived from recorded sampling events, they comprise a volume equivalent to a representation of coinciding somatosensory and motor activity. Accordingly, we define this volume as the peripersonal space of an insect. It is of immediate behavioral relevance, because it comprises all potential external object locations within the action range of the body. In a next step, we introduce the notion of an affordance space as that part of peripersonal space within which contact-induced spatial estimates lie within the action ranges of more than one limb. Because the action volumes of limbs overlap in this affordance space, spatial information from one limb can be used to control the movement of another limb. Thus, it gives rise to an affordance as known for contact-induced reaching movements and spatial coordination of footfall patterns in stick insects. Finally, we probe the computational properties of the experimentally derived affordance space for pairs of neighboring legs. This is done by use of artificial neural networks that map the posture of one leg into a target posture of another leg with identical foot position.
Collapse
Affiliation(s)
- Volker Dürr
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Cluster of Excellence Cognitive Interactive Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Malte Schilling
- Cluster of Excellence Cognitive Interactive Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
80
|
Busch C, Borst A, Mauss AS. Bi-directional Control of Walking Behavior by Horizontal Optic Flow Sensors. Curr Biol 2018; 28:4037-4045.e5. [PMID: 30528583 DOI: 10.1016/j.cub.2018.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
Moving animals experience constant sensory feedback, such as panoramic image shifts on the retina, termed optic flow. Underlying neuronal signals are thought to be important for exploratory behavior by signaling unintended course deviations and by providing spatial information about the environment [1, 2]. Particularly in insects, the encoding of self-motion-related optic flow is well understood [1-5]. However, a gap remains in understanding how the associated neuronal activity controls locomotor trajectories. In flies, visual projection neurons belonging to two groups encode panoramic horizontal motion: horizontal system (HS) cells respond with depolarization to front-to-back motion and hyperpolarization to the opposite direction [6, 7], and other neurons have the mirror-symmetrical response profile [6, 8, 9]. With primarily monocular sensitivity, the neurons' responses are ambiguous for different rotational and translational self-movement components. Such ambiguities can be greatly reduced by combining signals from both eyes [10-12] to determine turning and movement speed [13-16]. Here, we explore the underlying functional logic by optogenetic HS cell manipulation in tethered walking Drosophila. We show that de- and hyperpolarization evoke opposite turning behavior, indicating that both direction-selective signals are transmitted to descending pathways for course control. Further experiments reveal a negative effect of bilaterally symmetric de- and hyperpolarization on walking velocity. Our results are therefore consistent with a functional architecture in which the HS cells' membrane potential influences walking behavior bi-directionally via two decelerating pathways.
Collapse
Affiliation(s)
- Christian Busch
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Alexander Borst
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Alex S Mauss
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.
| |
Collapse
|
81
|
Yarger AM, Fox JL. Single mechanosensory neurons encode lateral displacements using precise spike timing and thresholds. Proc Biol Sci 2018; 285:rspb.2018.1759. [PMID: 30232160 DOI: 10.1098/rspb.2018.1759] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/30/2018] [Indexed: 11/12/2022] Open
Abstract
During locomotion, animals rely on multiple sensory modalities to maintain stability. External cues may guide behaviour, but they must be interpreted in the context of the animal's own body movements. Mechanosensory cues that can resolve dynamic internal and environmental conditions, like those from vertebrate vestibular systems or other proprioceptors, are essential for guided movement. How do afferent proprioceptor neurons transform movement into a neural code? In flies, modified hindwings known as halteres detect forces produced by body rotations and are essential for flight. However, the mechanisms by which haltere neurons transform forces resulting from three-dimensional body rotations into patterns of neural spikes are unknown. We use intracellular electrodes to record from haltere primary afferent neurons during a range of haltere motions. We find that spike timing activity of individual neurons changes with displacement and propose a mechanism by which single neurons can encode three-dimensional haltere movements during flight.
Collapse
Affiliation(s)
- Alexandra M Yarger
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jessica L Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
82
|
Muzzu T, Mitolo S, Gava GP, Schultz SR. Encoding of locomotion kinematics in the mouse cerebellum. PLoS One 2018; 13:e0203900. [PMID: 30212563 PMCID: PMC6136788 DOI: 10.1371/journal.pone.0203900] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/29/2018] [Indexed: 01/23/2023] Open
Abstract
The cerebellum is involved in coordinating motor behaviour, but how the cerebellar network regulates locomotion is still not well understood. We characterised the activity of putative cerebellar Purkinje cells, Golgi cells and mossy fibres in awake mice engaged in an active locomotion task, using high-density silicon electrode arrays. Analysis of the activity of over 300 neurons in response to locomotion revealed that the majority of cells (53%) were significantly modulated by phase of the stepping cycle. However, in contrast to studies involving passive locomotion on a treadmill, we found that a high proportion of cells (45%) were tuned to the speed of locomotion, and 19% were tuned to yaw movements. The activity of neurons in the cerebellar vermis provided more information about future speed of locomotion than about past or present speed, suggesting a motor, rather than purely sensory, role. We were able to accurately decode the speed of locomotion with a simple linear algorithm, with only a relatively small number of well-chosen cells needed, irrespective of cell class. Our observations suggest that behavioural state modulates cerebellar sensorimotor integration, and advocate a role for the cerebellar vermis in control of high-level locomotor kinematic parameters such as speed and yaw.
Collapse
Affiliation(s)
- Tomaso Muzzu
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Susanna Mitolo
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Giuseppe P. Gava
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
83
|
Speed dependent descending control of freezing behavior in Drosophila melanogaster. Nat Commun 2018; 9:3697. [PMID: 30209268 PMCID: PMC6135764 DOI: 10.1038/s41467-018-05875-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
The most fundamental choice an animal has to make when it detects a threat is whether to freeze, reducing its chances of being noticed, or to flee to safety. Here we show that Drosophila melanogaster exposed to looming stimuli in a confined arena either freeze or flee. The probability of freezing versus fleeing is modulated by the fly’s walking speed at the time of threat, demonstrating that freeze/flee decisions depend on behavioral state. We describe a pair of descending neurons crucially implicated in freezing. Genetic silencing of DNp09 descending neurons disrupts freezing yet does not prevent fleeing. Optogenetic activation of both DNp09 neurons induces running and freezing in a state-dependent manner. Our findings establish walking speed as a key factor in defensive response choices and reveal a pair of descending neurons as a critical component in the circuitry mediating selection and execution of freezing or fleeing behaviors. Looming discs are perceived as an innate threat by flies and elicit a survival response. Here, the authors report that flies exhibit either an escape or freezing response depending on their walking speed and identify the involvement of a pair of neurons in mediating the behavior.
Collapse
|
84
|
Lee AK, Brecht M. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior. Trends Neurosci 2018; 41:385-403. [DOI: 10.1016/j.tins.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
|
85
|
Kohn JR, Heath SL, Behnia R. Eyes Matched to the Prize: The State of Matched Filters in Insect Visual Circuits. Front Neural Circuits 2018; 12:26. [PMID: 29670512 PMCID: PMC5893817 DOI: 10.3389/fncir.2018.00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
Confronted with an ever-changing visual landscape, animals must be able to detect relevant stimuli and translate this information into behavioral output. A visual scene contains an abundance of information: to interpret the entirety of it would be uneconomical. To optimally perform this task, neural mechanisms exist to enhance the detection of important features of the sensory environment while simultaneously filtering out irrelevant information. This can be accomplished by using a circuit design that implements specific "matched filters" that are tuned to relevant stimuli. Following this rule, the well-characterized visual systems of insects have evolved to streamline feature extraction on both a structural and functional level. Here, we review examples of specialized visual microcircuits for vital behaviors across insect species, including feature detection, escape, and estimation of self-motion. Additionally, we discuss how these microcircuits are modulated to weigh relevant input with respect to different internal and behavioral states.
Collapse
Affiliation(s)
- Jessica R Kohn
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Sarah L Heath
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Rudy Behnia
- Department of Neuroscience, Columbia University, New York, NY, United States
| |
Collapse
|
86
|
Damrau C, Toshima N, Tanimura T, Brembs B, Colomb J. Octopamine and Tyramine Contribute Separately to the Counter-Regulatory Response to Sugar Deficit in Drosophila. Front Syst Neurosci 2018; 11:100. [PMID: 29379421 PMCID: PMC5775261 DOI: 10.3389/fnsys.2017.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
All animals constantly negotiate external with internal demands before and during action selection. Energy homeostasis is a major internal factor biasing action selection. For instance, in addition to physiologically regulating carbohydrate mobilization, starvation-induced sugar shortage also biases action selection toward food-seeking and food consumption behaviors (the counter-regulatory response). Biogenic amines are often involved when such widespread behavioral biases need to be orchestrated. In mammals, norepinephrine (noradrenalin) is involved in the counterregulatory response to starvation-induced drops in glucose levels. The invertebrate homolog of noradrenalin, octopamine (OA) and its precursor tyramine (TA) are neuromodulators operating in many different neuronal and physiological processes. Tyrosine-ß-hydroxylase (tßh) mutants are unable to convert TA into OA. We hypothesized that tßh mutant flies may be aberrant in some or all of the counter-regulatory responses to starvation and that techniques restoring gene function or amine signaling may elucidate potential mechanisms and sites of action. Corroborating our hypothesis, starved mutants show a reduced sugar response and their hemolymph sugar concentration is elevated compared to control flies. When starved, they survive longer. Temporally controlled rescue experiments revealed an action of the OA/TA-system during the sugar response, while spatially controlled rescue experiments suggest actions also outside of the nervous system. Additionally, the analysis of two OA- and four TA-receptor mutants suggests an involvement of both receptor types in the animals' physiological and neuronal response to starvation. These results complement the investigations in Apis mellifera described in our companion paper (Buckemüller et al., 2017).
Collapse
Affiliation(s)
- Christine Damrau
- Neurobiologie, Fachbereich Biologie-Chemie-Pharmazie, Institut für Biologie - Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Naoko Toshima
- Division of Biological Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Teiichi Tanimura
- Division of Biological Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Björn Brembs
- Neurobiologie, Fachbereich Biologie-Chemie-Pharmazie, Institut für Biologie - Neurobiologie, Freie Universität Berlin, Berlin, Germany.,Institute of Zoology - Neurogenetics, University of Regensburg, Regensburg, Germany
| | - Julien Colomb
- Neurobiologie, Fachbereich Biologie-Chemie-Pharmazie, Institut für Biologie - Neurobiologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
87
|
Kalyanasundaram P, Willis MA. Parameters of motion vision in low-light in the hawkmoth, Manduca sexta. J Exp Biol 2018; 221:jeb.173344. [DOI: 10.1242/jeb.173344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/28/2018] [Indexed: 11/20/2022]
Abstract
The hawkmoth Manduca sexta, is nocturnally active, beginning its flight activity at sunset, and executing rapid controlled maneuvers to search for food and mates in dim light conditions. This moth's visual system has been shown to trade off spatial and temporal resolution for increased sensitivity in these conditions. The study presented here uses tethered flying moths to characterize the flight performance envelope of M. sexta's wide-field-motion-triggered steering response in low light conditions by measuring attempted turning in response to wide-field visual motion. Moths were challenged with a horizontally oscillating sinusoidal grating at a range of luminance, from daylight to starlight conditions. The impact of luminance on response to a range of temporal frequencies and spatial wavelengths was assessed across a range of pattern contrasts. The optomotor response decreased as a function of decreasing luminance, and the lower limit of the moth's contrast sensitivity was found to be between 1% to 5%. The preferred spatial frequency for M. sexta increased from 0.06 to 0.3 cycles/degree as the luminance decreased, but the preferred temporal frequency remained stable at 4.5 Hz across all conditions. The relationship between the optomotor response time to the temporal frequency of the pattern movement did not vary significantly with luminance levels. Taken together, these results suggest that the behavioral response to wide-field visual input in M. sexta is adapted to operate during crepuscular to nocturnal luminance levels, and the decreasing light levels experienced during that period changes visual acuity and does not affect their response time significantly.
Collapse
Affiliation(s)
- P. Kalyanasundaram
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - M. A. Willis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| |
Collapse
|
88
|
Neural mechanisms underlying sensitivity to reverse-phi motion in the fly. PLoS One 2017; 12:e0189019. [PMID: 29261684 PMCID: PMC5737883 DOI: 10.1371/journal.pone.0189019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/18/2017] [Indexed: 01/18/2023] Open
Abstract
Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics.
Collapse
|
89
|
Abstract
The behavioral state of an animal can dynamically modulate visual processing. In flies, the behavioral state is known to alter the temporal tuning of neurons that carry visual motion information into the central brain. However, where this modulation occurs and how it tunes the properties of this neural circuit are not well understood. Here, we show that the behavioral state alters the baseline activity levels and the temporal tuning of the first directionally selective neuron in the ON motion pathway (T4) as well as its primary input neurons (Mi1, Tm3, Mi4, Mi9). These effects are especially prominent in the inhibitory neuron Mi4, and we show that central octopaminergic neurons provide input to Mi4 and increase its excitability. We further show that octopamine neurons are required for sustained behavioral responses to fast-moving, but not slow-moving, visual stimuli in walking flies. These results indicate that behavioral-state modulation acts directly on the inputs to the directionally selective neurons and supports efficient neural coding of motion stimuli.
Collapse
|
90
|
Stöckl AL, Kihlström K, Chandler S, Sponberg S. Comparative system identification of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0078. [PMID: 28193822 DOI: 10.1098/rstb.2016.0078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2016] [Indexed: 11/12/2022] Open
Abstract
Flight control in insects is heavily dependent on vision. Thus, in dim light, the decreased reliability of visual signal detection also prompts consequences for insect flight. We have an emerging understanding of the neural mechanisms that different species employ to adapt the visual system to low light. However, much less explored are comparative analyses of how low light affects the flight behaviour of insect species, and the corresponding links between physiological adaptations and behaviour. We investigated whether the flower tracking behaviour of three hawkmoth species with different diel activity patterns revealed luminance-dependent adaptations, using a system identification approach. We found clear luminance-dependent differences in flower tracking in all three species, which were explained by a simple luminance-dependent delay model, which generalized across species. We discuss physiological and anatomical explanations for the variance in tracking responses, which could not be explained by such simple models. Differences between species could not be explained by the simple delay model. However, in several cases, they could be explained through the addition on a second model parameter, a simple scaling term, that captures the responsiveness of each species to flower movements. Thus, we demonstrate here that much of the variance in the luminance-dependent flower tracking responses of hawkmoths with different diel activity patterns can be captured by simple models of neural processing.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Anna L Stöckl
- Department of Biology, Lund University, Sölvegatan 35, Lund, Sweden
| | - Klara Kihlström
- Department of Biology, Lund University, Sölvegatan 35, Lund, Sweden
| | - Steven Chandler
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
91
|
Sensation during Active Behaviors. J Neurosci 2017; 37:10826-10834. [PMID: 29118211 DOI: 10.1523/jneurosci.1828-17.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023] Open
Abstract
A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.
Collapse
|
92
|
Ibbotson MR, Hung YS, Meffin H, Boeddeker N, Srinivasan MV. Neural basis of forward flight control and landing in honeybees. Sci Rep 2017; 7:14591. [PMID: 29109404 PMCID: PMC5673959 DOI: 10.1038/s41598-017-14954-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023] Open
Abstract
The impressive repertoire of honeybee visually guided behaviors, and their ability to learn has made them an important tool for elucidating the visual basis of behavior. Like other insects, bees perform optomotor course correction to optic flow, a response that is dependent on the spatial structure of the visual environment. However, bees can also distinguish the speed of image motion during forward flight and landing, as well as estimate flight distances (odometry), irrespective of the visual scene. The neural pathways underlying these abilities are unknown. Here we report on a cluster of descending neurons (DNIIIs) that are shown to have the directional tuning properties necessary for detecting image motion during forward flight and landing on vertical surfaces. They have stable firing rates during prolonged periods of stimulation and respond to a wide range of image speeds, making them suitable to detect image flow during flight behaviors. While their responses are not strictly speed tuned, the shape and amplitudes of their speed tuning functions are resistant to large changes in spatial frequency. These cells are prime candidates not only for the control of flight speed and landing, but also the basis of a neural 'front end' of the honeybee's visual odometer.
Collapse
Affiliation(s)
- M R Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia.
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Y-S Hung
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
- National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 9000, Rockville Pike, Bldg 35 A, Bethesda, MD, USA
| | - H Meffin
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - N Boeddeker
- Department of Cognitive Neuroscience, Bielefeld University, 33615, Bielefeld, Germany
| | - M V Srinivasan
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
93
|
Stowers JR, Hofbauer M, Bastien R, Griessner J, Higgins P, Farooqui S, Fischer RM, Nowikovsky K, Haubensak W, Couzin ID, Tessmar-Raible K, Straw AD. Virtual reality for freely moving animals. Nat Methods 2017; 14:995-1002. [PMID: 28825703 PMCID: PMC6485657 DOI: 10.1038/nmeth.4399] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 07/06/2017] [Indexed: 12/29/2022]
Abstract
Standard animal behavior paradigms incompletely mimic nature and thus limit our understanding of behavior and brain function. Virtual reality (VR) can help, but it poses challenges. Typical VR systems require movement restrictions but disrupt sensorimotor experience, causing neuronal and behavioral alterations. We report the development of FreemoVR, a VR system for freely moving animals. We validate immersive VR for mice, flies, and zebrafish. FreemoVR allows instant, disruption-free environmental reconfigurations and interactions between real organisms and computer-controlled agents. Using the FreemoVR platform, we established a height-aversion assay in mice and studied visuomotor effects in Drosophila and zebrafish. Furthermore, by photorealistically mimicking zebrafish we discovered that effective social influence depends on a prospective leader balancing its internally preferred directional choice with social interaction. FreemoVR technology facilitates detailed investigations into neural function and behavior through the precise manipulation of sensorimotor feedback loops in unrestrained animals.
Collapse
Affiliation(s)
- John R. Stowers
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- loopbio gmbh, Kritzendorf, Austria
| | - Maximilian Hofbauer
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- loopbio gmbh, Kritzendorf, Austria
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna, Austria
| | - Renaud Bastien
- Department of Collective Behaviour, Max Planck Institute for Ornithology, 78457 Konstanz, Germany
- Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz 78457, Konstanz, Germany
| | - Johannes Griessner
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Peter Higgins
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Sarfarazhussain Farooqui
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna, Austria
- Medizinische Universität Wien, Dept. for Internal Medicine I, 1090 Wien, Austria
| | - Ruth M. Fischer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Karin Nowikovsky
- Medizinische Universität Wien, Dept. for Internal Medicine I, 1090 Wien, Austria
| | - Wulf Haubensak
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Iain D. Couzin
- Department of Collective Behaviour, Max Planck Institute for Ornithology, 78457 Konstanz, Germany
- Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz 78457, Konstanz, Germany
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna, Austria
| | - Andrew D. Straw
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Institute of Biology I and Bernstein Center Freiburg, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
94
|
Cong L, Wang Z, Chai Y, Hang W, Shang C, Yang W, Bai L, Du J, Wang K, Wen Q. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish ( Danio rerio). eLife 2017; 6:28158. [PMID: 28930070 DOI: 10.7554/elife.28158.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/11/2017] [Indexed: 05/24/2023] Open
Abstract
The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here, we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish.
Collapse
Affiliation(s)
- Lin Cong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zeguan Wang
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuming Chai
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Hang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunfeng Shang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenbin Yang
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lu Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quan Wen
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
95
|
Cong L, Wang Z, Chai Y, Hang W, Shang C, Yang W, Bai L, Du J, Wang K, Wen Q. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish ( Danio rerio). eLife 2017; 6:28158. [PMID: 28930070 PMCID: PMC5644961 DOI: 10.7554/elife.28158] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/11/2017] [Indexed: 01/20/2023] Open
Abstract
The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here, we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish. How do neurons in the brain process information from the senses and drive complex behaviors? This question has fascinated neuroscientists for many years. It is currently not possible to record the electrical activities of all of the 100 billion neurons in a human brain. Yet, in the last decade, it has become possible to genetically engineer some neurons in animals to produce fluorescence reporters that change their brightness in response to brain activity and then monitor them under a microscope. In small animals such as zebrafish larvae, this method makes it possible to monitor the activities of all the neurons in the brain if the animal’s head is held still. However, many behaviors – for example, catching prey – require movement, and no existing technique could image brain activity in enough detail if the animal’s head was moving. Cong, Wang, Chai, Hang et al. have now made progress towards this goal by developing a new technique to image neural activity across the whole brain of a zebrafish larva as it swims freely in a small water-filled chamber. The technique uses high-speed cameras and computer software to track the movements of the fish in three dimensions, and then automatically moves the chamber under the microscope such that the animal’s brain is constantly kept in focus. The newly developed microscope can capture changes in neural activity across a large volume all at the same time. It is then further adapted to overcome problems caused by sudden or swift movements, which would normally result in motion blur. With this microscope set up, Cong et al. were able to capture, for the first time, activity from all the neurons in a zebrafish larva’s brain as it pursued and caught its prey. This technique provides a new window into how brain activity changes when animals are behaving naturally. In the future, this technique could help link the activities of neurons to different behaviors in several popular model organisms including fish, worms and fruit flies.
Collapse
Affiliation(s)
- Lin Cong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zeguan Wang
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuming Chai
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Hang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunfeng Shang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenbin Yang
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lu Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quan Wen
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
96
|
Juusola M, Dau A, Song Z, Solanki N, Rien D, Jaciuch D, Dongre SA, Blanchard F, de Polavieja GG, Hardie RC, Takalo J. Microsaccadic sampling of moving image information provides Drosophila hyperacute vision. eLife 2017; 6:26117. [PMID: 28870284 PMCID: PMC5584993 DOI: 10.7554/elife.26117] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 11/13/2022] Open
Abstract
Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes’ optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements. Fruit flies have five eyes: two large compound eyes which support vision, plus three smaller single lens eyes which are used for navigation. Each compound eye monitors 180° of space and consists of roughly 750 units, each containing eight light-sensitive cells called photoreceptors. This relatively wide spacing of photoreceptors is thought to limit the sharpness, or acuity, of vision in fruit flies. The area of the human retina (the light-sensitive surface at back of our eyes) that generates our sharpest vision contains photoreceptors that are 500 times more densely packed. Despite their differing designs, human and fruit fly eyes work via the same general principles. If we, or a fruit fly, were to hold our gaze completely steady, the world would gradually fade from view as the eye adapted to the unchanging visual stimulus. To ensure this does not happen, animals continuously make rapid, automatic eye movements called microsaccades. These refresh the image on the retina and prevent it from fading. Yet it is not known why do they not also cause blurred vision. Standard accounts of vision assume that the retina and the brain perform most of the information processing required, with photoreceptors simply detecting how much light enters the eye. However, Juusola, Dau, Song et al. now challenge this idea by showing that photoreceptors are specially adapted to detect the fluctuating patterns of light that enter the eye as a result of microsaccades. Moreover, fruit fly eyes resolve small moving objects far better than would be predicted based on the spacing of their photoreceptors. The discovery that photoreceptors are well adapted to deal with eye movements changes our understanding of insect vision. The findings also disprove the 100-year-old dogma that the spacing of photoreceptors limits the sharpness of vision in compound eyes. Further studies are required to determine whether photoreceptors in the retinas of other animals, including humans, have similar properties.
Collapse
Affiliation(s)
- Mikko Juusola
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - An Dau
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Zhuoyi Song
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Narendra Solanki
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Diana Rien
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - David Jaciuch
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Sidhartha Anil Dongre
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Florence Blanchard
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Gonzalo G de Polavieja
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Roger C Hardie
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Jouni Takalo
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
97
|
Strother JA, Wu ST, Wong AM, Nern A, Rogers EM, Le JQ, Rubin GM, Reiser MB. The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila. Neuron 2017; 94:168-182.e10. [PMID: 28384470 DOI: 10.1016/j.neuron.2017.03.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/22/2016] [Accepted: 03/08/2017] [Indexed: 01/19/2023]
Abstract
The perception of visual motion is critical for animal navigation, and flies are a prominent model system for exploring this neural computation. In Drosophila, the T4 cells of the medulla are directionally selective and necessary for ON motion behavioral responses. To examine the emergence of directional selectivity, we developed genetic driver lines for the neuron types with the most synapses onto T4 cells. Using calcium imaging, we found that these neuron types are not directionally selective and that selectivity arises in the T4 dendrites. By silencing each input neuron type, we identified which neurons are necessary for T4 directional selectivity and ON motion behavioral responses. We then determined the sign of the connections between these neurons and T4 cells using neuronal photoactivation. Our results indicate a computational architecture for motion detection that is a hybrid of classic theoretical models.
Collapse
Affiliation(s)
- James A Strother
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Shiuan-Tze Wu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Allan M Wong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Edward M Rogers
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Jasmine Q Le
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
98
|
Cohen JD, Bolstad M, Lee AK. Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. eLife 2017; 6. [PMID: 28742496 PMCID: PMC5526666 DOI: 10.7554/elife.23040] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/06/2017] [Indexed: 12/28/2022] Open
Abstract
The hippocampus is critical for producing stable representations of familiar spaces. How these representations arise is poorly understood, largely because changes to hippocampal inputs have not been measured during spatial learning. Here, using intracellular recording, we monitored inputs and plasticity-inducing complex spikes (CSs) in CA1 neurons while mice explored novel and familiar virtual environments. Inputs driving place field spiking increased in amplitude – often suddenly – during novel environment exploration. However, these increases were not sustained in familiar environments. Rather, the spatial tuning of inputs became increasingly similar across repeated traversals of the environment with experience – both within fields and throughout the whole environment. In novel environments, CSs were not necessary for place field formation. Our findings support a model in which initial inhomogeneities in inputs are amplified to produce robust place field activity, then plasticity refines this representation into one with less strongly modulated, but more stable, inputs for long-term storage. DOI:http://dx.doi.org/10.7554/eLife.23040.001
Collapse
Affiliation(s)
- Jeremy D Cohen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Mark Bolstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
99
|
An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila. J Neurosci 2017; 36:11768-11780. [PMID: 27852783 DOI: 10.1523/jneurosci.2277-16.2016] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022] Open
Abstract
The means by which brains transform sensory information into coherent motor actions is poorly understood. In flies, a relatively small set of descending interneurons are responsible for conveying sensory information and higher-order commands from the brain to motor circuits in the ventral nerve cord. Here, we describe three pairs of genetically identified descending interneurons that integrate information from wide-field visual interneurons and project directly to motor centers controlling flight behavior. We measured the physiological responses of these three cells during flight and found that they respond maximally to visual movement corresponding to rotation around three distinct body axes. After characterizing the tuning properties of an array of nine putative upstream visual interneurons, we show that simple linear combinations of their outputs can predict the responses of the three descending cells. Last, we developed a machine vision-tracking system that allows us to monitor multiple motor systems simultaneously and found that each visual descending interneuron class is correlated with a discrete set of motor programs. SIGNIFICANCE STATEMENT Most animals possess specialized sensory systems for encoding body rotation, which they use for stabilizing posture and regulating motor actions. In flies and other insects, the visual system contains an array of specialized neurons that integrate local optic flow to estimate body rotation during locomotion. However, the manner in which the output of these cells is transformed by the downstream neurons that innervate motor centers is poorly understood. We have identified a set of three visual descending neurons that integrate the output of nine large-field visual interneurons and project directly to flight motor centers. Our results provide new insight into how the sensory information that encodes body motion is transformed into a code that is appropriate for motor actions.
Collapse
|
100
|
Abstract
Images projected onto the retina of an animal eye are rarely still. Instead, they usually contain motion signals originating either from moving objects or from retinal slip caused by self-motion. Accordingly, motion signals tell the animal in which direction a predator, prey, or the animal itself is moving. At the neural level, visual motion detection has been proposed to extract directional information by a delay-and-compare mechanism, representing a classic example of neural computation. Neurons responding selectively to motion in one but not in the other direction have been identified in many systems, most prominently in the mammalian retina and the fly optic lobe. Technological advances have now allowed researchers to characterize these neurons' upstream circuits in exquisite detail. Focusing on these upstream circuits, we review and compare recent progress in understanding the mechanisms that generate direction selectivity in the early visual system of mammals and flies.
Collapse
Affiliation(s)
- Alex S Mauss
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; ,
| | - Anna Vlasits
- Department of Molecular and Cell Biology & Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720; ,
| | - Alexander Borst
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; ,
| | - Marla Feller
- Department of Molecular and Cell Biology & Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720; ,
| |
Collapse
|