51
|
Abstract
Production of gametes of halved ploidy for sexual reproduction requires a specialized cell division called meiosis. The fusion of two gametes restores the original ploidy in the new generation, and meiosis thus stabilizes ploidy across generations. To ensure balanced distribution of chromosomes, pairs of homologous chromosomes (homologs) must recognize each other and pair in the first meiotic division. Recombination plays a key role in this in most studied species, but it is not the only actor and particular chromosomal regions are known to facilitate the meiotic pairing of homologs. In this review, we focus on the roles of centromeres and in particular on the clustering and pairwise associations of nonhomologous centromeres that precede stable pairing between homologs. Although details vary from species to species, it is becoming increasingly clear that these associations play active roles in the meiotic chromosome pairing process, analogous to those of the telomere bouquet.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| |
Collapse
|
52
|
Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a016626. [PMID: 25986558 DOI: 10.1101/cshperspect.a016626] [Citation(s) in RCA: 512] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.
Collapse
Affiliation(s)
- Denise Zickler
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
53
|
Kurdzo EL, Dawson DS. Centromere pairing--tethering partner chromosomes in meiosis I. FEBS J 2015; 282:2458-70. [PMID: 25817724 PMCID: PMC4490064 DOI: 10.1111/febs.13280] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/10/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
Abstract
In meiosis, homologous chromosomes face the obstacle of finding, holding onto and segregating away from their partner chromosome. There is increasing evidence, in a diverse range of organisms, that centromere–centromere interactions that occur in late prophase are an important mechanism in ensuring segregation fidelity. Centromere pairing appears to initiate when homologous chromosomes synapse in meiotic prophase. Structural proteins of the synaptonemal complex have been shown to help mediate centromere pairing, but how the structure that maintains centromere pairing differs from the structure of the synaptonemal complex along the chromosomal arms remains unknown. When the synaptonemal complex proteins disassemble from the chromosome arms in late prophase, some of these synaptonemal complex components persist at the centromeres. In yeast and Drosophila these centromere-pairing behaviors promote the proper segregation of chromosome partners that have failed to become linked by chiasmata. Recent studies of mouse spermatocytes have described centromere pairing behaviors that are similar in several respects to what has been described in the fly and yeast systems. In humans, chromosomes that fail to experience crossovers in meiosis are error-prone and are a major source of aneuploidy. The finding that centromere pairing is a conserved phenomenon raises the possibility that it may play a role in promoting the segregation fidelity of non-exchange chromosome pairs in humans.
Collapse
Affiliation(s)
- Emily L Kurdzo
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Health Science Center, OK, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Health Science Center, OK, USA
| |
Collapse
|
54
|
Synaptonemal complex extension from clustered telomeres mediates full-length chromosome pairing in Schmidtea mediterranea. Proc Natl Acad Sci U S A 2014; 111:E5159-68. [PMID: 25404302 DOI: 10.1073/pnas.1420287111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the 1920s, József Gelei proposed that chromosome pairing in flatworms resulted from the formation of a telomere bouquet followed by the extension of synapsis from telomeres at the base of the bouquet, thus facilitating homolog pairing in a processive manner. A modern interpretation of Gelei's model postulates that the synaptonemal complex (SC) is nucleated close to the telomeres and then extends progressively along the full length of chromosome arms. We used the easily visible meiotic chromosomes, a well-characterized genome, and RNAi in the sexual biotype of the planarian Schmidtea mediterranea to test that hypothesis. By identifying and characterizing S. mediterranea homologs of genes encoding synaptonemal complex protein 1 (SYCP1), the topoisomerase-like protein SPO11, and RAD51, a key player in homologous recombination, we confirmed that SC formation begins near the telomeres and progresses along chromosome arms during zygotene. Although distal regions pair at the time of bouquet formation, pairing of a unique interstitial locus is not observed until the formation of full-length SC at pachytene. Moreover, neither full extension of the SC nor homologous pairing is dependent on the formation of double-strand breaks. These findings validate Gelei's speculation that full-length pairing of homologous chromosomes is mediated by the extension of the SC formed near the telomeres. S. mediterranea thus becomes the first organism described (to our knowledge) that forms a canonical telomere bouquet but does not require double-strand breaks for synapsis between homologous chromosomes. However, the initiation of SC formation at the base of the telomere bouquet, which then is followed by full-length homologous pairing in planarian spermatocytes, is not observed in other species and may not be conserved.
Collapse
|
55
|
Interference-mediated synaptonemal complex formation with embedded crossover designation. Proc Natl Acad Sci U S A 2014; 111:E5059-68. [PMID: 25380597 DOI: 10.1073/pnas.1416411111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites ("crossover interference"). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object.
Collapse
|
56
|
Krishnan B, Thomas SE, Yan R, Yamada H, Zhulin IB, McKee BD. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster. Genetics 2014; 198:947-65. [PMID: 25194162 PMCID: PMC4224182 DOI: 10.1534/genetics.114.166009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022] Open
Abstract
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.
Collapse
Affiliation(s)
- Badri Krishnan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Sharon E Thomas
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Rihui Yan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Hirotsugu Yamada
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Igor B Zhulin
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee 37996 Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Bruce D McKee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
57
|
Abstract
Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion.
Collapse
Affiliation(s)
- Bruce D McKee
- Department of Biochemistry, Cellular & Molecular Biology; University of Tennessee; Knoxville TN USA ; Genome Science and Technology Program; University of Tennessee; Knoxville TN USA
| | | | | |
Collapse
|
58
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
59
|
Weng KA, Jeffreys CA, Bickel SE. Rejuvenation of meiotic cohesion in oocytes during prophase I is required for chiasma maintenance and accurate chromosome segregation. PLoS Genet 2014; 10:e1004607. [PMID: 25211017 PMCID: PMC4161318 DOI: 10.1371/journal.pgen.1004607] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Chromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight into the molecular events that underlie rejuvenation. Gal4/UAS inducible knockdown of the cohesion establishment factor Eco after meiotic S phase, but before oocyte maturation, causes premature loss of meiotic cohesion, resulting in destabilization of chiasmata and subsequent missegregation of recombinant homologs. Reduction of individual cohesin subunits or the cohesin loader Nipped B during prophase I leads to similar defects. These data indicate that loading of newly synthesized replacement cohesin rings by Nipped B and establishment of new cohesive linkages by the acetyltransferase Eco must occur during prophase I to maintain cohesion in oocytes. Moreover, we show that rejuvenation of meiotic cohesion does not depend on the programmed induction of meiotic double strand breaks that occurs during early prophase I, and is therefore mechanistically distinct from the DNA damage cohesion re-establishment pathway identified in G2 vegetative yeast cells. Our work provides the first evidence that new cohesive linkages are established in Drosophila oocytes after meiotic S phase, and that these are required for accurate chromosome segregation. If such a pathway also operates in human oocytes, meiotic cohesion defects may become pronounced in a woman's thirties, not because the original cohesive linkages finally give out, but because the rejuvenation program can no longer supply new cohesive linkages at the same rate at which they are lost.
Collapse
Affiliation(s)
- Katherine A. Weng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Charlotte A. Jeffreys
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
60
|
Abstract
In most organisms the synaptonemal complex (SC) connects paired homologs along their entire length during much of meiotic prophase. To better understand the structure of the SC, we aim to identify its components and to determine how each of these components contributes to SC function. Here, we report the identification of a novel SC component in Drosophila melanogaster female oocytes, which we have named Corolla. Using structured illumination microscopy, we demonstrate that Corolla is a component of the central region of the SC. Consistent with its localization, we show by yeast two-hybrid analysis that Corolla strongly interacts with Cona, a central element protein, demonstrating the first direct interaction between two inner-synaptonemal complex proteins in Drosophila. These observations help provide a more complete model of SC structure and function in Drosophila females.
Collapse
|
61
|
Ishiguro KI, Kim J, Shibuya H, Hernández-Hernández A, Suzuki A, Fukagawa T, Shioi G, Kiyonari H, Li XC, Schimenti J, Höög C, Watanabe Y. Meiosis-specific cohesin mediates homolog recognition in mouse spermatocytes. Genes Dev 2014; 28:594-607. [PMID: 24589552 PMCID: PMC3967048 DOI: 10.1101/gad.237313.113] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
Abstract
During meiosis, homologous chromosome (homolog) pairing is promoted by several layers of regulation that include dynamic chromosome movement and meiotic recombination. However, the way in which homologs recognize each other remains a fundamental issue in chromosome biology. Here, we show that homolog recognition or association initiates upon entry into meiotic prophase before axis assembly and double-strand break (DSB) formation. This homolog association develops into tight pairing only during or after axis formation. Intriguingly, the ability to recognize homologs is retained in Sun1 knockout spermatocytes, in which telomere-directed chromosome movement is abolished, and this is the case even in Spo11 knockout spermatocytes, in which DSB-dependent DNA homology search is absent. Disruption of meiosis-specific cohesin RAD21L precludes the initial association of homologs as well as the subsequent pairing in spermatocytes. These findings suggest the intriguing possibility that homolog recognition is achieved primarily by searching for homology in the chromosome architecture as defined by meiosis-specific cohesin rather than in the DNA sequence itself.
Collapse
Affiliation(s)
- Kei-ichiro Ishiguro
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences
| | - Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences
- Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-0032, Japan
| | - Hiroki Shibuya
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences
- Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-0032, Japan
| | | | - Aussie Suzuki
- Department of Molecular Genetics, National Institute of Genetics, the Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics, the Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), Kobe 650-0047, Japan
| | - Xin C. Li
- Department of Biomedical Sciences, Center for Vertebrate Genomics, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, USA
| | - John Schimenti
- Department of Biomedical Sciences, Center for Vertebrate Genomics, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, USA
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm S171 77, Sweden
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences
- Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
62
|
Da Ines O, Gallego ME, White CI. Recombination-independent mechanisms and pairing of homologous chromosomes during meiosis in plants. MOLECULAR PLANT 2014; 7:492-501. [PMID: 24375719 DOI: 10.1093/mp/sst172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Meiosis is the specialized eukaryotic cell division that permits the halving of ploidy necessary for gametogenesis in sexually reproducing organisms. This involves a single round of DNA replication followed by two successive divisions. To ensure balanced segregation, homologous chromosome pairs must migrate to opposite poles at the first meiotic division and this means that they must recognize and pair with each other beforehand. Although understanding of the mechanisms by which meiotic chromosomes find and pair with their homologs has greatly advanced, it remains far from being fully understood. With some notable exceptions such as male Drosophila, the recognition and physical linkage of homologs at the first meiotic division involves homologous recombination. However, in addition to this, it is clear that many organisms, including plants, have also evolved a series of recombination-independent mechanisms to facilitate homolog recognition and pairing. These implicate chromosome structure and dynamics, telomeres, centromeres, and, most recently, small RNAs. With a particular focus on plants, we present here an overview of understanding of these early, recombination-independent events that act in the pairing of homologous chromosomes during the first meiotic division.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63171 Aubière, France
| | | | | |
Collapse
|
63
|
Klutstein M, Cooper JP. The Chromosomal Courtship Dance-homolog pairing in early meiosis. Curr Opin Cell Biol 2014; 26:123-31. [PMID: 24529254 DOI: 10.1016/j.ceb.2013.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 02/02/2023]
Abstract
The intermingling of genomes that characterizes sexual reproduction requires haploid gametes in which parental homologs have recombined. For this, homologs must pair during meiosis. In a crowded nucleus where sequence homology is obscured by the enormous scale and packaging of the genome, partner alignment is no small task. Here we review the early stages of this process. Chromosomes first establish an initial docking site, usually at telomeres or centromeres. The acquisition of chromosome-specific patterns of binding factors facilitates homolog recognition. Chromosomes are then tethered to the nuclear envelope (NE) and subjected to nuclear movements that 'shake off' inappropriate contacts while consolidating homolog associations. Thereafter, homolog connections are stabilized by building the synaptonemal complex or its equivalent and creating genetic crossovers. Recent perspectives on the roles of these stages will be discussed.
Collapse
Affiliation(s)
- Michael Klutstein
- Cancer Research UK, London Research Institute, NIH, London WC2A 3LY, United Kingdom; National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Julia Promisel Cooper
- Cancer Research UK, London Research Institute, NIH, London WC2A 3LY, United Kingdom; National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
64
|
Gruhn JR, Rubio C, Broman KW, Hunt PA, Hassold T. Cytological studies of human meiosis: sex-specific differences in recombination originate at, or prior to, establishment of double-strand breaks. PLoS One 2013; 8:e85075. [PMID: 24376867 PMCID: PMC3869931 DOI: 10.1371/journal.pone.0085075] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination is sexually dimorphic in most mammalian species, including humans, but the basis for the male:female differences remains unclear. In the present study, we used cytological methodology to directly compare recombination levels between human males and females, and to examine possible sex-specific differences in upstream events of double-strand break (DSB) formation and synaptic initiation. Specifically, we utilized the DNA mismatch repair protein MLH1 as a marker of recombination events, the RecA homologue RAD51 as a surrogate for DSBs, and the synaptonemal complex proteins SYCP3 and/or SYCP1 to examine synapsis between homologs. Consistent with linkage studies, genome-wide recombination levels were higher in females than in males, and the placement of exchanges varied between the sexes. Subsequent analyses of DSBs and synaptic initiation sites indicated similar male:female differences, providing strong evidence that sex-specific differences in recombination rates are established at or before the formation of meiotic DSBs. We then asked whether these differences might be linked to variation in the organization of the meiotic axis and/or axis-associated DNA and, indeed, we observed striking male:female differences in synaptonemal complex (SC) length and DNA loop size. Taken together, our observations suggest that sex specific differences in recombination in humans may derive from chromatin differences established prior to the onset of the recombination pathway.
Collapse
Affiliation(s)
- Jennifer R. Gruhn
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Carmen Rubio
- Preimplantation Genetic Diagnosis Unit, Iviomics, Paterna, Valencia, Spain
| | - Karl W. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia A. Hunt
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Terry Hassold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
65
|
Christophorou N, Rubin T, Huynh JR. Synaptonemal complex components promote centromere pairing in pre-meiotic germ cells. PLoS Genet 2013; 9:e1004012. [PMID: 24367278 PMCID: PMC3868581 DOI: 10.1371/journal.pgen.1004012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Mitosis and meiosis are two distinct cell division programs. During mitosis, sister chromatids separate, whereas during the first meiotic division, homologous chromosomes pair and then segregate from each other. In most organisms, germ cells do both programs sequentially, as they first amplify through mitosis, before switching to meiosis to produce haploid gametes. Here, we show that autosomal chromosomes are unpaired at their centromeres in Drosophila germline stem cells, and become paired during the following four mitosis of the differentiating daughter cell. Surprisingly, we further demonstrate that components of the central region of the synaptonemal complex are already expressed in the mitotic region of the ovaries, localize close to centromeres, and promote de novo association of centromeres. Our results thus show that meiotic proteins and meiotic organization of centromeres, which are key features to ensure reductional segregation, are laid out in amplifying germ cells, before meiosis has started. Meiosis is a special type of cell division occurring in germ cells to produce sexual gametes. Initially, germ cells contain two copies of each chromosome, one from the mother and one from the father, which are called homologs. During meiosis, cells divide twice to produce haploid gametes with only one copy of each chromosome. Each gamete receives exactly one copy of each chromosome, because homologs become associated, through a process called meiotic pairing, and then segregate from each other during the first round of division. In Drosophila, it was assumed that homologs were always paired in every cell type. Meiotic pairing was thus viewed as an extension of a pre-existing pairing. Here, we show that chromosomes II and III are not paired in germline stem cells, which produce germ cells throughout adult life. We further show that these chromosomes become paired during the four rounds of mitosis preceding the entry in meiosis. Surprisingly, meiotic proteins are expressed during these four rounds of mitosis and are required for homologs to pair. Our results thus show that, in Drosophila, meiosis starts during the preceding mitosis.
Collapse
Affiliation(s)
- Nicolas Christophorou
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France ; CNRS UMR3215; Inserm U934, Paris, France
| | - Thomas Rubin
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France ; CNRS UMR3215; Inserm U934, Paris, France
| | - Jean-René Huynh
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France ; CNRS UMR3215; Inserm U934, Paris, France
| |
Collapse
|
66
|
Joyce EF, Apostolopoulos N, Beliveau BJ, Wu CT. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development. PLoS Genet 2013; 9:e1004013. [PMID: 24385920 PMCID: PMC3868550 DOI: 10.1371/journal.pgen.1004013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/24/2013] [Indexed: 01/06/2023] Open
Abstract
Homolog pairing, which plays a critical role in meiosis, poses a potential risk if it occurs in inappropriate tissues or between nonallelic sites, as it can lead to changes in gene expression, chromosome entanglements, and loss-of-heterozygosity due to mitotic recombination. This is particularly true in Drosophila, which supports organismal-wide pairing throughout development. Discovered over a century ago, such extensive pairing has led to the perception that germline pairing in the adult gonad is an extension of the pairing established during embryogenesis and, therefore, differs from the mechanism utilized in most species to initiate pairing specifically in the germline. Here, we show that, contrary to long-standing assumptions, Drosophila meiotic pairing in the gonad is not an extension of pairing established during embryogenesis. Instead, we find that homologous chromosomes are unpaired in primordial germ cells from the moment the germline can be distinguished from the soma in the embryo and remain unpaired even in the germline stem cells of the adult gonad. We further establish that pairing originates immediately after the stem cell stage. This pairing occurs well before the initiation of meiosis and, strikingly, continues through the several mitotic divisions preceding meiosis. These discoveries indicate that the spatial organization of the Drosophila genome differs between the germline and the soma from the earliest moments of development and thus argue that homolog pairing in the germline is an active process as versus a passive continuation of pairing established during embryogenesis. Meiosis is a specialized cell division that permits the transmission of genetic material to following generations. A pivotal step for this process is the pairing and recombination between homologous chromosomes. In the case of Drosophila, which supports organismal-wide homolog pairing throughout development, it has been widely assumed that the homolog alignment occurring during meiosis in the adult gonad is an extension of the pairing established during embryogenesis. Here, we show that, contrary to this model, homologous chromosomes are unpaired in germline progenitors from embryogenesis to adulthood. This discovery refutes the presumption that homologous chromosomes are paired in Drosophila in all cell types and demonstrates that a specific form of chromosome organization, namely, homolog pairing, is a signature feature that distinguishes cells destined to be the soma from cells destined to be the germline.
Collapse
Affiliation(s)
- Eric F Joyce
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicholas Apostolopoulos
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian J Beliveau
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - C-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
67
|
Affiliation(s)
- Cori K. Cahoon
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
68
|
Schubert V, Lermontova I, Schubert I. The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 2013; 122:517-33. [PMID: 23929493 DOI: 10.1007/s00412-013-0424-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/30/2022]
Abstract
In plants as in other eukaryotes, the structural maintenance of chromosome (SMC) protein complexes cohesin, condensin and SMC5/6 are essential for sister chromatid cohesion, chromosome condensation, DNA repair and recombination. The presence of paralogous genes for various components of the different SMC complexes suggests the diversification of their biological functions during the evolution of higher plants. In Arabidopsis thaliana, we identified two candidate genes (Cap-D2 and Cap-D3) which may express conserved proteins presumably associated with condensin. In silico analyses using public databases suggest that both genes are controlled by factors acting in a cell cycle-dependent manner. Cap-D2 is essential because homozygous T-DNA insertion mutants were not viable. The heterozygous mutant showed wild-type growth habit but reduced fertility. For Cap-D3, we selected two homozygous mutants expressing truncated transcripts which are obviously not fully functional. Both mutants show reduced pollen fertility and seed set (one of them also reduced plant vigour), a lower chromatin density and frequent (peri)centromere association in interphase nuclei. Sister chromatid cohesion was impaired compared to wild-type in the cap-D3 mutants but not in the heterozygous cap-D2 mutant. At superresolution (Structured Illumination Microscopy), we found no alteration of chromatin substructure for both cap-D mutants. Chromosome-associated polypeptide (CAP)-D3 and the cohesin subunit SMC3 form similar but positionally non-overlapping reticulate structures in 2C-16C nuclei, suggesting their importance for interphase chromatin architecture in differentiated nuclei. Thus, we presume that CAP-D proteins are required for fertility, growth, chromatin organisation, sister chromatid cohesion and in a process preventing the association of centromeric repeats.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany,
| | | | | |
Collapse
|
69
|
Centromere proteins CENP-C and CAL1 functionally interact in meiosis for centromere clustering, pairing, and chromosome segregation. Proc Natl Acad Sci U S A 2013; 110:19878-83. [PMID: 24248385 DOI: 10.1073/pnas.1320074110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Meiotic chromosome segregation involves pairing and segregation of homologous chromosomes in the first division and segregation of sister chromatids in the second division. Although it is known that the centromere and kinetochore are responsible for chromosome movement in meiosis as in mitosis, potential specialized meiotic functions are being uncovered. Centromere pairing early in meiosis I, even between nonhomologous chromosomes, and clustering of centromeres can promote proper homolog associations in meiosis I in yeast, plants, and Drosophila. It was not known, however, whether centromere proteins are required for this clustering. We exploited Drosophila mutants for the centromere proteins centromere protein-C (CENP-C) and chromosome alignment 1 (CAL1) to demonstrate that a functional centromere is needed for centromere clustering and pairing. The cenp-C and cal1 mutations result in C-terminal truncations, removing the domains through which these two proteins interact. The mutants show striking genetic interactions, failing to complement as double heterozygotes, resulting in disrupted centromere clustering and meiotic nondisjunction. The cluster of meiotic centromeres localizes to the nucleolus, and this association requires centromere function. In Drosophila, synaptonemal complex (SC) formation can initiate from the centromere, and the SC is retained at the centromere after it disassembles from the chromosome arms. Although functional CENP-C and CAL1 are dispensable for assembly of the SC, they are required for subsequent retention of the SC at the centromere. These results show that integral centromere proteins are required for nuclear position and intercentromere associations in meiosis.
Collapse
|
70
|
Obeso D, Pezza RJ, Dawson D. Couples, pairs, and clusters: mechanisms and implications of centromere associations in meiosis. Chromosoma 2013; 123:43-55. [PMID: 24126501 DOI: 10.1007/s00412-013-0439-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program-sometimes referred to as centromere coupling-and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.
Collapse
Affiliation(s)
- David Obeso
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | | |
Collapse
|
71
|
Yan R, McKee BD. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis. PLoS Genet 2013; 9:e1003637. [PMID: 23874232 PMCID: PMC3715423 DOI: 10.1371/journal.pgen.1003637] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/01/2013] [Indexed: 11/29/2022] Open
Abstract
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores. Sexual reproduction entails an intricate 2-step division called meiosis in which homologous chromosomes and sister chromatids are sequentially segregated to yield gametes (eggs and sperm) with exactly one copy of each chromosome. The Drosophila meiosis protein SOLO is essential for cohesion between sister chromatids. SOLO localizes to centromeres throughout meiosis where it collaborates with the conserved cohesin complex to enable sister centromeres to orient properly – to the same pole during the first division and to opposite poles during the second division. In solo mutants, sister chromatids become disconnected early in meiosis and segregate randomly through both meiotic divisions generating gametes with random (and mostly wrong) numbers of chromosomes. In this study we show that SOLO also localizes to chromosome arms where it is required to construct stable synaptonemal complexes that connect homologs while they recombine. In addition, SOLO is required to prevent crossovers between sister chromatids, as only homolog crossovers are useful for forming the interhomolog connections (chiasmata) needed for homolog segregation. SOLO collaborates with cohesin for these tasks as well. We propose that SOLO is a subunit of a specialized meiotic cohesin complex and a multi-purpose cohesion protein that regulates several meiotic processes needed for proper chromosome segregation.
Collapse
Affiliation(s)
- Rihui Yan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | | |
Collapse
|
72
|
Pek JW, Ng BF, Kai T. Polo-mediated phosphorylation of Maelstrom regulates oocyte determination during oogenesis in Drosophila. Development 2012; 139:4505-13. [DOI: 10.1242/dev.082867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Drosophila, Maelstrom is a conserved component of the perinuclear nuage, a germline-unique structure that appears to serve as a site for Piwi-interacting RNA (piRNA) production to repress deleterious transposons. Maelstrom also functions in the nucleus as a transcriptional regulator to repress the expression of microRNA-7, a process that is essential for the proper differentiation of germline stem cells. In this paper, we report another function of Maelstrom in regulating oocyte determination independently of its transposon silencing and germline stem cell differentiation activities. In Drosophila, the conserved serine 138 residue in Maelstrom is required for its phosphorylation, an event that promotes oocyte determination. Phosphorylation of Maelstrom is required for the repression of the pachytene checkpoint protein Sir2, but not for transposon silencing or for germline stem cell differentiation. We identify Polo as a kinase that mediates the phosphorylation of Maelstrom. Our results suggest that the Polo-mediated phosphorylation of Maelstrom may be a mechanism that controls oocyte determination by inactivating the pachytene checkpoint via the repression of Sir2 in Drosophila ovaries.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604
| | - Bing Fu Ng
- Department of Biological Sciences, National University of Singapore, Singapore 117604
| | - Toshie Kai
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604
- Department of Biological Sciences, National University of Singapore, Singapore 117604
| |
Collapse
|
73
|
Loidl J, Lukaszewicz A, Howard-Till RA, Koestler T. The Tetrahymena meiotic chromosome bouquet is organized by centromeres and promotes interhomolog recombination. J Cell Sci 2012; 125:5873-80. [PMID: 22976299 DOI: 10.1242/jcs.112664] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to form crossovers and to undergo reductional segregation during meiosis, homologous chromosomes must pair. In Tetrahymena, meiotic prophase nuclei elongate immensely, and, within the elongated nucleus, chromosomes are arranged with telomeres assembled at one pole and centromeres at the opposite pole. This organisation is an exaggerated form of the bouquet, a meiotic chromosome arrangement that is widely conserved among eukaryotes. We show that centromere function is crucial for the formation of Tetrahymena's stretched bouquet and, thereby, for homologue pairing. This finding adds to previous reports of the importance of centromeres in chromosome pairing in budding yeast and in Drosophila. Tetrahymena's bouquet is an ataxia telangiectasia- and RAD3-related (ATR)-dependent meiotic DNA damage response that is triggered by meiotic DNA double-strand breaks (DSBs), suggesting that the bouquet is needed for DSB repair. However, in the present study we show that although homologous pairing is impeded in the absence of the bouquet, DSB repair takes place nevertheless. Moreover, recombinational DSB repair, as monitored by bromodeoxyuridine incorporation, takes place only after exit from the bouquet stage. Therefore, we conclude that the bouquet is not required for DSB repair per se, but may be necessary for the alignment of homologous loci in order to promote homologous crossovers over alternative repair pathways.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
74
|
Abstract
Centromeres congregate into a large cluster called the chromocenter during Drosophila oogenesis. Two recent studies now define a function and a genetic basis for this remarkable structure.
Collapse
|
75
|
Takeo S, Hawley RS. Rumors of its disassembly have been greatly exaggerated: the secret life of the synaptonemal complex at the centromeres. PLoS Genet 2012; 8:e1002807. [PMID: 22761598 PMCID: PMC3386197 DOI: 10.1371/journal.pgen.1002807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Satomi Takeo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
76
|
Qiao H, Chen JK, Reynolds A, Höög C, Paddy M, Hunter N. Interplay between synaptonemal complex, homologous recombination, and centromeres during mammalian meiosis. PLoS Genet 2012; 8:e1002790. [PMID: 22761591 PMCID: PMC3386176 DOI: 10.1371/journal.pgen.1002790] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/10/2012] [Indexed: 11/24/2022] Open
Abstract
The intimate synapsis of homologous chromosome pairs (homologs) by synaptonemal complexes (SCs) is an essential feature of meiosis. In many organisms, synapsis and homologous recombination are interdependent: recombination promotes SC formation and SCs are required for crossing-over. Moreover, several studies indicate that initiation of SC assembly occurs at sites where crossovers will subsequently form. However, recent analyses in budding yeast and fruit fly imply a special role for centromeres in the initiation of SC formation. In addition, in budding yeast, persistent SC–dependent centromere-association facilitates the disjunction of chromosomes that have failed to become connected by crossovers. Here, we examine the interplay between SCs, recombination, and centromeres in a mammal. In mouse spermatocytes, centromeres do not serve as SC initiation sites and are invariably the last regions to synapse. However, centromeres are refractory to de-synapsis during diplonema and remain associated by short SC fragments. Since SC–dependent centromere association is lost before diakinesis, a direct role in homolog segregation seems unlikely. However, post–SC disassembly, we find evidence of inter-centromeric connections that could play a more direct role in promoting homolog biorientation and disjunction. A second class of persistent SC fragments is shown to be crossover-dependent. Super-resolution structured-illumination microscopy (SIM) reveals that these structures initially connect separate homolog axes and progressively diminish as chiasmata form. Thus, DNA crossing-over (which occurs during pachynema) and axis remodeling appear to be temporally distinct aspects of chiasma formation. SIM analysis of the synapsis and crossover-defective mutant Sycp1−/− implies that SCs prevent unregulated fusion of homolog axes. We propose that SC fragments retained during diplonema stabilize nascent bivalents and help orchestrate local chromosome reorganization that promotes centromere and chiasma function. Gamete cells, such as sperm and eggs, form via the specialized cell division called meiosis. Essential and interdependent features of meiosis include the pairing, recombination, and segregation of maternal and paternal chromosomes. Chromosome pairing culminates with formation of synaptonemal complexes (SCs), zipper-like structures that connect the structural cores or axes of homologous chromosomes. Although SC is known to be important for crossover recombination, details of its function remain enigmatic. In this study, we analyze mouse spermatocytes to investigate the interplay between SC, recombination, and centromeres (the structures that direct chromosome segregation). We show that SC prevents unregulated interactions between chromosome axes. This function appears to be especially important at chromosome ends and at crossover sites where DNA exchange must be coordinated with structural exchange of chromosome axes. We also show that centromeres remain associated by short fragments of SC after general chromosome desynapsis has occurred. Furthermore, we detect a distinct type of inter-centromeric connection that persists even after centromeres desynapse. Such connections may facilitate the segregation of chromosomes that have failed to crossover. Together, our data provide new insights into the functions of SC and raise the possibility of a back-up chromosome segregation system in mammals analogous to those described in fruit flies and budding yeast.
Collapse
Affiliation(s)
- Huanyu Qiao
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
| | - Jefferson K. Chen
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
| | - April Reynolds
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Paddy
- Microscopy and Imaging Facility, Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Neil Hunter
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Lake CM, Hawley RS. The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes. Annu Rev Physiol 2012; 74:425-51. [PMID: 22335798 DOI: 10.1146/annurev-physiol-020911-153342] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the critical events in early meiotic prophase in Drosophila melanogaster oocytes. We focus on four aspects of this process: the formation of the synaptonemal complex (SC) and its role in maintaining homologous chromosome pairings, the critical roles of the meiosis-specific process of centromere clustering in the formation of a full-length SC, the mechanisms by which preprogrammed double-strand breaks initiate meiotic recombination, and the checkpoints that govern the progression and coordination of these processes. Central to this discussion are the roles that somatic pairing events play in establishing the necessary conditions for proper SC formation, the roles of centromere pairing in synapsis initiation, and the mechanisms by which oocytes detect failures in SC formation and/or recombination. Finally, we correlate what is known in Drosophila oocytes with our understanding of these processes in other systems.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
78
|
Da Ines O, Abe K, Goubely C, Gallego ME, White CI. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana. PLoS Genet 2012; 8:e1002636. [PMID: 22532804 PMCID: PMC3330102 DOI: 10.1371/journal.pgen.1002636] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/21/2012] [Indexed: 11/18/2022] Open
Abstract
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains. Meiosis is a specialised cell division that acts to halve the chromosome complement, or ploidy, in the production of gametes for sexual reproduction in eukaryotes. To ensure that each gamete has a full complement of the genetic material, homologous chromosomes must pair and then separate in a coordinated manner during meiosis, and this is mediated by recombination in the majority of studied eukaryotes. To better understand the relationship between recombination and meiotic homologue pairing, we have analysed meiotic chromosome pairing in plant mutants lacking key recombination proteins. This work provides new insights into the homologous chromosome pairing mechanisms occurring in meiotic prophase of Arabidopsis thaliana: heterochromatic centromeres and 5S rDNA regions pair early, and their pairing has different requirements for recombination proteins than does that of the chromosome arms. These data raise a number of questions concerning the specificities and roles of recombination at different chromosome and/or chromatin regions in the synapsis of homologous chromosomes at meiosis.
Collapse
Affiliation(s)
| | | | | | | | - Charles I. White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France
- * E-mail:
| |
Collapse
|