51
|
Wanchao S, Chen M, Zhiguo S, Futang X, Mengmeng S. Protective effect and mechanism of Lactobacillus on cerebral ischemia reperfusion injury in rats. ACTA ACUST UNITED AC 2018; 51:e7172. [PMID: 29791585 PMCID: PMC5972019 DOI: 10.1590/1414-431x20187172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/12/2018] [Indexed: 01/14/2023]
Abstract
The present study was designed to investigate the protective effects and
mechanism of inactivated lactobacillus (ILA) on cerebral ischemia reperfusion
injury (CIRI) in rats. In this experiment, 30 male Sprague Dawley rats were
randomly divided into control group, IRI groups, and ILA group. A middle
cerebral artery occlusion and reperfusion model was prepared. The rats were
killed after 24 hours of recovery of blood flow of cerebral ischemia resulting
from 60-min occlusion. The cerebral infarction volume and neurological scores
were assayed by staining and behavioral observation. Malondialdehyde (MDA) and
superoxide dismutase (SOD) levels were assayed by biochemical kits. Cell
apoptosis was assayed by Tunnel and the Toll-like receptor (TLR)-4, IkB, and A20
were assayed by western blot. The neurobehavioral scores in IRI rats were
significantly lower compared to the control group while ILA improved the
neurobehavioral scores of the ILA groups. The cerebral infarction volume and
neural cell apoptosis of rats in the ILA groups decreased significantly compared
with those in the IRI group. In addition, MDA level in the ILA groups decreased
whereas SOD activity increased compared to the IRI group. Moreover, ILA also
inhibited the expression of TLR-4 and promoted the expression of IkB and A20.
ILA inhibited the apoptosis of neural cells, decreased cerebral infarction
volume, and reduced oxidative stress through inhibition of TLR-4/NF-kappa B
signaling, improving neurobehavioral scores. Thus from the present study it was
concluded that ILA has protective effect on CIRI.
Collapse
Affiliation(s)
- Shi Wanchao
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| | - Ma Chen
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| | - Su Zhiguo
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| | - Xie Futang
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| | - Shi Mengmeng
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| |
Collapse
|
52
|
Teixeira LD, Kling DN, Lorca GL, Gonzalez CF. Lactobacillus johnsonii N6.2 diminishes caspase-1 maturation in the gastrointestinal system of diabetes prone rats. Benef Microbes 2018; 9:527-539. [PMID: 29633641 DOI: 10.3920/bm2017.0120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cells of the gastrointestinal (GI) epithelium are the first to contact the microbiota and food components. As a direct consequence of this, these cells are the first line of defence and key players in priming the immune response. One of the first responses against GI insults is the formation of the inflammasome, a multiprotein complex assembled in response to environmental threats. The formation of the inflammasome regulates caspase-1 by cleaving it into its active form. Once activated, caspase-1 can cleave interleukin-1β (IL-1β), which promotes adaptive and humoral immunity. Some strains, like Lactobacillus johnsonii N6.2, are able to modulate the biosynthesis of important host metabolites mediating inflammation. Of these metabolites are the pro-inflammatory kynurenines. L. johnsonii N6.2 is able to downregulate kynurenines biosynthesis via a redox active mechanism negatively affecting indoleamine 2,3-dioxygenase activity. In this study, we evaluated the effects of L. johnsonii N6.2 combined with the natural antioxidant and anti-inflammatory molecule rosmarinic acid (RA). Inflammasome assembly and the kynurenine pathway were evaluated in GI samples of BioBreeding diabetes-prone (BB-DP) rats. In this work, BB-DP rats were fed daily with RA, L. johnsonii N6.2; or both combined. The transcriptional rate and proteins levels of inflammasome and kynurenine pathway components in ileum tissue were evaluated. Elevated levels of pro-caspase-1 were observed in rats fed with L. johnsonii, while RA had no effect on pro-caspase-1 expression. Western blot assays demonstrated that L. johnsonii fed rats showed lower levels of mature caspase-1, when compared to the other treatments. Furthermore, IL-1β maturation followed a similar pattern across the treatments. Differences were also observed between treatments in expression levels of key enzymes in the kynurenine pathway. These findings support the role of L. johnsonii in modulating the assembly of the inflammasome as well as some steps of the pro-inflammatory kynurenine pathway.
Collapse
Affiliation(s)
- L D Teixeira
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, Rm307, Gainesville, FL 32608, USA
| | - D N Kling
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, Rm307, Gainesville, FL 32608, USA
| | - G L Lorca
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, Rm307, Gainesville, FL 32608, USA
| | - C F Gonzalez
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, Rm307, Gainesville, FL 32608, USA
| |
Collapse
|
53
|
Llewellyn A, Foey A. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events. Nutrients 2017; 9:E1156. [PMID: 29065562 PMCID: PMC5691772 DOI: 10.3390/nu9101156] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.
Collapse
Affiliation(s)
- Amy Llewellyn
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine & Dentistry, Drake Circus, Plymouth PL4 8AA, UK.
- Menzies School of Health Research, John Mathews Building (Building 58), Royal Darwin Hospital Campus, PO Box 41096, Casuarina NT0811, Australia.
| | - Andrew Foey
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine & Dentistry, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
54
|
Zhang CN, Zhang JL, Guan WC, Zhang XF, Guan SH, Zeng QH, Cheng GF, Cui W. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var. FISH & SHELLFISH IMMUNOLOGY 2017; 68:84-91. [PMID: 28698125 DOI: 10.1016/j.fsi.2017.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to investigate effects of dietary Lactobacillus delbrueckii (L. delbrueckii) on immune response, disease resistance against Aeromonas hydrophila (A. hydrophila), antioxidant capability and growth performance of Cyprinus carpio Huanghe var. 450 fish (mean weight of 1.05 ± 0.03 g) were randomly distributed into five groups that fed diets containing different levels of L. delbrueckii (0, 1 × 105, 1 × 106, 1 × 107 and 1 × 108 CFU g-1) for 8 weeks. The results showed that intestinal immune parameters such as lysozyme, acid phosphatase, and myeloperoxidase activities, immunoglobulin M content, and the survival rate were improved in fish fed with 1 × 106 and 1 × 107 CFU g-1L. delbrueckii. In addition, 1 × 107 CFU g-1L. delbrueckii supplementation down-regulated mRNA levels of TNF-α, IL-8, IL-1β and NF-κBp65, and up-regulated IL-10 and TGF-β mRNA levels in the intestine. The survival rate was significantly (P < 0.05) higher (68.33%) in fish fed 1 × 106 CFU g-1L. delbrueckii than the control diet-fed group (40%) after challenge by A. hydrophila. Fish fed with diet containing 1 × 106 CFU g-1L. delbrueckii showed higher antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and total antioxidant capacity (T-AOC) and lower MDA concentrations than those of the control group (P < 0.05). The relative gene expression (SOD, CAT, GPX) showed the same trend with their activities. In addition, the growth performance was significantly improved in fish fed with the diet containing 1 × 106 and 1 × 107 CFU g-1L. delbrueckii (P < 0.05). These results demonstrated that dietary optimal levels of L. delbrueckii enhanced immunity, disease resistance against A. hydrophila antioxidant capability and growth performance in Cyprinus carpio Huanghe var.
Collapse
Affiliation(s)
- Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| | - Ji-Liang Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| | - Wen-Chao Guan
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Xiao-Fei Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Su-Hua Guan
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Qing-Hui Zeng
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Gao-Feng Cheng
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Wei Cui
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| |
Collapse
|
55
|
SOCS molecules: the growing players in macrophage polarization and function. Oncotarget 2017; 8:60710-60722. [PMID: 28948005 PMCID: PMC5601173 DOI: 10.18632/oncotarget.19940] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
The concept of macrophage polarization is defined in terms of macrophage phenotypic heterogeneity and functional diversity. Cytokines signals are thought to be required for the polarization of macrophage populations toward different phenotypes at different stages in development, homeostasis and disease. The suppressors of cytokine signaling family of proteins contribute to the magnitude and duration of cytokines signaling, which ultimately control the subtle adjustment of the balance between divergent macrophage phenotypes. This review highlights the specific roles and mechanisms of various cytokines family and their negative regulators link to the macrophage polarization programs. Eventually, breakthrough in the identification of these molecules will provide the novel therapeutic approaches for a host of diseases by targeting macrophage phenotypic shift.
Collapse
|
56
|
Kata D, Földesi I, Feher LZ, Hackler L, Puskas LG, Gulya K. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells. Brain Res Bull 2017; 132:61-74. [PMID: 28528204 DOI: 10.1016/j.brainresbull.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain.
Collapse
Affiliation(s)
- Diana Kata
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary.
| | | | | | | | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|