51
|
Lange S, Katayama Y, Schmid M, Burkacky O, Bruchle C, Lamb DC, Jansen RP. Simultaneous Transport of Different Localized mRNA Species Revealed by Live-Cell Imaging. Traffic 2008; 9:1256-67. [DOI: 10.1111/j.1600-0854.2008.00763.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
52
|
Shen ZJ, Esnault S, Rosenthal LA, Szakaly RJ, Sorkness RL, Westmark PR, Sandor M, Malter JS. Pin1 regulates TGF-beta1 production by activated human and murine eosinophils and contributes to allergic lung fibrosis. J Clin Invest 2008; 118:479-90. [PMID: 18188456 DOI: 10.1172/jci32789] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 10/31/2007] [Indexed: 12/21/2022] Open
Abstract
Eosinophilic inflammation is a cornerstone of chronic asthma that often culminates in subepithelial fibrosis with variable airway obstruction. Pulmonary eosinophils (Eos) are a predominant source of TGF-beta1, which drives fibroblast proliferation and extracellular matrix deposition. We investigated the regulation of TGF-beta1 and show here that the peptidyl-prolyl isomerase (PPIase) Pin1 promoted the stability of TGF-beta1 mRNA in human Eos. In addition, Pin1 regulated cytokine production by both in vitro and in vivo activated human Eos. We found that Pin1 interacted with both PKC-alpha and protein phosphatase 2A, which together control Pin1 isomerase activity. Pharmacologic blockade of Pin1 in a rat asthma model selectively reduced eosinophilic pulmonary inflammation, TGF-beta1 and collagen expression, and airway remodeling. Furthermore, chronically challenged Pin1(-/-) mice showed reduced peribronchiolar collagen deposition compared with wild-type controls. These data suggest that pharmacologic suppression of Pin1 may be a novel therapeutic option to prevent airway fibrosis in individuals with chronic asthma.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Waisman Center for Developmental Disabilities, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Beach DL, Keene JD. Ribotrap : targeted purification of RNA-specific RNPs from cell lysates through immunoaffinity precipitation to identify regulatory proteins and RNAs. Methods Mol Biol 2008; 419:69-91. [PMID: 18369976 DOI: 10.1007/978-1-59745-033-1_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many elegant methodologies have been devised to explore RNA-protein as well as RNA-RNA interactions. Although the characterization of messages targeted by a specific RNA-binding protein (RBP) has been accelerated by the application of microarray technologies, reliable methods to describe the endogenous assembly of ribonucleoproteins (RNPs) are needed. However, this approach requires the targeted purification of a select mRNA under conditions favorable for the copurification of associated factors including RNA and protein components of the RNP. This chapter describes previous methods used to characterize RNPs in the context of in vitro approaches and presents the Ribotrap methodology, an in vivo protocol for message-specific purification of a target RNP. The method was developed in a yeast model system, yet is amenable to other in vivo cell systems including mammalian cell culture.
Collapse
|
54
|
Pulcrano G, Leonardo R, Piscopo M, Nargi E, Locascio A, Aniello F, Branno M, Fucci L. PLAUF binding to the 3′UTR of the H3.3 histone transcript affects mRNA stability. Gene 2007; 406:124-33. [PMID: 17825504 DOI: 10.1016/j.gene.2007.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/30/2022]
Abstract
In P. lividus sea urchin the H3.3 histone variant is coded by an mRNA characterized by a long 3'UTR containing ARE (AU-Rich element) motifs. RNA stability assays performed in rabbit reticulocyte lysate showed that such 3'UTR affects the degradation rate of the transcripts. In fact, chimeric molecules containing the 3'UTR of H3.3 transcript, ligated to the coding region of the rabbit beta-globin transcript, were unstable whereas chimeric molecules containing mainly the coding region of the H3.3 transcript were stable as the wild-type globin mRNA. Three proteins (45kDa, 32kDa and 25kDa) that bind specifically the 3'UTR have been revealed in the whole protein extracts of embryos at different stages of development. PLAUF, a P. lividus RNA-binding protein similar to human and rodent AUF1 proteins, was identified as the 32kDa factor using anti-PLAUF antibody in Western blot and supershift mobility assays. Moreover the recombinant GST-PLAUF protein specifically binds part of the H3.3 3'UTR and in vitro affects the half-life of the transcript. In addition in situ hybridization experiments demonstrated that PLAUF and H3.3 histone mRNAs co-localize in embryos at different stages of development. In conclusion all the reported results suggest that PLAUF can bind in vivo the 3'UTR of the H3.3 histone mRNA and plays some role in the stability of the mRNA.
Collapse
Affiliation(s)
- G Pulcrano
- Department of Structural and Functional Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
55
|
PTB/hnRNP I is required for RNP remodeling during RNA localization in Xenopus oocytes. Mol Cell Biol 2007; 28:678-86. [PMID: 18039852 DOI: 10.1128/mcb.00999-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transport of specific mRNAs to defined regions within the cell cytoplasm is a fundamental mechanism for regulating cell and developmental polarity. In the Xenopus oocyte, Vg1 RNA is transported to the vegetal cytoplasm, where localized expression of the encoded protein is critical for embryonic polarity. The Vg1 localization pathway is directed by interactions between key motifs within Vg1 RNA and protein factors recognizing those RNA sequences. We have investigated how RNA-protein interactions could be modulated to trigger distinct steps in the localization pathway and found that the Vg1 RNP is remodeled during cytoplasmic RNA transport. Our results implicate two RNA-binding proteins with key roles in Vg1 RNA localization, PTB/hnRNP I and Vg1RBP/vera, in this process. We show that PTB/hnRNP I is required for remodeling of the interaction between Vg1 RNA and Vg1RBP/vera. Critically, mutations that block this remodeling event also eliminate vegetal localization of the RNA, suggesting that RNP remodeling is required for localization.
Collapse
|
56
|
Squires JE, Stoytchev I, Forry EP, Berry MJ. SBP2 binding affinity is a major determinant in differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay. Mol Cell Biol 2007; 27:7848-55. [PMID: 17846120 PMCID: PMC2169151 DOI: 10.1128/mcb.00793-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 05/30/2007] [Accepted: 08/29/2007] [Indexed: 01/23/2023] Open
Abstract
Selenoprotein mRNAs are potential targets for degradation via nonsense-mediated decay due to the presence of in-frame UGA codons that can be decoded as either selenocysteine or termination codons. When UGA decoding is inefficient, as occurs when selenium is limiting, termination occurs at these positions. Based on the predicted exon-intron structure, 14 of the 25 human selenoprotein mRNAs are predicted to be sensitive to nonsense-mediated decay. Among these, sensitivity varies widely, resulting in a hierarchy of preservation or degradation of selenoprotein mRNAs and, thus, of selenoprotein synthesis. Potential factors in dictating the hierarchy of selenoprotein synthesis are the Sec insertion sequence RNA-binding proteins, SBP2 and nucleolin. To investigate the mechanistic basis for this hierarchy and the role of these two proteins, we carried out knockdowns of SBP2 expression and assessed the effects on selenoprotein mRNA levels. We also investigated in vivo binding of selenoprotein mRNAs by SBP2 and nucleolin via immunoprecipitation of the proteins and quantitation of bound mRNAs. We report that SBP2 exhibits strong preferential binding to some selenoprotein mRNAs over others, whereas nucleolin exhibits minimal differences in binding. Thus, SBP2 is a major determinant in dictating the hierarchy of selenoprotein synthesis via differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay.
Collapse
Affiliation(s)
- Jeffrey E Squires
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | | | |
Collapse
|
57
|
Pan F, Hüttelmaier S, Singer RH, Gu W. ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during transcription. Mol Cell Biol 2007; 27:8340-51. [PMID: 17893325 PMCID: PMC2169170 DOI: 10.1128/mcb.00972-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cytoplasmic mRNA localization regulates gene expression by spatially restricting protein translation. Recent evidence has shown that nuclear proteins (such as hnRNPs) are required to form mRNPs capable of cytoplasmic localization. ZBP1 and ZBP2, two hnRNP K homology domain-containing proteins, were previously identified by their binding to the zipcode, the sequence element necessary and sufficient for beta-actin mRNA localization. ZBP1 colocalizes with nascent beta-actin mRNA in the nucleus but is predominantly a cytoplasmic protein. ZBP2, in contrast, is predominantly nuclear. We hypothesized that the two proteins cooperate to localize beta-actin mRNA and sought to address where and how this might occur. We demonstrate that ZBP2, a homologue of the splicing factor KSRP, binds initially to nascent beta-actin transcripts and facilitates the subsequent binding of the shuttling ZBP1. ZBP1 then associates with the RNA throughout the nuclear export and cytoplasmic localization process.
Collapse
Affiliation(s)
- Feng Pan
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
58
|
Oberman F, Rand K, Maizels Y, Rubinstein AM, Yisraeli JK. VICKZ proteins mediate cell migration via their RNA binding activity. RNA (NEW YORK, N.Y.) 2007; 13:1558-69. [PMID: 17652133 PMCID: PMC1950752 DOI: 10.1261/rna.559507] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The highly conserved, RNA binding VICKZ proteins help regulate RNA localization, stability, and translation in many eukaryotes. These proteins are also required for cell migration in embryos and cultured cells. In adults, many tumors overexpress VICKZ homologs, and it has been hypothesized that the proteins can mediate cell motility and invasion. How these proteins facilitate cell movement and, in particular, whether their ability to bind RNA plays a role in their function remain unclear. Using HPLC and mass spectrometry to identify a region of Xenopus Vg1 RBP (xVICKZ3) that binds the vegetal localization element of Vg1 RNA, we generated a deletion construct that functions in a dominant-negative manner. The construct associates with full-length xVICKZ3 and severely reduces binding to target RNAs. This dominant-negative construct phenocopies the effect of down-regulating xVICKZ3 in Xenopus embryos. A corresponding deletion in the human homolog hVICKZ1 similarly functions in a dominant-negative fashion to reduce the ability of full-length hVICKZ protein to bind RNA. Expression of the dominant-negative construct in human carcinoma cells inhibits cell movement by several criteria. We conclude that the ability of VICKZ proteins to mediate cell migration, in vitro and in vivo, requires their RNA binding activity.
Collapse
Affiliation(s)
- Froma Oberman
- Department of Anatomy and Cell Biology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
59
|
Abstract
Vg 1 RNA becomes localized at the vegetal cortex of Xenopus oocytes in a process requiring both intact microtubules (MT) and microfilaments. This localization occurs during a narrow window of oogenesis, when a number of RNA-binding proteins associate with the RNA. xVICKZ3 (Vg1 RBP/Vera), the first Vg1 RNA-binding protein identified, helps mediate the association of Vg1 RNA with MT and is co-localized with the RNA at the vegetal cortex. Given the complexity of the Vg1 RNA ribonucleoprotein (RNP) complex, it has remained unclear how xVICKZ3 functions in Vg1 RNA localization. Here, we have taken a closer look at the process of xVICKZ3 localization in oocytes. We have made use of deletion constructs to perform a structure-function analysis of xVICKZ3. The ability of xVICKZ3-GFP constructs to vegetally localize correlates with their association to MT but not with Vg1 RNA-binding ability. We find that when the ability of xVICKZ3 to bind Vg1 RNA is inhibited by the injection of a construct that dominantly inhibits RNA binding, both the construct and Vg1 RNA still localize, apparently through their continued association with a Vg1 RNA-containing RNP complex. These results emphasize the importance of protein-protein interactions in both xVICKZ3 and Vg1 RNA localization.
Collapse
Affiliation(s)
- Kinneret Rand
- Hebrew University, Hadassah Medical School, Institute for Medical Research, Department of Anatomy and Cell Biology, Jerusalem, Israel
| | | |
Collapse
|
60
|
Hogg JR, Collins K. RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA (NEW YORK, N.Y.) 2007; 13:868-80. [PMID: 17456562 PMCID: PMC1869041 DOI: 10.1261/rna.565207] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent studies have uncovered an unanticipated diversity of noncoding RNAs (ncRNAs), although these studies provide limited insight into their biological significance. Numerous general methods for identification and characterization of protein interactions have been developed, but similar approaches for characterizing cellular ncRNA interactions are lacking. Here we describe RNA Affinity in Tandem (RAT), an original, entirely RNA tag-based method for affinity purification of endogenously assembled RNP complexes. We demonstrate the general utility of RAT by isolating RNPs assembled in vivo on ncRNAs transcribed by RNA polymerase II or III. Using RAT in conjunction with protein identification by mass spectrometry and protein-RNA interaction assays, we define and characterize previously unanticipated protein subunits of endogenously assembled human 7SK RNPs. We show that 7SK RNA resides in a mixed population of RNPs with different protein compositions and responses to cellular stress. Depletion of a newly identified 7SK RNP component, hnRNP K, alters the partitioning of 7SK RNA among distinct RNPs. Our results establish the utility of a generalizable RNA-based RNP affinity purification method and provide insight into 7SK RNP dynamics.
Collapse
Affiliation(s)
- J Robert Hogg
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
61
|
Abstract
The localisation of transcripts to specific regions of the cell probably occurs in all cell types and has many distinct functions that go from the control of body axis formation to learning and memory. mRNAs can be localised by a variety of mechanisms including local protection from degradation, diffusion to a localised anchor, and active transport by motor proteins along the cytoskeleton. In this review, I consider the evidence for each of these mechanisms using a limited, but illustrative, number of examples of localised mRNAs.
Collapse
Affiliation(s)
- Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street CB2 3EJ, United Kingdom.
| |
Collapse
|
62
|
Abstract
Cytoplasmic RNA localization is a means to create polarity by restricting protein expression to a discrete subcellular location. RNA localization is a multistep process that begins with the recognition of cis-acting sequences within the RNA by specific trans-factors, and RNAs are localized in ribonucleoprotein (RNP) complexes that contain both the RNA and numerous protein components. Components of the localization machinery transport the RNP complex, usually in a translationally repressed state, to a distinct subcellular region, resulting in spatially restricted gene expression. Recent efforts to identify both the cis- and trans-factors required for RNA localization have elucidated RNA-protein interactions that are remodeled during localization.
Collapse
Affiliation(s)
- Raymond A Lewis
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
63
|
Nousch M, Reed V, Bryson-Richardson RJ, Currie PD, Preiss T. The eIF4G-homolog p97 can activate translation independent of caspase cleavage. RNA (NEW YORK, N.Y.) 2007; 13:374-84. [PMID: 17237356 PMCID: PMC1800516 DOI: 10.1261/rna.372307] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The eukaryotic initiation factor (eIF) 4G family plays a central role during translation initiation, bridging between the 5' and 3' ends of the mRNA via its N-terminal third while recruiting other factors and ribosomes through its central and C-terminal third. The protein p97/NAT1/DAP5 is homologous to the central and C-terminal thirds of eIF4G. p97 has long been considered to be a translational repressor under normal cellular conditions. Further, caspase cleavage liberates a p86 fragment that is thought to mediate cap-independent translation in apoptotic cells. We report here that, surprisingly, human p97 is polysome associated in proliferating cells and moves to stress granules in stressed, nonapoptotic cells. Tethered-function studies in living cells show that human p97 and p86 both can activate translation; however, we were unable to detect polysome association of p86 in apoptotic cells. We further characterized the zebrafish orthologs of p97, and found both to be expressed throughout embryonic development. Their simultaneous knockdown by morpholino injection led to impaired mesoderm formation and early embryonic lethality, indicating conservation of embryonic p97 function from fish to mammals. These data indicate that full-length p97 is a translational activator with essential role(s) in unstressed cells, suggesting a reassessment of current models of p97 function.
Collapse
Affiliation(s)
- Marco Nousch
- Molecular Genetics Program, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
64
|
Czaplinski K, Singer RH. Pathways for mRNA localization in the cytoplasm. Trends Biochem Sci 2006; 31:687-93. [PMID: 17084632 DOI: 10.1016/j.tibs.2006.10.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 09/12/2006] [Accepted: 10/20/2006] [Indexed: 11/22/2022]
Abstract
Studies of the intracellular localization of mRNA have clearly demonstrated that certain subsets of mRNA are concentrated in discrete locations within the cytoplasm. Localization is one aspect of the post-transcriptional control of gene expression, and is intertwined with the translation and turnover of mRNA to achieve the goal of local protein production. Different mechanisms have been identified that enable localized mRNAs to target different subcellular compartments, and recent advances in understanding these pathways is reviewed here.
Collapse
Affiliation(s)
- Kevin Czaplinski
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461718-430-8646, USA
| | | |
Collapse
|
65
|
Yamada L. Embryonic expression profiles and conserved localization mechanisms of pem/postplasmic mRNAs of two species of ascidian, Ciona intestinalis and Ciona savignyi. Dev Biol 2006; 296:524-36. [PMID: 16797000 DOI: 10.1016/j.ydbio.2006.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/12/2006] [Accepted: 05/13/2006] [Indexed: 11/17/2022]
Abstract
In many animals, the first cue for development is transcripts and/or proteins that are provided maternally and are localized at specific regions of fertilized eggs and early embryos. The ascidian is known to exhibit a mosaic mode of development, which is largely dependent on localized maternal factors. In early Ciona intestinalis embryos, the posterior-most localization appears to be the major specialized pattern of maternal transcripts. The present study examined the temporal and spatial expression pattern of 40 genes known as pem/postplasmic genes, for which maternal mRNAs are localized at the posterior-most region during early Ciona embryogenesis. Ten of these genes showed redistribution to B8.12-line cells, which are known to give rise to germ cells in ascidians. In addition 23 orthologues were newly identified in a related ascidian species, Ciona savignyi, and 16 of them showed the mRNA localization pattern at the posterior-most region. Furthermore, the localized pattern of exogenous mRNA, which comprised the 3' UTR of C. intestinalis pem/postplasmic genes conjugated with the LacZ ORF, showed the localization at the posterior-most region in C. savignyi embryos. Likewise, the 3' UTR of C. savignyi pem/postplasmic genes conjugated with the LacZ ORF showed localization at the posterior most region in C. intestinalis embryos, suggesting that localization mechanisms are conserved between the two species. The present study therefore provides basic information for future functional analyses of these pem/postplasmic genes and for exploring the mechanisms of localization of mRNAs.
Collapse
Affiliation(s)
- Lixy Yamada
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
66
|
Munro TP, Kwon S, Schnapp BJ, St Johnston D. A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP. ACTA ACUST UNITED AC 2006; 172:577-88. [PMID: 16476777 PMCID: PMC2063677 DOI: 10.1083/jcb.200510044] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Zip code–binding protein 1 (ZBP-1) and its Xenopus laevis homologue, Vg1 RNA and endoplasmic reticulum–associated protein (VERA)/Vg1 RNA-binding protein (RBP), bind repeated motifs in the 3′ untranslated regions (UTRs) of localized mRNAs. Although these motifs are required for RNA localization, the necessity of ZBP-1/VERA remains unresolved. We address the role of ZBP-1/VERA through analysis of the Drosophila melanogaster homologue insulin growth factor II mRNA–binding protein (IMP). Using systematic evolution of ligands by exponential enrichment, we identified the IMP-binding element (IBE) UUUAY, a motif that occurs 13 times in the oskar 3′UTR. IMP colocalizes with oskar mRNA at the oocyte posterior, and this depends on the IBEs. Furthermore, mutation of all, or subsets of, the IBEs prevents oskar mRNA translation and anchoring at the posterior. However, oocytes lacking IMP localize and translate oskar mRNA normally, illustrating that one cannot necessarily infer the function of an RBP from mutations in its binding sites. Thus, the translational activation of oskar mRNA must depend on the binding of another factor to the IBEs, and IMP may serve a different purpose, such as masking IBEs in RNAs where they occur by chance. Our findings establish a parallel requirement for IBEs in the regulation of localized maternal mRNAs in D. melanogaster and X. laevis.
Collapse
Affiliation(s)
- Trent P Munro
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QR, England, UK
| | | | | | | |
Collapse
|
67
|
Duncan K, Grskovic M, Strein C, Beckmann K, Niggeweg R, Abaza I, Gebauer F, Wilm M, Hentze MW. Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3' UTR: translational repression for dosage compensation. Genes Dev 2006; 20:368-79. [PMID: 16452508 PMCID: PMC1361707 DOI: 10.1101/gad.371406] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MSL-2 (male-specific lethal 2) is the limiting component of the Drosophila dosage compensation complex (DCC) that specifically increases transcription from the male X chromosome. Ectopic expression of MSL-2 protein in females causes DCC assembly on both X chromosomes and lethality. Inhibition of MSL-2 synthesis requires the female-specific protein sex-lethal (SXL), which binds to the msl-2 mRNA 5' and 3' untranslated regions (UTRs) and blocks translation through distinct UTR-specific mechanisms. Here, we purify translationally silenced msl-2 mRNPs and identify UNR (upstream of N-ras) as a protein recruited to the 3' UTR by SXL. We demonstrate that SXL requires UNR as a corepressor for 3'-UTR-mediated regulation, imparting a female-specific function to the ubiquitously expressed UNR protein. Our results reveal a novel functional role for UNR as a translational repressor and indicate that UNR is a key component of a "fail-safe" dosage compensation regulatory system that prevents toxic MSL-2 synthesis in female cells.
Collapse
Affiliation(s)
- Kent Duncan
- Gene Expression Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Chekulaeva M, Hentze MW, Ephrussi A. Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles. Cell 2006; 124:521-33. [PMID: 16469699 DOI: 10.1016/j.cell.2006.01.031] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 09/30/2005] [Accepted: 01/25/2006] [Indexed: 11/17/2022]
Abstract
Prior to reaching the posterior pole of the Drosophila oocyte, oskar mRNA is translationally silenced by Bruno binding to BREs in the 3' untranslated region. The eIF4E binding protein Cup interacts with Bruno and inhibits oskar translation. Validating current models, we directly demonstrate the mechanism proposed for Cup-mediated repression: inhibition of small ribosomal subunit recruitment to oskar mRNA. However, 43S complex recruitment remains inhibited in the absence of functional Cup, uncovering a second Bruno-dependent silencing mechanism. This mechanism involves mRNA oligomerization and formation of large (50S-80S) silencing particles that cannot be accessed by ribosomes. Bruno-dependent mRNA oligomerization into silencing particles emerges as a mode of translational control that may be particularly suited to coupling with mRNA transport.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
69
|
Shyu AB. UNRaveling the regulation of dosage compensation. Nat Struct Mol Biol 2006; 13:189-90. [PMID: 16518386 DOI: 10.1038/nsmb0306-189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
70
|
Czaplinski K, Mattaj IW. 40LoVe interacts with Vg1RBP/Vera and hnRNP I in binding the Vg1-localization element. RNA (NEW YORK, N.Y.) 2006; 12:213-22. [PMID: 16373488 PMCID: PMC1370901 DOI: 10.1261/rna.2820106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Localizing mRNAs within the cytoplasm gives cells the ability to spatially restrict protein production, a powerful means to regulate gene expression. Localized mRNA is often visible in microscopically observable particles or granules, and the association of mRNA localization with these structures is an indication that particles or granules may be essential to the localization process. Understanding how such structures form will therefore be important for understanding the function of localization RNPs (L-RNPs). We previously identified a novel component of an L-RNP from the Vg1 mRNA from Xenopus oocytes called 40LoVe. 40LoVe interaction with the Vg1-localization element (Vg1LE) was previously shown to be dependent on the VM1 and E2 sequence motifs within the Vg1LE that cross-link to hnRNP I and Vg1RBP/Vera, respectively. We report interaction of these motif-binding proteins with 40LoVe and identify a 40LoVe-Xenopus hnRNP D/AUF1 interaction. We further demonstrate that titration of VM1 and E2 motif binding activity in vivo surprisingly suggests that the motif binding proteins have differing roles during Vg1LE-dependent mRNA localization.
Collapse
|
71
|
|
72
|
Abstract
mRNA localization is a common mechanism for targeting proteins to regions of the cell where they are required. It has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion and allowing the local control of protein synthesis in neurons. New methods for in vivo labelling have revealed that several mRNAs are transported by motor proteins, but how most mRNAs are coupled to these proteins remains obscure.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|