51
|
Niepielko MG, Ip K, Kanodia JS, Lun DS, Yakoby N. Evolution of BMP signaling in Drosophila oogenesis: a receptor-based mechanism. Biophys J 2012; 102:1722-30. [PMID: 22768927 DOI: 10.1016/j.bpj.2012.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 01/22/2023] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway is a conserved regulator of cellular and developmental processes in animals. The mechanisms underlying BMP signaling activation differ among tissues and mostly reflect changes in the expression of pathway components. BMP signaling is one of the major pathways responsible for the patterning of the Drosophila eggshell, a complex structure derived from a layer of follicle cells (FCs) surrounding the developing oocyte. Activation of BMP signaling in the FCs is dynamic. Initially, signaling is along the anterior-posterior (A/P) axis; later, signaling acquires dorsal-ventral (D/V) polarity. These dynamics are regulated by changes in the expression pattern of the type I BMP receptor thickveins (tkv). We recently found that signaling dynamics and TKV patterning are highly correlated in the FCs of multiple Drosophila species. In addition, we showed that signaling patterns are spatially different among species. Here, we use a mathematical model to simulate the dynamics and differences of BMP signaling in numerous species. This model predicts that qualitative and quantitative changes in receptor expression can lead to differences in the spatial pattern of BMP signaling. We tested these predications experimentally in three different Drosophila species and through genetic perturbations of BMP signaling in D. melanogaster. On the basis of our results, we concluded that changes in tkv patterning can account for the experimentally observed differences in the patterns of BMP signaling in multiple Drosophila species.
Collapse
|
52
|
Rafiqi AM, Park CH, Kwan CW, Lemke S, Schmidt-Ott U. BMP-dependent serosa and amnion specification in the scuttle fly Megaselia abdita. Development 2012; 139:3373-82. [DOI: 10.1242/dev.083873] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is an essential factor in dorsoventral patterning of animal embryos but how BMP signaling evolved with fundamental changes in dorsoventral tissue differentiation is unclear. Flies experienced an evolutionary reduction of extra-embryonic tissue types from two (amniotic and serosal tissue) to one (amnionserosal tissue). BMP-dependent amnioserosa specification has been studied in Drosophila melanogaster. However, the mechanisms of serosal and amniotic tissue specification in less diverged flies remain unknown. To better understand potential evolutionary links between BMP signaling and extra-embryonic tissue specification, we examined the activity profile and function of BMP signaling in serosa and amnion patterning of the scuttle fly Megaselia abdita (Phoridae) and compared the BMP activity profiles between M. abdita and D. melanogaster. In blastoderm embryos of both species, BMP activity peaked at the dorsal midline. However, at the beginning of gastrulation, peak BMP activity in M. abdita shifted towards prospective amnion tissue. This transition correlated with the first signs of amnion differentiation laterally adjacent to the serosa anlage. Marker-assisted analysis of six BMP signaling components (dpp, gbb, scw, tkv, sax, sog) by RNA interference revealed that both serosa and amnion specification of M. abdita are dependent on BMP activity. Conversely, BMP gain-of-function experiments caused sharpened expression boundaries of extra-embryonic target genes indicative of positive feedback. We propose that changes in the BMP activity profile at the beginning of gastrulation might have contributed to the reduction of extra-embryonic tissue types during the radiation of cyclorrhaphan flies.
Collapse
Affiliation(s)
- Ab. Matteen Rafiqi
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 1061C, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Chee-Hyurng Park
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 1061C, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Chun Wai Kwan
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 1061C, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Steffen Lemke
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 1061C, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Urs Schmidt-Ott
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 1061C, 920 E. 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
53
|
Araujo H, Fontenele MR, da Fonseca RN. Position matters: variability in the spatial pattern of BMP modulators generates functional diversity. Genesis 2012; 49:698-718. [PMID: 21671348 DOI: 10.1002/dvg.20778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) perform a variety of functions during development. Considering a single BMP, what enables its multiple roles in tissues of varied sizes and shapes? What regulates the spatial distribution and activity patterns of the BMP in these different developmental contexts? Some BMP functions require controlling spread of the BMP morphogen, while others require formation of localized, high concentration peaks of BMP activity. Here we review work in Drosophila that describes spatial regulation of the BMP encoded by decapentaplegic (dpp) in different developmental contexts. We concentrate on extracellular modulation of BMP function and discuss the mechanisms that generate concentrated peaks of Dpp activity, subdivide territories of different activity levels or regulate spread of the Dpp morphogen from a point source. We compare these findings with data from vertebrates and non-model organisms to discuss how changes in the regulation of Dpp distribution by extracellular modulators may lead to variability in dpp function in different species.
Collapse
Affiliation(s)
- Helena Araujo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
54
|
Cai AQ, Radtke K, Linville A, Lander AD, Nie Q, Schilling TF. Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish. Development 2012; 139:2150-5. [PMID: 22619388 DOI: 10.1242/dev.077065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vitamin A derivative retinoic acid (RA) is a morphogen that patterns the anterior-posterior axis of the vertebrate hindbrain. Cellular retinoic acid-binding proteins (Crabps) transport RA within cells to both its nuclear receptors (RARs) and degrading enzymes (Cyp26s). However, mice lacking Crabps are viable, suggesting that Crabp functions are redundant with those of other fatty acid-binding proteins. Here we show that Crabps in zebrafish are essential for posterior patterning of the hindbrain and that they provide a key feedback mechanism that makes signaling robust as they are able to compensate for changes in RA production. Of the four zebrafish Crabps, Crabp2a is uniquely RA inducible and depletion or overexpression of Crabp2a makes embryos hypersensitive to exogenous RA. Computational models confirm that Crabp2a improves robustness within a narrow concentration range that optimizes a 'robustness index', integrating spatial information along the RA morphogen gradient. Exploration of signaling parameters in our models suggests that the ability of Crabp2a to transport RA to Cyp26 enzymes for degradation is a major factor in promoting robustness. These results demonstrate a previously unrecognized requirement for Crabps in RA signaling and hindbrain development, as well as a novel mechanism for stabilizing morphogen gradients despite genetic or environmental fluctuations in morphogen availability.
Collapse
Affiliation(s)
- Anna Q Cai
- Department of Mathematics, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
55
|
Kenny AP, Rankin SA, Allbee AW, Prewitt AR, Zhang Z, Tabangin ME, Shifley ET, Louza MP, Zorn AM. Sizzled-tolloid interactions maintain foregut progenitors by regulating fibronectin-dependent BMP signaling. Dev Cell 2012; 23:292-304. [PMID: 22863744 DOI: 10.1016/j.devcel.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 04/03/2012] [Accepted: 07/03/2012] [Indexed: 12/28/2022]
Abstract
The liver, pancreas, and lungs are induced from endoderm progenitors by a series of dynamic growth factor signals from the mesoderm, but how the temporal-spatial activity of these signals is controlled is poorly understood. We have identified an extracellular regulatory loop required for robust bone morphogenetic protein (BMP) signaling in the Xenopus foregut. We show that BMP signaling is required to maintain foregut progenitors and induce expression of the secreted frizzled related protein Sizzled (Szl) and the extracellular metalloprotease Tolloid-like 1 (Tll1). Szl negatively regulates Tll activity to control deposition of a fibronectin (FN) matrix between the mesoderm and endoderm, which is required to maintain BMP signaling. Foregut-specific Szl depletion results in a loss of the FN matrix and failure to maintain robust pSmad1 levels, causing a loss of foregut gene expression and organ agenesis. These results have implications for BMP signaling in diverse contexts and the differentiation of foregut tissue from stem cells.
Collapse
Affiliation(s)
- Alan P Kenny
- Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Multistep molecular mechanism for bone morphogenetic protein extracellular transport in the Drosophila embryo. Proc Natl Acad Sci U S A 2012; 109:11222-7. [PMID: 22733779 DOI: 10.1073/pnas.1202781109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the Drosophila embryo, formation of a bone morphogenetic protein (BMP) morphogen gradient requires transport of a heterodimer of the BMPs Decapentaplegic (Dpp) and Screw (Scw) in a protein shuttling complex. Although the core components of the shuttling complex--Short Gastrulation (Sog) and Twisted Gastrulation (Tsg)--have been identified, key aspects of this shuttling system remain mechanistically unresolved. Recently, we discovered that the extracellular matrix protein collagen IV is important for BMP gradient formation. Here, we formulate a molecular mechanism of BMP shuttling that is catalyzed by collagen IV. We show that Dpp is the only BMP ligand in Drosophila that binds collagen IV. A collagen IV binding-deficient Dpp mutant signals at longer range in vivo, indicating that collagen IV functions to immobilize free Dpp in the embryo. We also provide in vivo evidence that collagen IV functions as a scaffold to promote shuttling complex assembly in a multistep process. After binding of Dpp/Scw and Sog to collagen IV, protein interactions are remodeled, generating an intermediate complex in which Dpp/Scw-Sog is poised for release by Tsg through specific disruption of a collagen IV-Sog interaction. Because all components are evolutionarily conserved, we propose that regulation of BMP shuttling and immobilization through extracellular matrix interactions is widely used, both during development and in tissue homeostasis, to achieve a precise extracellular BMP distribution.
Collapse
|
57
|
Shvartsman SY, Baker RE. Mathematical models of morphogen gradients and their effects on gene expression. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:715-30. [DOI: 10.1002/wdev.55] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
58
|
Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 2012; 336:721-4. [PMID: 22499809 DOI: 10.1126/science.1221920] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological systems involving short-range activators and long-range inhibitors can generate complex patterns. Reaction-diffusion models postulate that differences in signaling range are caused by differential diffusivity of inhibitor and activator. Other models suggest that differential clearance underlies different signaling ranges. To test these models, we measured the biophysical properties of the Nodal/Lefty activator/inhibitor system during zebrafish embryogenesis. Analysis of Nodal and Lefty gradients revealed that Nodals have a shorter range than Lefty proteins. Pulse-labeling analysis indicated that Nodals and Leftys have similar clearance kinetics, whereas fluorescence recovery assays revealed that Leftys have a higher effective diffusion coefficient than Nodals. These results indicate that differential diffusivity is the major determinant of the differences in Nodal/Lefty range and provide biophysical support for reaction-diffusion models of activator/inhibitor-mediated patterning.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
59
|
BMP signaling in wing development: A critical perspective on quantitative image analysis. FEBS Lett 2012; 586:1942-52. [PMID: 22710168 DOI: 10.1016/j.febslet.2012.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 11/21/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are critical for pattern formation in many animals. In numerous tissues, BMPs become distributed in spatially non-uniform profiles. The gradients of signaling activity can be detected by a number of biological assays involving fluorescence microscopy. Quantitative analyses of BMP gradients are powerful tools to investigate the regulation of BMP signaling pathways during development. These approaches rely heavily on images as spatial representations of BMP activity levels, using them to infer signaling distributions that inform on regulatory mechanisms. In this perspective, we discuss current imaging assays and normalization methods used to quantify BMP activity profiles with a focus on the Drosophila wing primordium. We find that normalization tends to lower the number of samples required to establish statistical significance between profiles in controls and experiments, but the increased resolvability comes with a cost. Each normalization strategy makes implicit assumptions about the biology that impacts our interpretation of the data. We examine the tradeoffs for normalizing versus not normalizing, and discuss their impacts on experimental design and the interpretation of resultant data.
Collapse
|
60
|
Stem cell niche dynamics: from homeostasis to carcinogenesis. Stem Cells Int 2012; 2012:367567. [PMID: 22448171 PMCID: PMC3289927 DOI: 10.1155/2012/367567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/23/2011] [Indexed: 11/17/2022] Open
Abstract
The stem cell microenvironment is involved in regulating the fate of the stem cell with respect to self-renewal, quiescence, and differentiation. Mathematical models are helpful in understanding how key pathways regulate the dynamics of stem cell maintenance and homeostasis. This tight regulation and maintenance of stem cell number is thought to break down during carcinogenesis. As a result, the stem cell niche has become a novel target of cancer therapeutics. Developing a quantitative understanding of the regulatory pathways that guide stem cell behavior will be vital to understanding how these systems change under conditions of stress, inflammation, and cancer initiation. Predictions from mathematical modeling can be used as a clinical tool to guide therapy design. We present a survey of mathematical models used to study stem cell population dynamics and stem cell niche regulation, both in the hematopoietic system and other tissues. Highlighting the quantitative aspects of stem cell biology, we describe compelling questions that can be addressed with modeling. Finally, we discuss experimental systems, most notably Drosophila, that can best be used to validate mathematical predictions.
Collapse
|
61
|
Raftery LA, Umulis DM. Regulation of BMP activity and range in Drosophila wing development. Curr Opin Cell Biol 2011; 24:158-65. [PMID: 22152945 DOI: 10.1016/j.ceb.2011.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023]
Abstract
Bone morphogenetic protein (BMP) signaling controls development and maintenance of many tissues. Genetic and quantitative approaches in Drosophila reveal that ligand isoforms show distinct function in wing development. Spatiotemporal control of BMP patterning depends on a network of extracellular proteins Pent, Ltl and Dally that regulate BMP signaling strength and morphogen range. BMP-mediated feedback regulation of Pent, Ltl, and Dally expression provides a system where cells actively respond to, and modify, the extracellular morphogen landscape to form a gradient that exhibits remarkable properties, including proportional scaling of BMP patterning with tissue size and the modulation of uniform tissue growth. This system provides valuable insights into mechanisms that mitigate the influence of variability to regulate cell-cell interactions and maintain organ function.
Collapse
Affiliation(s)
- Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA.
| | | |
Collapse
|
62
|
Roth S. Mathematics and biology: a Kantian view on the history of pattern formation theory. Dev Genes Evol 2011; 221:255-79. [PMID: 22086125 PMCID: PMC3234355 DOI: 10.1007/s00427-011-0378-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/19/2011] [Indexed: 12/20/2022]
Abstract
Driesch's statement, made around 1900, that the physics and chemistry of his day were unable to explain self-regulation during embryogenesis was correct and could be extended until the year 1972. The emergence of theories of self-organisation required progress in several areas including chemistry, physics, computing and cybernetics. Two parallel lines of development can be distinguished which both culminated in the early 1970s. Firstly, physicochemical theories of self-organisation arose from theoretical (Lotka 1910-1920) and experimental work (Bray 1920; Belousov 1951) on chemical oscillations. However, this research area gained broader acceptance only after thermodynamics was extended to systems far from equilibrium (1922-1967) and the mechanism of the prime example for a chemical oscillator, the Belousov-Zhabotinski reaction, was deciphered in the early 1970s. Secondly, biological theories of self-organisation were rooted in the intellectual environment of artificial intelligence and cybernetics. Turing wrote his The chemical basis of morphogenesis (1952) after working on the construction of one of the first electronic computers. Likewise, Gierer and Meinhardt's theory of local activation and lateral inhibition (1972) was influenced by ideas from cybernetics. The Gierer-Meinhardt theory provided an explanation for the first time of both spontaneous formation of spatial order and of self-regulation that proved to be extremely successful in elucidating a wide range of patterning processes. With the advent of developmental genetics in the 1980s, detailed molecular and functional data became available for complex developmental processes, allowing a new generation of data-driven theoretical approaches. Three examples of such approaches will be discussed. The successes and limitations of mathematical pattern formation theory throughout its history suggest a picture of the organism, which has structural similarity to views of the organic world held by the philosopher Immanuel Kant at the end of the eighteenth century.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Developmental Biology, University of Cologne, Biowissenschaftliches Zentrum, Zülpicher Strasse 47b, 50674 Cologne, Germany.
| |
Collapse
|
63
|
Hengenius JB, Gribskov M, Rundell AE, Fowlkes CC, Umulis DM. Analysis of gap gene regulation in a 3D organism-scale model of the Drosophila melanogaster embryo. PLoS One 2011; 6:e26797. [PMID: 22110594 PMCID: PMC3217930 DOI: 10.1371/journal.pone.0026797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/04/2011] [Indexed: 01/30/2023] Open
Abstract
The axial bodyplan of Drosophila melanogaster is determined during a process called morphogenesis. Shortly after fertilization, maternal bicoid mRNA is translated into Bicoid (Bcd). This protein establishes a spatially graded morphogen distribution along the anterior-posterior (AP) axis of the embryo. Bcd initiates AP axis determination by triggering expression of gap genes that subsequently regulate each other's expression to form a precisely controlled spatial distribution of gene products. Reaction-diffusion models of gap gene expression on a 1D domain have previously been used to infer complex genetic regulatory network (GRN) interactions by optimizing model parameters with respect to 1D gap gene expression data. Here we construct a finite element reaction-diffusion model with a realistic 3D geometry fit to full 3D gap gene expression data. Though gap gene products exhibit dorsal-ventral asymmetries, we discover that previously inferred gap GRNs yield qualitatively correct AP distributions on the 3D domain only when DV-symmetric initial conditions are employed. Model patterning loses qualitative agreement with experimental data when we incorporate a realistic DV-asymmetric distribution of Bcd. Further, we find that geometry alone is insufficient to account for DV-asymmetries in the final gap gene distribution. Additional GRN optimization confirms that the 3D model remains sensitive to GRN parameter perturbations. Finally, we find that incorporation of 3D data in simulation and optimization does not constrain the search space or improve optimization results.
Collapse
Affiliation(s)
- James B. Hengenius
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Ann E. Rundell
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Charless C. Fowlkes
- Department of Computer Science, University of California Irvine, Irvine, California, United States of America
| | - David M. Umulis
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
64
|
Whole-embryo modeling of early segmentation in Drosophila identifies robust and fragile expression domains. Biophys J 2011; 101:287-96. [PMID: 21767480 DOI: 10.1016/j.bpj.2011.05.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/03/2011] [Accepted: 05/19/2011] [Indexed: 11/24/2022] Open
Abstract
Segmentation of the Drosophila melanogaster embryo results from the dynamic establishment of spatial mRNA and protein patterns. Here, we exploit recent temporal mRNA and protein expression measurements on the full surface of the blastoderm to calibrate a dynamical model of the gap gene network on the entire embryo cortex. We model the early mRNA and protein dynamics of the gap genes hunchback, Kruppel, giant, and knirps, taking as regulatory inputs the maternal Bicoid and Caudal gradients, plus the zygotic Tailless and Huckebein proteins. The model captures the expression patterns faithfully, and its predictions are assessed from gap gene mutants. The inferred network shows an architecture based on reciprocal repression between gap genes that can stably pattern the embryo on a realistic geometry but requires complex regulations such as those involving the Hunchback monomer and dimers. Sensitivity analysis identifies the posterior domain of giant as among the most fragile features of an otherwise robust network, and hints at redundant regulations by Bicoid and Hunchback, possibly reflecting recent evolutionary changes in the gap-gene network in insects.
Collapse
|
65
|
Kanodia JS, Kim Y, Tomer R, Khan Z, Chung K, Storey JD, Lu H, Keller PJ, Shvartsman SY. A computational statistics approach for estimating the spatial range of morphogen gradients. Development 2011; 138:4867-74. [PMID: 22007136 DOI: 10.1242/dev.071571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo.
Collapse
Affiliation(s)
- Jitendra S Kanodia
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Peluso CE, Umulis D, Kim YJ, O'Connor MB, Serpe M. Shaping BMP morphogen gradients through enzyme-substrate interactions. Dev Cell 2011; 21:375-83. [PMID: 21839924 DOI: 10.1016/j.devcel.2011.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 05/12/2011] [Accepted: 06/17/2011] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate dorsal/ventral (D/V) patterning across the animal kingdom; however, the biochemical properties of certain pathway components can vary according to species-specific developmental requirements. For example, Tolloid (Tld)-like metalloproteases cleave vertebrate BMP-binding proteins called Chordins constitutively, while the Drosophila Chordin ortholog, Short gastrulation (Sog), is only cleaved efficiently when bound to BMPs. We identified Sog characteristics responsible for making its cleavage dependent on BMP binding. "Chordin-like" variants that are processed independently of BMPs changed the steep BMP gradient found in Drosophila embryos to a shallower profile, analogous to that observed in some vertebrate embryos. This change ultimately affected cell fate allocation and tissue size and resulted in increased variability of patterning. Thus, the acquisition of BMP-dependent Sog processing during evolution appears to facilitate long-range ligand diffusion and formation of a robust morphogen gradient, enabling the bistable BMP signaling outputs required for early Drosophila patterning.
Collapse
Affiliation(s)
- Carolyn E Peluso
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
67
|
Plouhinec JL, Zakin L, De Robertis EM. Systems control of BMP morphogen flow in vertebrate embryos. Curr Opin Genet Dev 2011; 21:696-703. [PMID: 21937218 DOI: 10.1016/j.gde.2011.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/04/2011] [Indexed: 02/04/2023]
Abstract
Embryonic morphogenetic programs coordinate cell behavior to ensure robust pattern formation. Having identified components of those programs by molecular genetics, developmental biology is now borrowing concepts and tools from systems biology to decode their regulatory logic. Dorsal-ventral (D-V) patterning of the frog gastrula by Bone Morphogenetic Proteins (BMPs) is one of the best studied examples of a self-regulating embryonic patterning system. Embryological analyses and mathematical modeling are revealing that the BMP activity gradient is maintained by a directed flow of BMP ligands towards the ventral side. Pattern robustness is ensured through feedback control of the levels of extracellular BMP pathway modulators that adjust the flow to the dimensions of the embryonic field.
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
68
|
Abstract
Morphogens are long-range signaling molecules that pattern developing tissues in a concentration-dependent manner. The graded activity of morphogens within tissues exposes cells to different signal levels and leads to region-specific transcriptional responses and cell fates. In its simplest incarnation, a morphogen signal forms a gradient by diffusion from a local source and clearance in surrounding tissues. Responding cells often transduce morphogen levels in a linear fashion, which results in the graded activation of transcriptional effectors. The concentration-dependent expression of morphogen target genes is achieved by their different binding affinities for transcriptional effectors as well as inputs from other transcriptional regulators. Morphogen distribution and interpretation are the result of complex interactions between the morphogen and responding tissues. The response to a morphogen is dependent not simply on morphogen concentration but also on the duration of morphogen exposure and the state of the target cells. In this review, we describe the morphogen concept and discuss the mechanisms that underlie the generation, modulation, and interpretation of morphogen gradients.
Collapse
Affiliation(s)
- Katherine W Rogers
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
69
|
A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 2010; 8:171-176. [PMID: 21186361 PMCID: PMC4100329 DOI: 10.1038/nmeth.1548] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/29/2010] [Indexed: 12/17/2022]
Abstract
Quantitative studies of embryogenesis require the ability to monitor pattern formation and morphogenesis in large numbers of embryos, at multiple time points and in diverse genetic backgrounds. We describe a simple approach that greatly facilitates these tasks for Drosophila melanogaster embryos, one of the most advanced models of developmental genetics. Based on passive hydrodynamics, we developed a microfluidic embryo-trap array that can be used to rapidly order and vertically orient hundreds of embryos. We describe the physical principles of the design and used this platform to quantitatively analyze multiple morphogen gradients in the dorsoventral patterning system. Our approach can also be used for live imaging and, with slight modifications, could be adapted for studies of pattern formation and morphogenesis in other model organisms.
Collapse
|
70
|
He F, Wen Y, Cheung D, Deng J, Lu LJ, Jiao R, Ma J. Distance measurements via the morphogen gradient of Bicoid in Drosophila embryos. BMC DEVELOPMENTAL BIOLOGY 2010; 10:80. [PMID: 20678215 PMCID: PMC2919471 DOI: 10.1186/1471-213x-10-80] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/02/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Patterning along the anterior-posterior (A-P) axis in Drosophila embryos is instructed by the morphogen gradient of Bicoid (Bcd). Despite extensive studies of this morphogen, how embryo geometry may affect gradient formation and target responses has not been investigated experimentally. RESULTS In this report, we systematically compare the Bcd gradient profiles and its target expression patterns on the dorsal and ventral sides of the embryo. Our results support a hypothesis that proper distance measurement and the encoded positional information of the Bcd gradient are along the perimeter of the embryo. Our results also reveal that the dorsal and ventral sides of the embryo have a fundamentally similar relationship between Bcd and its target Hunchback (Hb), suggesting that Hb expression properties on the two sides of the embryo can be directly traced to Bcd gradient properties. Our 3-D simulation studies show that a curvature difference between the two sides of an embryo is sufficient to generate Bcd gradient properties that are consistent with experimental observations. CONCLUSIONS The findings described in this report provide a first quantitative, experimental evaluation of embryo geometry on Bcd gradient formation and target responses. They demonstrate that the physical features of an embryo, such as its shape, are integral to how pattern is formed.
Collapse
Affiliation(s)
- Feng He
- State Key Laboratory of Brain and Cognitive Science Institute of Biophysics Chinese Academy of Sciences 15 Datun Road Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
71
|
Nunes da Fonseca R, van der Zee M, Roth S. Evolution of extracellular Dpp modulators in insects: The roles of tolloid and twisted-gastrulation in dorsoventral patterning of the Tribolium embryo. Dev Biol 2010; 345:80-93. [PMID: 20510683 DOI: 10.1016/j.ydbio.2010.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 05/09/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
The formation of the BMP gradient which patterns the DV axis in flies and vertebrates requires several extracellular modulators like the inhibitory protein Sog/Chordin, the metalloprotease Tolloid (Tld), which cleaves Sog/Chordin, and the CR domain protein Twisted gastrulation (Tsg). While flies and vertebrates have only one sog/chordin gene they possess several paralogues of tld and tsg. A simpler and probably ancestral situation is observed in the short-germ beetle Tribolium castaneum (Tc), which possesses only one tld and one tsg gene. Here we show that in T. castaneum tld is required for early BMP signalling except in the head region and Tc-tld function is, as expected, dependent on Tc-sog. In contrast, Tc-tsg is required for all aspects of early BMP signalling and acts in a Tc-sog-independent manner. For comparison with Drosophila melanogaster we constructed fly embryos lacking all early Tsg activity (tsg;;srw double mutants) and show that they still establish a BMP signalling gradient. Thus, our results suggest that the role of Tsg proteins for BMP gradient formation has changed during insect evolution.
Collapse
Affiliation(s)
- Rodrigo Nunes da Fonseca
- Institute of Developmental Biology, University of Cologne, Cologne, Gyrhofstrasse 17, D-50931, Germany
| | | | | |
Collapse
|