51
|
Blanchard GB. Taking the strain: quantifying the contributions of all cell behaviours to changes in epithelial shape. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0513. [PMID: 28348250 DOI: 10.1098/rstb.2015.0513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 11/12/2022] Open
Abstract
Computer-assisted tracking of the shapes of many cells over long periods of development has driven the exploration of novel ways to quantify the contributions of different cell behaviours to morphogenesis. A handful of similar methods have now been published that are used to calculate tissue deformations (strain rates) in epithelia. These methods are further used to quantify strain rates attributable to each of the cell behaviours in the tissue, such as cell shape change, cell rearrangement and cell division, that together sum to the tissue strain rates. In this review, aimed at developmental biologists, I will introduce the general approach, characterize differences in current approaches and highlight extensions of these methods that remain to be fully explored. The methods will make a major contribution to the emerging field of tissue mechanics. Precisely quantified strain rates are an essential first step towards exploring constitutive equations relating stress to strain via tissue mechanical properties.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
52
|
Toyoda Y, Cattin CJ, Stewart MP, Poser I, Theis M, Kurzchalia TV, Buchholz F, Hyman AA, Müller DJ. Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding. Nat Commun 2017; 8:1266. [PMID: 29097687 PMCID: PMC5668354 DOI: 10.1038/s41467-017-01147-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023] Open
Abstract
To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson's disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape.
Collapse
Affiliation(s)
- Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.,Division of Cell Biology, Life Science Institute, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka, 839-0864, Japan
| | - Cedric J Cattin
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin P Stewart
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.,Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139-4307, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139-4307, USA
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Mirko Theis
- UCC, Medical System biology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Am Tatzberg 47/49, 01307, Dresden, Germany
| | - Teymuras V Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.,UCC, Medical System biology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Am Tatzberg 47/49, 01307, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
53
|
Chanet S, Sharan R, Khan Z, Martin AC. Myosin 2-Induced Mitotic Rounding Enables Columnar Epithelial Cells to Interpret Cortical Spindle Positioning Cues. Curr Biol 2017; 27:3350-3358.e3. [DOI: 10.1016/j.cub.2017.09.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 01/27/2023]
|
54
|
Montembault E, Claverie MC, Bouit L, Landmann C, Jenkins J, Tsankova A, Cabernard C, Royou A. Myosin efflux promotes cell elongation to coordinate chromosome segregation with cell cleavage. Nat Commun 2017; 8:326. [PMID: 28835609 PMCID: PMC5569077 DOI: 10.1038/s41467-017-00337-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here we report that cells clear trailing chromatids from the cleavage site by undergoing two phases of cell elongation. The first phase relies on the assembly of a wide contractile ring. The second phase requires the activity of a pool of myosin that flows from the ring and enriches the nascent daughter cell cortices. This myosin efflux is a novel feature of cytokinesis and its duration is coupled to nuclear envelope reassembly and the nuclear sequestration of the Rho-GEF Pebble. Trailing chromatids induce a delay in nuclear envelope reassembly concomitant with prolonged cortical myosin activity, thus providing forces for the second elongation. We propose that the modulation of cortical myosin dynamics is part of the cellular response triggered by a “chromatid separation checkpoint” that delays nuclear envelope reassembly and, consequently, Pebble nuclear sequestration when trailing chromatids are present at the midzone. Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here the authors show that cells clear trailing chromatids from the cleavage site in a two-step cell elongation and demonstrate the role of myosin efflux in the second phase.
Collapse
Affiliation(s)
- Emilie Montembault
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| | - Marie-Charlotte Claverie
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Lou Bouit
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Cedric Landmann
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - James Jenkins
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Anna Tsankova
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Anne Royou
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| |
Collapse
|
55
|
Wen J, Tao H, Lau K, Liu H, Simmons CA, Sun Y, Hopyan S. Cell and Tissue Scale Forces Coregulate Fgfr2-Dependent Tetrads and Rosettes in the Mouse Embryo. Biophys J 2017; 112:2209-2218. [PMID: 28538157 DOI: 10.1016/j.bpj.2017.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 01/28/2023] Open
Abstract
What motivates animal cells to intercalate is a longstanding question that is fundamental to morphogenesis. A basic mode of cell rearrangement involves dynamic multicellular structures called tetrads and rosettes. The contribution of cell-intrinsic and tissue-scale forces to the formation and resolution of these structures remains unclear, especially in vertebrates. Here, we show that Fgfr2 regulates both the formation and resolution of tetrads and rosettes in the mouse embryo, possibly in part by spatially restricting atypical protein kinase C, a negative regulator of non-muscle myosin IIB. We employ micropipette aspiration to show that anisotropic tension is sufficient to rescue the resolution, but not the formation, of tetrads and rosettes in Fgfr2 mutant limb-bud ectoderm. The findings underscore the importance of cell contractility and tissue stress to multicellular vertex formation and resolution, respectively.
Collapse
MESH Headings
- Animals
- Ectoderm/embryology
- Ectoderm/metabolism
- Elastic Modulus
- Finite Element Analysis
- Fluorescent Antibody Technique
- Forelimb/embryology
- Forelimb/metabolism
- Mice, Transgenic
- Microscopy, Atomic Force
- Microscopy, Confocal
- Mutation
- Nonmuscle Myosin Type IIB/metabolism
- Pressure
- Protein Kinase C/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/chemistry
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Stress, Physiological
- Tomography, Optical
Collapse
Affiliation(s)
- Jun Wen
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Haijiao Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
56
|
Tsankova A, Pham TT, Garcia DS, Otte F, Cabernard C. Cell Polarity Regulates Biased Myosin Activity and Dynamics during Asymmetric Cell Division via Drosophila Rho Kinase and Protein Kinase N. Dev Cell 2017; 42:143-155.e5. [PMID: 28712722 DOI: 10.1016/j.devcel.2017.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/06/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022]
Abstract
Cell and tissue morphogenesis depends on the correct regulation of non-muscle Myosin II, but how this motor protein is spatiotemporally controlled is incompletely understood. Here, we show that in asymmetrically dividing Drosophila neural stem cells, cell intrinsic polarity cues provide spatial and temporal information to regulate biased Myosin activity. Using live cell imaging and a genetically encoded Myosin activity sensor, we found that Drosophila Rho kinase (Rok) enriches for activated Myosin on the neuroblast cortex prior to nuclear envelope breakdown (NEB). After NEB, the conserved polarity protein Partner of Inscuteable (Pins) sequentially enriches Rok and Protein Kinase N (Pkn) on the apical neuroblast cortex. Our data suggest that apical Rok first increases phospho-Myosin, followed by Pkn-mediated Myosin downregulation, possibly through Rok inhibition. We propose that polarity-induced spatiotemporal control of Rok and Pkn is important for unequal cortical expansion, ensuring correct cleavage furrow positioning and the establishment of physical asymmetry.
Collapse
Affiliation(s)
- Anna Tsankova
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Tri Thanh Pham
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland; Department of Biology, University of Washington, 24 Kinkaid Hall, Seattle, WA 98105, USA
| | | | - Fabian Otte
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Clemens Cabernard
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland; Department of Biology, University of Washington, 24 Kinkaid Hall, Seattle, WA 98105, USA.
| |
Collapse
|
57
|
Durgan J, Tseng YY, Hamann JC, Domart MC, Collinson L, Hall A, Overholtzer M, Florey O. Mitosis can drive cell cannibalism through entosis. eLife 2017; 6:e27134. [PMID: 28693721 PMCID: PMC5505699 DOI: 10.7554/elife.27134] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
Entosis is a form of epithelial cell cannibalism that is prevalent in human cancer, typically triggered by loss of matrix adhesion. Here, we report an alternative mechanism for entosis in human epithelial cells, driven by mitosis. Mitotic entosis is regulated by Cdc42, which controls mitotic morphology. Cdc42 depletion enhances mitotic deadhesion and rounding, and these biophysical changes, which depend on RhoA activation and are phenocopied by Rap1 inhibition, permit subsequent entosis. Mitotic entosis occurs constitutively in some human cancer cell lines and mitotic index correlates with cell cannibalism in primary human breast tumours. Adherent, wild-type cells can act efficiently as entotic hosts, suggesting that normal epithelia may engulf and kill aberrantly dividing neighbours. Finally, we report that Paclitaxel/taxol promotes mitotic rounding and subsequent entosis, revealing an unconventional activity of this drug. Together, our data uncover an intriguing link between cell division and cannibalism, of significance to both cancer and chemotherapy.
Collapse
Affiliation(s)
- Joanne Durgan
- The Babraham Institute, Cambridge, United Kingdom
- Memorial Sloan Kettering Cancer Center, New York, United States
| | - Yun-Yu Tseng
- Memorial Sloan Kettering Cancer Center, New York, United States
- Weill Graduate School of Medical Sciences, Cornell University, New York, United States
| | - Jens C Hamann
- Memorial Sloan Kettering Cancer Center, New York, United States
- Louis V Gerstner Jr Graduate School of Biomedical Sciences, New York, United States
| | | | | | - Alan Hall
- Memorial Sloan Kettering Cancer Center, New York, United States
| | | | | |
Collapse
|
58
|
Varlet AA, Fuchs M, Luthold C, Lambert H, Landry J, Lavoie JN. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress Chaperones 2017; 22:553-567. [PMID: 28275944 PMCID: PMC5465032 DOI: 10.1007/s12192-017-0780-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.
Collapse
Affiliation(s)
- Alice Anaïs Varlet
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Margit Fuchs
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Carole Luthold
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Herman Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Jacques Landry
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada
| | - Josée N Lavoie
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada.
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada.
| |
Collapse
|
59
|
Chugh P, Clark AG, Smith MB, Cassani DAD, Dierkes K, Ragab A, Roux PP, Charras G, Salbreux G, Paluch EK. Actin cortex architecture regulates cell surface tension. Nat Cell Biol 2017; 19:689-697. [PMID: 28530659 PMCID: PMC5536221 DOI: 10.1038/ncb3525] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 04/04/2017] [Indexed: 12/16/2022]
Abstract
Animal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.
Collapse
Affiliation(s)
- Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Andrew G. Clark
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Matthew B. Smith
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Davide A. D. Cassani
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Kai Dierkes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anan Ragab
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | - Ewa K. Paluch
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| |
Collapse
|
60
|
Abstract
Ongoing work shows that misplaced epithelial cells have the capacity to reintegrate back into tissue layers. This movement appears to underlie tissue stability and may also control aspects of tissue structure. A recent study reveals that cell reintegration in at least one tissue, the Drosophila follicular epithelium, is based on adhesion molecules that line lateral cell surfaces. In this article we will review these observations, discuss their implications for epithelial tissue development and maintenance, and identify future directions for study.
Collapse
Affiliation(s)
- Tyler J Wilson
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Dan T Bergstralh
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
61
|
|
62
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
63
|
Cellular Reorganization during Mitotic Entry. Trends Cell Biol 2017; 27:26-41. [DOI: 10.1016/j.tcb.2016.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
|
64
|
Moreira S, Morais-de-Sá E. Spatiotemporal phosphoregulation of Lgl: Finding meaning in multiple on/off buttons. BIOARCHITECTURE 2016; 6:29-38. [PMID: 26919260 DOI: 10.1080/19490992.2016.1149290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intracellular asymmetries, often termed cell polarity, determine how cells organize and divide to ultimately control cell fate and shape animal tissues. The tumor suppressor Lethal giant larvae (Lgl) functions at the core of the evolutionarily conserved cell polarity machinery that controls apico-basal polarization. This function relies on its restricted basolateral localization via phosphorylation by aPKC. Here, we summarize the spatial and temporal control of Lgl during the cell cycle, highlighting two ideas that emerged from our recent findings: 1) Aurora A directly phosphorylates Lgl during symmetric division to couple reorganization of epithelial polarity with the cell cycle; 2) Phosphorylation of Lgl within three conserved serines controls its localization and function in a site-specific manner. Considering the importance of phosphorylation to regulate the concentration of Lgl at the plasma membrane, we will further discuss how it may work as an on-off switch for the interaction with cortical binding partners, with implications on epithelial polarization and spindle orientation.
Collapse
Affiliation(s)
- Sofia Moreira
- a IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,b I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| | - Eurico Morais-de-Sá
- a IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,b I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| |
Collapse
|
65
|
Abstract
Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell-substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance.
Collapse
|
66
|
Bergstralh DT, Lovegrove HE, Kujawiak I, Dawney NS, Zhu J, Cooper S, Zhang R, St Johnston D. Pins is not required for spindle orientation in the Drosophila wing disc. Development 2016; 143:2573-81. [PMID: 27287805 PMCID: PMC4958339 DOI: 10.1242/dev.135475] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/01/2016] [Indexed: 02/03/2023]
Abstract
In animal cells, mitotic spindles are oriented by the dynein/dynactin motor complex, which exerts a pulling force on astral microtubules. Dynein/dynactin localization depends on Mud/NUMA, which is typically recruited to the cortex by Pins/LGN. In Drosophila neuroblasts, the Inscuteable/Baz/Par-6/aPKC complex recruits Pins apically to induce vertical spindle orientation, whereas in epithelial cells Dlg recruits Pins laterally to orient the spindle horizontally. Here we investigate division orientation in the Drosophila imaginal wing disc epithelium. Live imaging reveals that spindle angles vary widely during prometaphase and metaphase, and therefore do not reliably predict division orientation. This finding prompted us to re-examine mutants that have been reported to disrupt division orientation in this tissue. Loss of Mud misorients divisions, but Inscuteable expression and aPKC, dlg and pins mutants have no effect. Furthermore, Mud localizes to the apical-lateral cortex of the wing epithelium independently of both Pins and cell cycle stage. Thus, Pins is not required in the wing disc because there are parallel mechanisms for Mud localization and hence spindle orientation, making it a more robust system than in other epithelia. Highlighted article: Mud (Drosophila NuMA), a crucial spindle orientation factor, does not require its binding partner Pins (Drosophila LGN) to localize or function in the Drosophila imaginal wing disc.
Collapse
Affiliation(s)
- Dan T Bergstralh
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Holly E Lovegrove
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Izabela Kujawiak
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Nicole S Dawney
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jinwei Zhu
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Samantha Cooper
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Rongguang Zhang
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
67
|
Tuncay H, Ebnet K. Cell adhesion molecule control of planar spindle orientation. Cell Mol Life Sci 2016; 73:1195-207. [PMID: 26698907 PMCID: PMC11108431 DOI: 10.1007/s00018-015-2116-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/26/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet.
Collapse
Affiliation(s)
- Hüseyin Tuncay
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Muenster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Muenster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, 48419, Muenster, Germany.
| |
Collapse
|
68
|
Tuncay H, Brinkmann BF, Steinbacher T, Schürmann A, Gerke V, Iden S, Ebnet K. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat Commun 2015; 6:8128. [PMID: 26306570 PMCID: PMC4560831 DOI: 10.1038/ncomms9128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/22/2015] [Indexed: 01/08/2023] Open
Abstract
Planar spindle orientation in polarized epithelial cells depends on the precise localization of the dynein–dynactin motor protein complex at the lateral cortex. The contribution of cell adhesion molecules to the cortical localization of the dynein–dynactin complex is poorly understood. Here we find that junctional adhesion molecule-A (JAM-A) regulates the planar orientation of the mitotic spindle during epithelial morphogenesis. During mitosis, JAM-A triggers a transient activation of Cdc42 and PI(3)K, generates a gradient of PtdIns(3,4,5)P3 at the cortex and regulates the formation of the cortical actin cytoskeleton. In the absence of functional JAM-A, dynactin localization at the cortex is reduced, the mitotic spindle apparatus is misaligned and epithelial morphogenesis in three-dimensional culture is compromised. Our findings indicate that a PI(3)K- and cortical F-actin-dependent pathway of planar spindle orientation operates in polarized epithelial cells to regulate epithelial morphogenesis, and we identify JAM-A as a junctional regulator of this pathway. Polarized epithelial cells orient their mitotic spindles in the plane of the sheet but the role of cell adhesion molecules in this process is poorly understood. Here Tuncay et al. show that JAM-A regulates spindle orientation by creating a gradient of PtdIns(3,4,5)P3, regulating cortical actin assembly and localizing dynactin to the cell cortex.
Collapse
Affiliation(s)
- Hüseyin Tuncay
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | - Benjamin F Brinkmann
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany.,Interdisciplinary Clinical Research Center (IZKF), University of Münster, 48149 Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | - Annika Schürmann
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, 48149 Münster, Germany
| | - Sandra Iden
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany.,Interdisciplinary Clinical Research Center (IZKF), University of Münster, 48149 Münster, Germany
| |
Collapse
|