51
|
Beaver D, Limnios IJ. A treatment within sight: challenges in the development of stem cell-derived photoreceptor therapies for retinal degenerative diseases. FRONTIERS IN TRANSPLANTATION 2023; 2:1130086. [PMID: 38993872 PMCID: PMC11235385 DOI: 10.3389/frtra.2023.1130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 07/13/2024]
Abstract
Stem cell therapies can potentially treat various retinal degenerative diseases, including age-related macular degeneration (AMD) and inherited retinal diseases like retinitis pigmentosa. For these diseases, transplanted cells may include stem cell-derived retinal pigmented epithelial (RPE) cells, photoreceptors, or a combination of both. Although stem cell-derived RPE cells have progressed to human clinical trials, therapies using photoreceptors and other retinal cell types are lagging. In this review, we discuss the potential use of human pluripotent stem cell (hPSC)-derived photoreceptors for the treatment of retinal degeneration and highlight the progress and challenges for their efficient production and clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Davinia Beaver
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| | - Ioannis Jason Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| |
Collapse
|
52
|
Zhao M, Toma K, Kinde B, Li L, Patel AK, Wu KY, Lum MR, Tan C, Hooper JE, Kriegstein AR, La Torre A, Liao YJ, Welsbie DS, Hu Y, Han Y, Duan X. Osteopontin drives retinal ganglion cell resiliency in glaucomatous optic neuropathy. Cell Rep 2023; 42:113038. [PMID: 37624696 PMCID: PMC10591811 DOI: 10.1016/j.celrep.2023.113038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic neurodegeneration and acute injuries lead to neuron losses via diverse processes. We compared retinal ganglion cell (RGC) responses between chronic glaucomatous conditions and the acute injury model. Among major RGC subclasses, αRGCs and intrinsically photosensitive RGCs (ipRGCs) preferentially survive glaucomatous conditions, similar to findings in the retina subject to axotomy. Focusing on an αRGC intrinsic factor, Osteopontin (secreted phosphoprotein 1 [Spp1]), we found an ectopic neuronal expression of Osteopontin (Spp1) in other RGCs subject to glaucomatous conditions. This contrasted with the Spp1 downregulation subject to axotomy. αRGC-specific Spp1 elimination led to significant αRGC loss, diminishing their resiliency. Spp1 overexpression led to robust neuroprotection of susceptible RGC subclasses under glaucomatous conditions. In contrast, Spp1 overexpression did not significantly protect RGCs subject to axotomy. Additionally, SPP1 marked adult human RGC subsets with large somata and SPP1 expression in the aqueous humor correlated with glaucoma severity. Our study reveals Spp1's role in mediating neuronal resiliency in glaucoma.
Collapse
Affiliation(s)
- Mengya Zhao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Benyam Kinde
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Amit K Patel
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA 92037, USA
| | - Kong-Yan Wu
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matthew R Lum
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Chengxi Tan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jody E Hooper
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95616, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA 92037, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | - Ying Han
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
53
|
Liang JH, Akhanov V, Ho A, Tawfik M, D'Souza SP, Cameron MA, Lang RA, Samuel MA. Dopamine signaling from ganglion cells directs layer-specific angiogenesis in the retina. Curr Biol 2023; 33:3821-3834.e5. [PMID: 37572663 PMCID: PMC10529464 DOI: 10.1016/j.cub.2023.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
During central nervous system (CNS) development, a precisely patterned vasculature emerges to support CNS function. How neurons control angiogenesis is not well understood. Here, we show that the neuromodulator dopamine restricts vascular development in the retina via temporally limited production by an unexpected neuron subset. Our genetic and pharmacological experiments demonstrate that elevating dopamine levels inhibits tip-cell sprouting and vessel growth, whereas reducing dopamine production by all retina neurons increases growth. Dopamine production by canonical dopaminergic amacrine interneurons is dispensable for these events. Instead, we found that temporally restricted dopamine production by retinal ganglion cells (RGCs) modulates vascular development. RGCs produce dopamine precisely during angiogenic periods. Genetically limiting dopamine production by ganglion cells, but not amacrines, decreases angiogenesis. Conversely, elevating ganglion-cell-derived dopamine production inhibits early vessel growth. These vasculature outcomes occur downstream of vascular endothelial growth factor receptor (VEGFR) activation and Notch-Jagged1 signaling. Jagged1 is increased and subsequently inhibits Notch signaling when ganglion cell dopamine production is reduced. Our findings demonstrate that dopaminergic neural activity from a small neuron subset functions upstream of VEGFR to serve as developmental timing cue that regulates vessel growth.
Collapse
Affiliation(s)
- Justine H Liang
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Anthony Ho
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shane P D'Souza
- Divisions of Pediatric Ophthalmology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Morven A Cameron
- School of Medicine, Western Sydney University, Western Sydney University Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Richard A Lang
- Divisions of Pediatric Ophthalmology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
54
|
Blackshaw S, Lyu P, Zhai Y, Qian J, Iribarne M, Serjanov D, Campbell L, Boyd P, Hyde D, Palazzo I, Hoang T, Nagashima M, Silva N, Hitchcock P. Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina. RESEARCH SQUARE 2023:rs.3.rs-3294233. [PMID: 37790324 PMCID: PMC10543505 DOI: 10.21203/rs.3.rs-3294233/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.
Collapse
Affiliation(s)
| | | | - Yijie Zhai
- Johns Hopkins University School of Medicine
| | - Jiang Qian
- Johns Hopkins University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Liu W, Shrestha R, Lowe A, Zhang X, Spaeth L. Self-formation of concentric zones of telencephalic and ocular tissues and directional retinal ganglion cell axons. eLife 2023; 12:RP87306. [PMID: 37665325 PMCID: PMC10476969 DOI: 10.7554/elife.87306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
The telencephalon and eye in mammals are originated from adjacent fields at the anterior neural plate. Morphogenesis of these fields generates telencephalon, optic-stalk, optic-disc, and neuroretina along a spatial axis. How these telencephalic and ocular tissues are specified coordinately to ensure directional retinal ganglion cell (RGC) axon growth is unclear. Here, we report self-formation of human telencephalon-eye organoids comprising concentric zones of telencephalic, optic-stalk, optic-disc, and neuroretinal tissues along the center-periphery axis. Initially-differentiated RGCs grew axons towards and then along a path defined by adjacent PAX2+ VSX2+ optic-disc cells. Single-cell RNA sequencing of these organoids not only confirmed telencephalic and ocular identities but also identified expression signatures of early optic-disc, optic-stalk, and RGCs. These signatures were similar to those in human fetal retinas. Optic-disc cells in these organoids differentially expressed FGF8 and FGF9; FGFR inhibitions drastically decreased early RGC differentiation and directional axon growth. Through the RGC-specific cell-surface marker CNTN2 identified here, electrophysiologically excitable RGCs were isolated under a native condition. Our findings provide insight into the coordinated specification of early telencephalic and ocular tissues in humans and establish resources for studying RGC-related diseases such as glaucoma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of MedicineBronxUnited States
| | - Rupendra Shrestha
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of MedicineBronxUnited States
| | - Albert Lowe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| | - Ludovic Spaeth
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
56
|
Wong NK, Yip SP, Huang CL. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. Int J Mol Sci 2023; 24:13652. [PMID: 37686457 PMCID: PMC10487913 DOI: 10.3390/ijms241713652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The human eye plays a critical role in vision perception, but various retinal degenerative diseases such as retinitis pigmentosa (RP), glaucoma, and age-related macular degeneration (AMD) can lead to vision loss or blindness. Although progress has been made in understanding retinal development and in clinical research, current treatments remain inadequate for curing or reversing these degenerative conditions. Animal models have limited relevance to humans, and obtaining human eye tissue samples is challenging due to ethical and legal considerations. Consequently, researchers have turned to stem cell-based approaches, specifically induced pluripotent stem cells (iPSCs), to generate distinct retinal cell populations and develop cell replacement therapies. iPSCs offer a novel platform for studying the key stages of human retinogenesis and disease-specific mechanisms. Stem cell technology has facilitated the production of diverse retinal cell types, including retinal ganglion cells (RGCs) and photoreceptors, and the development of retinal organoids has emerged as a valuable in vitro tool for investigating retinal neuron differentiation and modeling retinal diseases. This review focuses on the protocols, culture conditions, and techniques employed in differentiating retinal neurons from iPSCs. Furthermore, it emphasizes the significance of molecular and functional validation of the differentiated cells.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
57
|
Liu W, Shrestha R, Lowe A, Zhang X, Spaeth L. Self-formation of concentric zones of telencephalic and ocular tissues and directional retinal ganglion cell axons. eLife 2023; 12:RP87306. [PMID: 37665325 DOI: 10.7554/elife.87306.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
The telencephalon and eye in mammals are originated from adjacent fields at the anterior neural plate. Morphogenesis of these fields generates telencephalon, optic-stalk, optic-disc, and neuroretina along a spatial axis. How these telencephalic and ocular tissues are specified coordinately to ensure directional retinal ganglion cell (RGC) axon growth is unclear. Here, we report self-formation of human telencephalon-eye organoids comprising concentric zones of telencephalic, optic-stalk, optic-disc, and neuroretinal tissues along the center-periphery axis. Initially-differentiated RGCs grew axons towards and then along a path defined by adjacent PAX2+ VSX2+ optic-disc cells. Single-cell RNA sequencing of these organoids not only confirmed telencephalic and ocular identities but also identified expression signatures of early optic-disc, optic-stalk, and RGCs. These signatures were similar to those in human fetal retinas. Optic-disc cells in these organoids differentially expressed FGF8 and FGF9; FGFR inhibitions drastically decreased early RGC differentiation and directional axon growth. Through the RGC-specific cell-surface marker CNTN2 identified here, electrophysiologically excitable RGCs were isolated under a native condition. Our findings provide insight into the coordinated specification of early telencephalic and ocular tissues in humans and establish resources for studying RGC-related diseases such as glaucoma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Rupendra Shrestha
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Albert Lowe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Ludovic Spaeth
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
58
|
Swamy VS, Batz ZA, McGaughey DM. PLAE Web App Enables Powerful Searching and Multiple Visualizations Across One Million Unified Single-Cell Ocular Transcriptomes. Transl Vis Sci Technol 2023; 12:18. [PMID: 37747415 PMCID: PMC10578359 DOI: 10.1167/tvst.12.9.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/02/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose To create a high-performance reactive web application to query single-cell gene expression data across cell type, species, study, and other factors. Methods We updated the content and structure of the underlying data (single cell Eye in a Disk [scEiaD]) and wrote the web application PLAE (https://plae.nei.nih.gov) to visualize and explore the data. Results The new portal provides quick visualization of over a million individual cells from vertebrate eye and body transcriptomes encompassing four species, 60 cell types, six ocular tissues, and 23 body tissues across 35 publications. To demonstrate the value of this unified pan-eye dataset, we replicated known neurogenic and cone macula markers in addition to proposing six new cone human region markers. Conclusions The PLAE web application offers the eye community a powerful and quick means to test hypotheses related to gene expression across a highly diverse, community-derived database. Translational Relevance The PLAE resource enables any researcher or clinician to study and research gene expression patterning across a wide variety of curated ocular cell types with a responsive web app.
Collapse
Affiliation(s)
- Vinay S Swamy
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Zachary A Batz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - David M McGaughey
- Bioinformatics Group, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
59
|
Yin Y, Wu S, Niu L, Huang S. Atonal homolog 7 (ATOH7) confers neuroprotection for photoreceptor cells in glaucoma via inhibition of the notch pathway. J Neurochem 2023; 166:847-861. [PMID: 37526008 DOI: 10.1111/jnc.15905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies enable the profiling and analysis of the transcriptomes of single cells and hold promise for clarifying gene mechanisms at single-cell resolution. We based this study on scRNA-seq data to reveal glaucoma-related genes and downstream pathways with neuroprotection effects. The scRNA-seq datasets related to glaucoma of retinal tissue samples of human beings and Atonal Homolog 7 (ATOH7)-null mice were obtained from the GEO database. The 74 top marker genes and 20 cell clusters were obtained in human retinal tissue samples. The key gene ATOH7 was found after the intersection with genes from GeneCards data. In the ATOH7-null mouse retinal tissue samples, pseudotime inference demonstrated significant changes in cell differentiation. Moreover, mouse retinal photoreceptor cells (PRCs) were cultured and treated with lentivirus carrying oe-ATOH7 alone or in combination with Notch signaling pathway activator Jagged-1/FC, after which cell biological functions were determined. The involvement of ATOH7 in glaucoma was identified through regulating PRCs. Furthermore, ATOH7 conferred neuroprotection in PRCs in glaucoma by mediating the Notch signaling pathway. In vitro data confirmed that ATOH7 overexpression promoted the differentiation of PRCs and inhibited their apoptosis by suppressing the Notch signaling pathway. The evidence provided by our study highlighted the involvement of ATOH7 in the blockade of the Notch signaling pathway, resulting in the neuroprotection for PRCs in glaucoma.
Collapse
Affiliation(s)
- Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Shuai Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Lingzhi Niu
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Shiwei Huang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
60
|
D'Souza SP, Upton BA, Eldred KC, Glass I, Grover K, Ahmed A, Ngyuen MT, Gamlin P, Lang RA. Developmental adaptation of rod photoreceptor number via photoreception in melanopsin (OPN4) retinal ganglion cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554675. [PMID: 37662196 PMCID: PMC10473760 DOI: 10.1101/2023.08.24.554675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Photoreception, a form of sensory experience, is essential for normal development of the mammalian visual system. Detecting photons during development is a prerequisite for visual system function - from vision's first synapse at the cone pedicle and maturation of retinal vascular networks, to transcriptional establishment and maturation of cell types within the visual cortex. Consistent with this theme, we find that the lighting environment regulates developmental rod photoreceptor apoptosis via OPN4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using a combination of genetics, sensory environment manipulations, and computational approaches, we establish a molecular pathway in which light-dependent glutamate release from ipRGCs is detected via a transiently expressed kainate receptor (GRIK3) in immature rods localized to the inner retina. Communication between ipRGCs and nascent inner retinal rods appears to be mediated by unusual hybrid neurites projecting from ipRGCs that sense light before eye-opening. These structures, previously referred to as outer retinal dendrites (ORDs), span the ipRGC-immature rod distance over the first postnatal week and contain the machinery for sensory detection (melanopsin, OPN4) and axonal/anterograde neurotransmitter release (Synaptophysin, and VGLUT2). Histological and computational assessment of human mid-gestation development reveal conservation of several hallmarks of an ipRGC-to-immature rod pathway, including displaced immature rods, transient GRIK3 expression in the rod lineage, and the presence of ipRGCs with putative neurites projecting deep into the developing retina. Thus, this analysis defines a retinal retrograde signaling pathway that links the sensory environment to immature rods via ipRGC photoreceptors, allowing the visual system to adapt to distinct lighting environments priory to eye-opening.
Collapse
|
61
|
Jones MK, Orozco LD, Qin H, Truong T, Caplazi P, Elstrott J, Modrusan Z, Chaney SY, Jeanne M. Integration of human stem cell-derived in vitro systems and mouse preclinical models identifies complex pathophysiologic mechanisms in retinal dystrophy. Front Cell Dev Biol 2023; 11:1252547. [PMID: 37691820 PMCID: PMC10483287 DOI: 10.3389/fcell.2023.1252547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Rare DRAM2 coding variants cause retinal dystrophy with early macular involvement via unknown mechanisms. We found that DRAM2 is ubiquitously expressed in the human eye and expression changes were observed in eyes with more common maculopathy such as Age-related Macular Degeneration (AMD). To gain insights into pathogenicity of DRAM2-related retinopathy, we used a combination of in vitro and in vivo models. We found that DRAM2 loss in human pluripotent stem cell (hPSC)-derived retinal organoids caused the presence of additional mesenchymal cells. Interestingly, Dram2 loss in mice also caused increased proliferation of cells from the choroid in vitro and exacerbated choroidal neovascular lesions in vivo. Furthermore, we observed that DRAM2 loss in human retinal pigment epithelial (RPE) cells resulted in increased susceptibility to stress-induced cell death in vitro and that Dram2 loss in mice caused age-related photoreceptor degeneration. This highlights the complexity of DRAM2 function, as its loss in choroidal cells provided a proliferative advantage, whereas its loss in post-mitotic cells, such as photoreceptor and RPE cells, increased degeneration susceptibility. Different models such as human pluripotent stem cell-derived systems and mice can be leveraged to study and model human retinal dystrophies; however, cell type and species-specific expression must be taken into account when selecting relevant systems.
Collapse
Affiliation(s)
- Melissa K. Jones
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
- Product Development Clinical Science Ophthalmology, Genentech Inc., South San Francisco, CA, United States
| | - Luz D. Orozco
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, United States
| | - Han Qin
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
| | - Tom Truong
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Patrick Caplazi
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, United States
| | - Justin Elstrott
- Department of Translational Imaging, Genentech Inc., South San Francisco, CA, United States
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next-Generation Sequencing, Genentech Inc., South San Francisco, CA, United States
| | - Shawnta Y. Chaney
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Marion Jeanne
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
62
|
Lyu P, Iribarne M, Serjanov D, Zhai Y, Hoang T, Campbell LJ, Boyd P, Palazzo I, Nagashima M, Silva NJ, HItchcock PF, Qian J, Hyde DR, Blackshaw S. Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552451. [PMID: 37609307 PMCID: PMC10441373 DOI: 10.1101/2023.08.08.552451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.
Collapse
|
63
|
Liou RHC, Chen SW, Cheng HC, Wu PC, Chang YF, Wang AG, Fann MJ, Wong YH. The efficient induction of human retinal ganglion-like cells provides a platform for studying optic neuropathies. Cell Mol Life Sci 2023; 80:239. [PMID: 37540379 PMCID: PMC10403410 DOI: 10.1007/s00018-023-04890-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Retinal ganglion cells (RGCs) are essential for vision perception. In glaucoma and other optic neuropathies, RGCs and their optic axons undergo degenerative change and cell death; this can result in irreversible vision loss. Here we developed a rapid protocol for directly inducing RGC differentiation from human induced pluripotent stem cells (hiPSCs) by the overexpression of ATOH7, BRN3B, and SOX4. The hiPSC-derived RGC-like cells (iRGCs) show robust expression of various RGC-specific markers by whole transcriptome profiling. A functional assessment was also carried out and this demonstrated that these iRGCs display stimulus-induced neuronal activity, as well as spontaneous neuronal activity. Ethambutol (EMB), an effective first-line anti-tuberculosis agent, is known to cause serious visual impairment and irreversible vision loss due to the RGC degeneration in a significant number of treated patients. Using our iRGCs, EMB was found to induce significant dose-dependent and time-dependent increases in cell death and neurite degeneration. Western blot analysis revealed that the expression levels of p62 and LC3-II were upregulated, and further investigations revealed that EMB caused a blockade of lysosome-autophagosome fusion; this indicates that impairment of autophagic flux is one of the adverse effects of that EMB has on iRGCs. In addition, EMB was found to elevate intracellular reactive oxygen species (ROS) levels increasing apoptotic cell death. This could be partially rescued by the co-treatment with the ROS scavenger NAC. Taken together, our findings suggest that this iRGC model, which achieves both high yield and high purity, is suitable for investigating optic neuropathies, as well as being useful when searching for potential drugs for therapeutic treatment and/or disease prevention.
Collapse
Affiliation(s)
- Roxanne Hsiang-Chi Liou
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Shih-Wei Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Hui-Chen Cheng
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan, ROC
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Pei-Chun Wu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Yu-Fen Chang
- LumiSTAR Biotechnology, Inc., Taipei, 115, Taiwan, ROC
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan, ROC
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Ming-Ji Fann
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Yu-Hui Wong
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC.
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
64
|
Peng YR. Cell-type specification in the retina: Recent discoveries from transcriptomic approaches. Curr Opin Neurobiol 2023; 81:102752. [PMID: 37499619 DOI: 10.1016/j.conb.2023.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Understanding the formation of the complex nervous system hinges on decoding the mechanism that specifies a vast array of neuronal types, each endowed with a unique morphology, physiology, and connectivity. As a pivotal step towards addressing this problem, seminal work has been devoted to characterizing distinct neuronal types. In recent years, high-throughput, single-cell transcriptomic methods have enabled a rapid inventory of cell types in various regions of the nervous system, with the retina exhibiting complete molecular characterization across many vertebrate species. This invaluable resource has furnished a fresh perspective for investigating the molecular principles of cell-type specification, thereby advancing our understanding of retinal development. Accordingly, this review focuses on the most recent transcriptomic characterizations of retinal cells, with a particular focus on amacrine cells and retinal ganglion cells. These investigations have unearthed new insights into their cell-type specification.
Collapse
Affiliation(s)
- Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
65
|
Guo L, Xie X, Wang J, Xiao H, Li S, Xu M, Quainoo E, Koppaka R, Zhuo J, Smith SB, Gan L. Inducible Rbpms-CreER T2 Mouse Line for Studying Gene Function in Retinal Ganglion Cell Physiology and Disease. Cells 2023; 12:1951. [PMID: 37566030 PMCID: PMC10416940 DOI: 10.3390/cells12151951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Retinal ganglion cells (RGCs) are the sole output neurons conveying visual stimuli from the retina to the brain, and dysfunction or loss of RGCs is the primary determinant of visual loss in traumatic and degenerative ocular conditions. Currently, there is a lack of RGC-specific Cre mouse lines that serve as invaluable tools for manipulating genes in RGCs and studying the genetic basis of RGC diseases. The RNA-binding protein with multiple splicing (RBPMS) is identified as the specific marker of all RGCs. Here, we report the generation and characterization of a knock-in mouse line in which a P2A-CreERT2 coding sequence is fused in-frame to the C-terminus of endogenous RBPMS, allowing for the co-expression of RBPMS and CreERT2. The inducible Rbpms-CreERT2 mice exhibited a high recombination efficiency in activating the expression of the tdTomato reporter gene in nearly all adult RGCs as well as in differentiated RGCs starting at E13.5. Additionally, both heterozygous and homozygous Rbpms-CreERT2 knock-in mice showed no detectable defect in the retinal structure, visual function, and transcriptome. Together, these results demonstrated that the Rbpms-CreERT2 knock-in mouse can serve as a powerful and highly desired genetic tool for lineage tracing, genetic manipulation, retinal physiology study, and ocular disease modeling in RGCs.
Collapse
Affiliation(s)
- Luming Guo
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoling Xie
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shuchun Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mei Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ebenezer Quainoo
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rithwik Koppaka
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiaping Zhuo
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sylvia B. Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
66
|
La Torre A, Lwigale P. Ocular development: A view from the front to the back of the eye. Differentiation 2023; 132:1-3. [PMID: 37407417 DOI: 10.1016/j.diff.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Affiliation(s)
- Anna La Torre
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA.
| |
Collapse
|
67
|
Vöcking O, Famulski JK. Single cell transcriptome analyses of the developing zebrafish eye- perspectives and applications. Front Cell Dev Biol 2023; 11:1213382. [PMID: 37457291 PMCID: PMC10346855 DOI: 10.3389/fcell.2023.1213382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Within a relatively short period of time, single cell transcriptome analyses (SCT) have become increasingly ubiquitous with transcriptomic research, uncovering plentiful details that boost our molecular understanding of various biological processes. Stemming from SCT analyses, the ever-growing number of newly assigned genetic markers increases our understanding of general function and development, while providing opportunities for identifying genes associated with disease. SCT analyses have been carried out using tissue from numerous organisms. However, despite the great potential of zebrafish as a model organism, other models are still preferably used. In this mini review, we focus on eye research as an example of the advantages in using zebrafish, particularly its usefulness for single cell transcriptome analyses of developmental processes. As studies have already shown, the unique opportunities offered by zebrafish, including similarities to the human eye, in combination with the possibility to analyze and extract specific cells at distinct developmental time points makes the model a uniquely powerful one. Particularly the practicality of collecting large numbers of embryos and therefore isolation of sufficient numbers of developing cells is a distinct advantage compared to other model organisms. Lastly, the advent of highly efficient genetic knockouts methods offers opportunities to characterize target gene function in a more cost-efficient way. In conclusion, we argue that the use of zebrafish for SCT approaches has great potential to further deepen our molecular understanding of not only eye development, but also many other organ systems.
Collapse
Affiliation(s)
| | - Jakub K. Famulski
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
68
|
Kang J, Gong J, Yang C, Lin X, Yan L, Gong Y, Xu H. Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development. Stem Cell Rev Rep 2023:10.1007/s12015-023-10553-x. [PMID: 37269529 DOI: 10.1007/s12015-023-10553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
The intricate neural circuit of retina extracts salient features of the natural world and forms bioelectric impulse as the origin of vision. The early development of retina is a highly complex and coordinated process in morphogenesis and neurogenesis. Increasing evidence indicates that stem cells derived human retinal organoids (hROs) in vitro faithfully recapitulates the embryonic developmental process of human retina no matter in the transcriptome, cellular biology and histomorphology. The emergence of hROs greatly deepens on the understanding of early development of human retina. Here, we reviewed the events of early retinal development both in animal embryos and hROs studies, which mainly comprises the formation of optic vesicle and optic cup shape, differentiation of retinal ganglion cells (RGCs), photoreceptor cells (PRs) and its supportive retinal pigment epithelium cells (RPE). We also discussed the classic and frontier molecular pathways up to date to decipher the underlying mechanisms of early development of human retina and hROs. Finally, we summarized the application prospect, challenges and cutting-edge techniques of hROs for uncovering the principles and mechanisms of retinal development and related developmental disorder. hROs is a priori selection for studying human retinal development and function and may be a fundamental tool for unlocking the unknown insight into retinal development and disease.
Collapse
Affiliation(s)
- Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lijuan Yan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
69
|
Li R, Liu J, Yi P, Yang X, Chen J, Zhao C, Liao X, Wang X, Xu Z, Lu H, Li H, Zhang Z, Liu X, Xiang J, Hu K, Qi H, Yu J, Yang P, Hou S. Integrative Single-Cell Transcriptomics and Epigenomics Mapping of the Fetal Retina Developmental Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206623. [PMID: 37017569 DOI: 10.1002/advs.202206623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/24/2023] [Indexed: 06/04/2023]
Abstract
The underlying mechanisms that determine gene expression and chromatin accessibility in retinogenesis are poorly understood. Herein, single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing are performed on human embryonic eye samples obtained 9-26 weeks after conception to explore the heterogeneity of retinal progenitor cells (RPCs) and neurogenic RPCs. The differentiation trajectory from RPCs to 7 major types of retinal cells are verified. Subsequently, diverse lineage-determining transcription factors are identified and their gene regulatory networks are refined at the transcriptomic and epigenomic levels. Treatment of retinospheres, with the inhibitor of RE1 silencing transcription factor, X5050, induces more neurogenesis with the regular arrangement, and a decrease in Müller glial cells. The signatures of major retinal cells and their correlation with pathogenic genes associated with multiple ocular diseases, including uveitis and age-related macular degeneration are also described. A framework for the integrated exploration of single-cell developmental dynamics of the human primary retina is provided.
Collapse
Affiliation(s)
- Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Xianli Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Jun Chen
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, P. R. China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
| | - Huiping Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Hongshun Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Junjie Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Hongbo Qi
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, P. R. China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, P. R. China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, P. R. China
| |
Collapse
|
70
|
Zeng B, Liu Z, Lu Y, Zhong S, Qin S, Huang L, Zeng Y, Li Z, Dong H, Shi Y, Yang J, Dai Y, Ma Q, Sun L, Bian L, Han D, Chen Y, Qiu X, Wang W, Marín O, Wu Q, Wang Y, Wang X. The single-cell and spatial transcriptional landscape of human gastrulation and early brain development. Cell Stem Cell 2023; 30:851-866.e7. [PMID: 37192616 PMCID: PMC10241223 DOI: 10.1016/j.stem.2023.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
The emergence of the three germ layers and the lineage-specific precursor cells orchestrating organogenesis represent fundamental milestones during early embryonic development. We analyzed the transcriptional profiles of over 400,000 cells from 14 human samples collected from post-conceptional weeks (PCW) 3 to 12 to delineate the dynamic molecular and cellular landscape of early gastrulation and nervous system development. We described the diversification of cell types, the spatial patterning of neural tube cells, and the signaling pathways likely involved in transforming epiblast cells into neuroepithelial cells and then into radial glia. We resolved 24 clusters of radial glial cells along the neural tube and outlined differentiation trajectories for the main classes of neurons. Lastly, we identified conserved and distinctive features across species by comparing early embryonic single-cell transcriptomic profiles between humans and mice. This comprehensive atlas sheds light on the molecular mechanisms underlying gastrulation and early human brain development.
Collapse
Affiliation(s)
- Bo Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | - Zeyuan Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | - Shenyue Qin
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Luwei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Zixiao Li
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100069, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingchao Shi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China
| | - Jialei Yang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yalun Dai
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Dan Han
- Department of Obstetrics & Gynecology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Youqiao Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xin Qiu
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China.
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100069, China.
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China; Changping Laboratory, Beijing 102206, China; New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
71
|
Liu YV, Santiago CP, Sogunro A, Konar GJ, Hu MW, McNally MM, Lu YC, Flores-Bellver M, Aparicio-Domingo S, Li KV, Li ZL, Agakishiev D, Hadyniak SE, Hussey KA, Creamer TJ, Orzolek LD, Teng D, Canto-Soler MV, Qian J, Jiang Z, Johnston RJ, Blackshaw S, Singh MS. Single-cell transcriptome analysis of xenotransplanted human retinal organoids defines two migratory cell populations of nonretinal origin. Stem Cell Reports 2023; 18:1138-1154. [PMID: 37163980 DOI: 10.1016/j.stemcr.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023] Open
Abstract
Human retinal organoid transplantation could potentially be a treatment for degenerative retinal diseases. How the recipient retina regulates the survival, maturation, and proliferation of transplanted organoid cells is unknown. We transplanted human retinal organoid-derived cells into photoreceptor-deficient mice and conducted histology and single-cell RNA sequencing alongside time-matched cultured retinal organoids. Unexpectedly, we observed human cells that migrated into all recipient retinal layers and traveled long distances. Using an unbiased approach, we identified these cells as astrocytes and brain/spinal cord-like neural precursors that were absent or rare in stage-matched cultured organoids. In contrast, retinal progenitor-derived rods and cones remained in the subretinal space, maturing more rapidly than those in the cultured controls. These data suggest that recipient microenvironment promotes the maturation of transplanted photoreceptors while inducing or facilitating the survival of migratory cell populations that are not normally derived from retinal progenitors. These findings have important implications for potential cell-based treatments of retinal diseases.
Collapse
Affiliation(s)
- Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akin Sogunro
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory J Konar
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ming-Wen Hu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minda M McNally
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu-Chen Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Silvia Aparicio-Domingo
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Kang V Li
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Zhuo-Lin Li
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dzhalal Agakishiev
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah E Hadyniak
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Katarzyna A Hussey
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Tyler J Creamer
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda D Orzolek
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Teng
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng Jiang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Robert J Johnston
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Seth Blackshaw
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
72
|
Ferrena A, Zhang X, Shrestha R, Zheng D, Liu W. Six3 and Six6 jointly regulate the identities and developmental trajectories of multipotent retinal progenitor cells in the mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539288. [PMID: 37205402 PMCID: PMC10187238 DOI: 10.1101/2023.05.03.539288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Formation, maintenance, and differentiation of tissue-specific progenitor cells are fundamental tasks during organogenesis. Retinal development is an excellent model for dissecting these processes; mechanisms of retinal differentiation can be harnessed for retinal regeneration toward curing blindness. Using single-cell RNA sequencing of embryonic mouse eye cups in which transcription factor Six3 was conditionally inactivated in peripheral retinas on top of germline deletion of its close paralog Six6 ("DKO"), we identified cell clusters and then inferred developmental trajectories in the integrated dataset. In control retinas, naïve retinal progenitor cells had two major trajectories leading to ciliary margin cells and retinal neurons, respectively. The ciliary margin trajectory was directly from naïve retinal progenitor cells at G1 phase, and the retinal neuron trajectory was through a neurogenic state marked by Atoh7 expression. Upon Six3 and Six6 dual deficiency, both naïve and neurogenic retinal progenitor cells were defective. Ciliary margin differentiation was enhanced, and multi-lineage retinal differentiation was disrupted. An ectopic neuronal trajectory lacking the Atoh7+ state led to ectopic neurons. Differential expression analysis not only confirmed previous phenotype studies but also identified novel candidate genes regulated by Six3/Six6 . Six3 and Six6 were jointly required for balancing the opposing gradients of the Fgf and Wnt signaling in the central-peripheral patterning of the eye cups. Taken together, we identify transcriptomes and developmental trajectories jointly regulated by Six3 and Six6, providing deeper insight into molecular mechanisms underlying early retinal differentiation.
Collapse
|
73
|
Yin W, Mao X, Xu M, Chen M, Xue M, Su N, Yuan S, Liu Q. Epigenetic regulation in the commitment of progenitor cells during retinal development and regeneration. Differentiation 2023:S0301-4681(23)00023-3. [PMID: 37069005 DOI: 10.1016/j.diff.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Retinal development is initiated by multipotent retinal progenitor cells, which undergo several rounds of cell divisions and subsequently terminal differentiation. Retinal regeneration is usually considered as the recapitulation of retinal development, which share common mechanisms underlying the cell cycle re-entry of adult retinal stem cells and the differentiation of retinal neurons. However, how proliferative retinal progenitor cells perform a precise transition to postmitotic retinal cell types during the process of development and regeneration remains elusive. It is proposed that both the intrinsic and extrinsic programming are involved in the transcriptional regulation of the spatio-temporal fate commitment. Epigenetic modifications and the regulatory mechanisms at both DNA and chromatin levels are also postulated to play an important role in the timing of differentiation of specific retinal cells. In the present review, we have summarized recent knowledge of epigenetic regulation that underlies the commitment of retinal progenitor cells in the settings of retinal development and regeneration.
Collapse
Affiliation(s)
- Wenjie Yin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Miao Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Mingkang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Mengting Xue
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Na Su
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
74
|
Zhang J, Roberts JM, Chang F, Schwakopf J, Vetter ML. Jarid2 promotes temporal progression of retinal progenitors via repression of Foxp1. Cell Rep 2023; 42:112237. [PMID: 36924502 PMCID: PMC10210259 DOI: 10.1016/j.celrep.2023.112237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Transitions in competence underlie the ability of CNS progenitors to generate a diversity of neurons and glia. Retinal progenitor cells in mouse generate early-born cell types embryonically and late-born cell types largely postnatally. We find that the transition from early to late progenitor competence is regulated by Jarid2. Loss of Jarid2 results in extended production of early cell types and extended expression of early progenitor genes. Jarid2 can regulate histone modifications, and we find reduction of repressive mark H3K27me3 on a subset of early progenitor genes with loss of Jarid2, most notably Foxp1. We show that Foxp1 regulates the competence to generate early-born retinal cell types, promotes early and represses late progenitor gene expression, and is required for extending early retinal cell production after loss of Jarid2. We conclude that Jarid2 facilitates progression of retinal progenitor temporal identity by repressing Foxp1, which is a primary regulator of early temporal patterning.
Collapse
Affiliation(s)
- Jianmin Zhang
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA
| | - Jacqueline M Roberts
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA
| | - Fei Chang
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA; Interdepartmental Program in Neuroscience, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA
| | - Joon Schwakopf
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA
| | - Monica L Vetter
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
75
|
Smirnov A, Melino G, Candi E. Gene expression in organoids: an expanding horizon. Biol Direct 2023; 18:11. [PMID: 36964575 PMCID: PMC10038780 DOI: 10.1186/s13062-023-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/26/2023] Open
Abstract
Recent development of human three-dimensional organoid cultures has opened new doors and opportunities ranging from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are opening new horizons to the classic understanding of human development and disease. However, the complexity and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid development of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for development and a platform for precision medicine.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy.
| |
Collapse
|
76
|
Ge Y, Chen X, Nan N, Bard J, Wu F, Yergeau D, Liu T, Wang J, Mu X. Key transcription factors influence the epigenetic landscape to regulate retinal cell differentiation. Nucleic Acids Res 2023; 51:2151-2176. [PMID: 36715342 PMCID: PMC10018358 DOI: 10.1093/nar/gkad026] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
How the diverse neural cell types emerge from multipotent neural progenitor cells during central nervous system development remains poorly understood. Recent scRNA-seq studies have delineated the developmental trajectories of individual neural cell types in many neural systems including the neural retina. Further understanding of the formation of neural cell diversity requires knowledge about how the epigenetic landscape shifts along individual cell lineages and how key transcription factors regulate these changes. In this study, we dissect the changes in the epigenetic landscape during early retinal cell differentiation by scATAC-seq and identify globally the enhancers, enriched motifs, and potential interacting transcription factors underlying the cell state/type specific gene expression in individual lineages. Using CUT&Tag, we further identify the enhancers bound directly by four key transcription factors, Otx2, Atoh7, Pou4f2 and Isl1, including those dependent on Atoh7, and uncover the sequential and combinatorial interactions of these factors with the epigenetic landscape to control gene expression along individual retinal cell lineages such as retinal ganglion cells (RGCs). Our results reveal a general paradigm in which transcription factors collaborate and compete to regulate the emergence of distinct retinal cell types such as RGCs from multipotent retinal progenitor cells (RPCs).
Collapse
Affiliation(s)
- Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Xushen Chen
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nan Nan
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Jonathan Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
77
|
Huang L, Li R, Ye L, Zhang S, Tian H, Du M, Qu C, Li S, Li J, Yang M, Wu B, Chen R, Huang G, Zhong L, Yang H, Yu M, Shi Y, Wang C, Zhang H, Chen W, Yang Z. Deep Sc-RNA sequencing decoding the molecular dynamic architecture of the human retina. SCIENCE CHINA. LIFE SCIENCES 2023; 66:496-515. [PMID: 36115892 DOI: 10.1007/s11427-021-2163-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
Abstract
The human retina serves as a light detector and signals transmission tissue. Advanced insights into retinal disease mechanisms and therapeutic strategies require a deep understanding of healthy retina molecular events. Here, we sequenced the mRNA of over 0.6 million single cells from human retinas across six regions at nine different ages. Sixty cell sub-types have been identified from the human mature retinas with unique markers. We revealed regional and age differences of gene expression profiles within the human retina. Cell-cell interaction analysis indicated a rich synaptic connection within the retinal cells. Gene expression regulon analysis revealed the specific expression of transcription factors and their regulated genes in human retina cell types. Some of the gene's expression, such as DKK3, are elevated in aged retinas. A further functional investigation suggested that over expression of DKK3 could impact mitochondrial stability. Overall, decoding the molecular dynamic architecture of the human retina improves our understanding of the vision system.
Collapse
Affiliation(s)
- Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610075, China
| | - Runze Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Lin Ye
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Shanshan Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Huaping Tian
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Mingyan Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Shujin Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Mu Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Biao Wu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325035, China
| | - Ran Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325035, China
| | - Guo Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Ling Zhong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Hongjie Yang
- Department of Organ Transplant Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Yi Shi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Changguan Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100730, China
| | - Houbin Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Wei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325035, China
| | - Zhenglin Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610075, China.
| |
Collapse
|
78
|
Zhang S, Liu C, Wang Q, Zhou H, Wu H, Zhuang J, Cao Y, Shi H, Zhang J, Wang J. CRYAA and GJA8 promote visual development after whisker tactile deprivation. Heliyon 2023; 9:e13897. [PMID: 36915480 PMCID: PMC10006481 DOI: 10.1016/j.heliyon.2023.e13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Deprivation of one sense can be followed by enhanced development of other senses via cross-modal plasticity mechanisms. To study the effect of whisker tactile deprivation on vision during the early stages of development, we clipped the bilateral whiskers of young mice and found that their vision was impaired but later recovered to normal levels. Our results demonstrate that inhibition of the PI3K/AKT/ERK signaling pathway caused short-term visual impairment during early development, while high expression levels of Crystallin Alpha A (CRYAA) and Gap Junction Protein Alpha 8 (GJA8) in the retina led to the recovery of developmental visual acuity. Interestingly, analysis of single-cell sequencing results from human embryonic retinas at 9-19 gestational weeks (GW) revealed that CRYAA and GJA8 display stage-specific peak expression during human embryonic retinal development, suggesting potential functions in visual development. Our data show that high expression levels of CRYAA and GJA8 in the retina after whisker deprivation rescue impaired visual development, which may provide a foundation for further research on the mechanisms of cross-modal plasticity and in particular, offer new insights into the mechanisms underlying tactile-visual cross-modal development.
Collapse
Affiliation(s)
- Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Qian Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haicong Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Hao Wu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Junyi Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Yiyang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Hongwei Shi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author.
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
- Corresponding author.
| |
Collapse
|
79
|
Bai J, Koos DS, Stepanian K, Fouladian Z, Shayler DWH, Aparicio JG, Fraser SE, Moats RA, Cobrinik D. Episodic live imaging of cone photoreceptor maturation in GNAT2-EGFP retinal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530518. [PMID: 36909527 PMCID: PMC10002746 DOI: 10.1101/2023.02.28.530518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Fluorescent reporter pluripotent stem cell (PSC) derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of Guanine Nucleotide-Binding Protein Subunit Alpha Transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP allele robustly and exclusively labeled both immature and mature cones starting at culture day 34. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 cubic microns per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.
Collapse
Affiliation(s)
- Jinlun Bai
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David S. Koos
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominic W. H. Shayler
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Scott E. Fraser
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
| | - Rex A. Moats
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
80
|
Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling. Cell Discov 2023; 9:19. [PMID: 36788214 PMCID: PMC9929086 DOI: 10.1038/s41421-022-00506-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/24/2022] [Indexed: 02/16/2023] Open
Abstract
The amygdala, or an amygdala-like structure, is found in the brains of all vertebrates and plays a critical role in survival and reproduction. However, the cellular architecture of the amygdala and how it has evolved remain elusive. Here, we generated single-nucleus RNA-sequencing data for more than 200,000 cells in the amygdala of humans, macaques, mice, and chickens. Abundant neuronal cell types from different amygdala subnuclei were identified in all datasets. Cross-species analysis revealed that inhibitory neurons and inhibitory neuron-enriched subnuclei of the amygdala were well-conserved in cellular composition and marker gene expression, whereas excitatory neuron-enriched subnuclei were relatively divergent. Furthermore, LAMP5+ interneurons were much more abundant in primates, while DRD2+ inhibitory neurons and LAMP5+SATB2+ excitatory neurons were dominant in the human central amygdalar nucleus (CEA) and basolateral amygdalar complex (BLA), respectively. We also identified CEA-like neurons and their species-specific distribution patterns in chickens. This study highlights the extreme cell-type diversity in the amygdala and reveals the conservation and divergence of cell types and gene expression patterns across species that may contribute to species-specific adaptations.
Collapse
|
81
|
Javed A, Santos-França PL, Mattar P, Cui A, Kassem F, Cayouette M. Ikaros family proteins redundantly regulate temporal patterning in the developing mouse retina. Development 2023; 150:286611. [PMID: 36537580 DOI: 10.1242/dev.200436] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Temporal identity factors regulate competence of neural progenitors to generate specific cell types in a time-dependent manner, but how they operate remains poorly defined. In the developing mouse retina, the Ikaros zinc-finger transcription factor Ikzf1 regulates production of early-born cell types, except cone photoreceptors. In this study we show that, during early stages of retinal development, another Ikaros family protein, Ikzf4, functions redundantly with Ikzf1 to regulate cone photoreceptor production. Using CUT&RUN and functional assays, we show that Ikzf4 binds and represses genes involved in late-born rod photoreceptor specification, hence favoring cone production. At late stages, when Ikzf1 is no longer expressed in progenitors, we show that Ikzf4 re-localizes to target genes involved in gliogenesis and is required for Müller glia production. We report that Ikzf4 regulates Notch signaling genes and is sufficient to activate the Hes1 promoter through two Ikzf GGAA-binding motifs, suggesting a mechanism by which Ikzf4 may influence gliogenesis. These results uncover a combinatorial role for Ikaros family members during nervous system development and provide mechanistic insights on how they temporally regulate cell fate output.
Collapse
Affiliation(s)
- Awais Javed
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
| | - Pedro L Santos-França
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
| | - Allie Cui
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
| | - Fatima Kassem
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 0G4, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 0G4, Canada
- Department of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal H3A 0G4, Canada
| |
Collapse
|
82
|
Kim HJ, O'Hara-Wright M, Kim D, Loi TH, Lim BY, Jamieson RV, Gonzalez-Cordero A, Yang P. Comprehensive characterization of fetal and mature retinal cell identity to assess the fidelity of retinal organoids. Stem Cell Reports 2023; 18:175-189. [PMID: 36630901 PMCID: PMC9860116 DOI: 10.1016/j.stemcr.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Characterizing cell identity in complex tissues such as the human retina is essential for studying its development and disease. While retinal organoids derived from pluripotent stem cells have been widely used to model development and disease of the human retina, there is a lack of studies that have systematically evaluated the molecular and cellular fidelity of the organoids derived from various culture protocols in recapitulating their in vivo counterpart. To this end, we performed an extensive meta-atlas characterization of cellular identities of the human eye, covering a wide range of developmental stages. The resulting map uncovered previously unknown biomarkers of major retinal cell types and those associated with cell-type-specific maturation. Using our retinal-cell-identity map from the fetal and adult tissues, we systematically assessed the fidelity of the retinal organoids in mimicking the human eye, enabling us to comprehensively benchmark the current protocols for retinal organoid generation.
Collapse
Affiliation(s)
- Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michelle O'Hara-Wright
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Daniel Kim
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - To Ha Loi
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Eye Genetics Research Unit, Children's Medical Research Institute, Sydney Children's Hospitals Network, Save Sight Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Benjamin Y Lim
- Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Robyn V Jamieson
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Eye Genetics Research Unit, Children's Medical Research Institute, Sydney Children's Hospitals Network, Save Sight Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Anai Gonzalez-Cordero
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
83
|
Whitney IE, Butrus S, Dyer MA, Rieke F, Sanes JR, Shekhar K. Vision-Dependent and -Independent Molecular Maturation of Mouse Retinal Ganglion Cells. Neuroscience 2023; 508:153-173. [PMID: 35870562 PMCID: PMC10809145 DOI: 10.1016/j.neuroscience.2022.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 01/17/2023]
Abstract
The development and connectivity of retinal ganglion cells (RGCs), the retina's sole output neurons, are patterned by activity-independent transcriptional programs and activity-dependent remodeling. To inventory the molecular correlates of these influences, we applied high-throughput single-cell RNA sequencing (scRNA-seq) to mouse RGCs at six embryonic and postnatal ages. We identified temporally regulated modules of genes that correlate with, and likely regulate, multiple phases of RGC development, ranging from differentiation and axon guidance to synaptic recognition and refinement. Some of these genes are expressed broadly while others, including key transcription factors and recognition molecules, are selectively expressed by one or a few of the 45 transcriptomically distinct types defined previously in adult mice. Next, we used these results as a foundation to analyze the transcriptomes of RGCs in mice lacking visual experience due to dark rearing from birth or to mutations that ablate either bipolar or photoreceptor cells. 98.5% of visually deprived (VD) RGCs could be unequivocally assigned to a single RGC type based on their transcriptional profiles, demonstrating that visual activity is dispensable for acquisition and maintenance of RGC type identity. However, visual deprivation significantly reduced the transcriptomic distinctions among RGC types, implying that activity is required for complete RGC maturation or maintenance. Consistent with this notion, transcriptomic alternations in VD RGCs significantly overlapped with gene modules found in developing RGCs. Our results provide a resource for mechanistic analyses of RGC differentiation and maturation, and for investigating the role of activity in these processes.
Collapse
Affiliation(s)
- Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Karthik Shekhar
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences, QB3, Center for Computational Biology, University of California, Berkeley, CA 94720, USA; Biological Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
84
|
Agarwal D, Kuhns R, Dimitriou CN, Barlow E, Wahlin KJ, Enke RA. Bulk RNA sequencing analysis of developing human induced pluripotent cell-derived retinal organoids. Sci Data 2022; 9:759. [PMID: 36494376 PMCID: PMC9734101 DOI: 10.1038/s41597-022-01853-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Retinogenesis involves the transformation of the anterior developing brain into organized retinal lamellae coordinated by intricate gene signalling networks. This complex process has been investigated in several model organisms such as birds, fish, mammals and amphibians, yet many facets of retinal development are different in humans and remain unexplored. In this regard, human pluripotent stem cell (hPSC)-derived 3D retinal organoids and Next Generation Sequencing (NGS) have emerged as key technologies that have facilitated the discovery of previously unknown details about cell fate specification and gene regulation in the retina. Here we utilized hPSCs integrated with fluorescent reporter genes (SIX6-p2A-eGFP/CRX-p2A-h2b-mRuby3) to generate retinal organoids and carry out bulk RNA sequencing of samples encompassing the majority of retinogenesis (D0-D280). This data set will serve as a valuable reference for the vision research community to characterize differentially expressed genes in the developing human eye.
Collapse
Affiliation(s)
- Devansh Agarwal
- Viterbi Family Department of Ophthalmology at the Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rian Kuhns
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | | | - Emmalyn Barlow
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Karl J Wahlin
- Viterbi Family Department of Ophthalmology at the Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ray A Enke
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA.
- The Center for Genome & Metagenome Studies, James Madison University Harrisonburg, Harrisonburg, VA, 22807, USA.
| |
Collapse
|
85
|
Becker K, Weigelt CM, Fuchs H, Viollet C, Rust W, Wyatt H, Huber J, Lamla T, Fernandez-Albert F, Simon E, Zippel N, Bakker RA, Klein H, Redemann NH. Transcriptome analysis of AAV-induced retinopathy models expressing human VEGF, TNF-α, and IL-6 in murine eyes. Sci Rep 2022; 12:19395. [PMID: 36371417 PMCID: PMC9653384 DOI: 10.1038/s41598-022-23065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
Retinopathies are multifactorial diseases with complex pathologies that eventually lead to vision loss. Animal models facilitate the understanding of the pathophysiology and identification of novel treatment options. However, each animal model reflects only specific disease aspects and understanding of the specific molecular changes in most disease models is limited. Here, we conducted transcriptome analysis of murine ocular tissue transduced with recombinant Adeno-associated viruses (AAVs) expressing either human VEGF-A, TNF-α, or IL-6. VEGF expression led to a distinct regulation of extracellular matrix (ECM)-associated genes. In contrast, both TNF-α and IL-6 led to more comparable gene expression changes in interleukin signaling, and the complement cascade, with TNF-α-induced changes being more pronounced. Furthermore, integration of single cell RNA-Sequencing data suggested an increase of endothelial cell-specific marker genes by VEGF, while TNF-α expression increased the expression T-cell markers. Both TNF-α and IL-6 expression led to an increase in macrophage markers. Finally, transcriptomic changes in AAV-VEGF treated mice largely overlapped with gene expression changes observed in the oxygen-induced retinopathy model, especially regarding ECM components and endothelial cell-specific gene expression. Altogether, our study represents a valuable investigation of gene expression changes induced by VEGF, TNF-α, and IL-6 and will aid researchers in selecting appropriate animal models for retinopathies based on their agreement with the human pathophysiology.
Collapse
Affiliation(s)
- Kolja Becker
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carina M. Weigelt
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Fuchs
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Coralie Viollet
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Werner Rust
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Hannah Wyatt
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jochen Huber
- grid.420061.10000 0001 2171 7500Clinical Development & Operations Corporate, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Thorsten Lamla
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Francesc Fernandez-Albert
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Eric Simon
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Nina Zippel
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Remko A. Bakker
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Klein
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Norbert H. Redemann
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
86
|
Luo Z, Chang KC, Wu S, Sun C, Xia X, Nahmou M, Bian M, Wen RR, Zhu Y, Shah S, Tanasa B, Wernig M, Goldberg JL. Directly induced human retinal ganglion cells mimic fetal RGCs and are neuroprotective after transplantation in vivo. Stem Cell Reports 2022; 17:2690-2703. [PMID: 36368332 PMCID: PMC9768574 DOI: 10.1016/j.stemcr.2022.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Retinal ganglion cell (RGC) replacement therapy could restore vision in glaucoma and other optic neuropathies. We developed a rapid protocol for directly induced RGC (iRGC) differentiation from human stem cells, leveraging overexpression of NGN2. Neuronal morphology and neurite growth were observed within 1 week of induction; characteristic RGC-specific gene expression confirmed identity. Calcium imaging demonstrated γ-aminobutyric acid (GABA)-induced excitation characteristic of immature RGCs. Single-cell RNA sequencing showed more similarities between iRGCs and early-stage fetal human RGCs than retinal organoid-derived RGCs. Intravitreally transplanted iRGCs survived and migrated into host retinas independent of prior optic nerve trauma, but iRGCs protected host RGCs from neurodegeneration. These data demonstrate rapid iRGC generation in vitro into an immature cell with high similarity to human fetal RGCs and capacity for retinal integration after transplantation and neuroprotective function after optic nerve injury. The simplicity of this system may benefit translational studies on human RGCs.
Collapse
Affiliation(s)
- Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Ophthalmology and Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Suqian Wu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Shanghai Key Laboratory of Visual Impairment and Restoration, Department of Ophthalmology and Vision Science, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China
| | - Catalina Sun
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Michael Nahmou
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Minjuan Bian
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Rain R. Wen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Ying Zhu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sahil Shah
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Bogdan Tanasa
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marius Wernig
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Corresponding author
| |
Collapse
|
87
|
Xiao Y, Mao X, Hu X, Yuan S, Chen X, Dai W, Zhang S, Li Y, Chen M, Mao P, Liu Y, Liu Q, Hu Y. Single-Cell Transcriptomic Profiling of Human Retinal Organoids Revealed a Role of IGF1-PHLDA1 Axis in Photoreceptor Precursor Specification. Invest Ophthalmol Vis Sci 2022; 63:9. [DOI: 10.1167/iovs.63.12.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuhua Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wangxuan Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shuyao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yonghua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Mingkang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peiyao Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
88
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
89
|
A Spacetime Odyssey of Neural Progenitors to Generate Neuronal Diversity. Neurosci Bull 2022; 39:645-658. [PMID: 36214963 PMCID: PMC10073374 DOI: 10.1007/s12264-022-00956-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022] Open
Abstract
To understand how the nervous system develops from a small pool of progenitors during early embryonic development, it is fundamentally important to identify the diversity of neuronal subtypes, decode the origin of neuronal diversity, and uncover the principles governing neuronal specification across different regions. Recent single-cell analyses have systematically identified neuronal diversity at unprecedented scale and speed, leaving the deconstruction of spatiotemporal mechanisms for generating neuronal diversity an imperative and paramount challenge. In this review, we highlight three distinct strategies deployed by neural progenitors to produce diverse neuronal subtypes, including predetermined, stochastic, and cascade diversifying models, and elaborate how these strategies are implemented in distinct regions such as the neocortex, spinal cord, retina, and hypothalamus. Importantly, the identity of neural progenitors is defined by their spatial position and temporal patterning factors, and each type of progenitor cell gives rise to distinguishable cohorts of neuronal subtypes. Microenvironmental cues, spontaneous activity, and connectional pattern further reshape and diversify the fate of unspecialized neurons in particular regions. The illumination of how neuronal diversity is generated will pave the way for producing specific brain organoids to model human disease and desired neuronal subtypes for cell therapy, as well as understanding the organization of functional neural circuits and the evolution of the nervous system.
Collapse
|
90
|
Mustafi D, Bharathan SP, Calderon R, Nagiel A. HUMAN CELLULAR MODELS FOR RETINAL DISEASE: From Induced Pluripotent Stem Cells to Organoids. Retina 2022; 42:1829-1835. [PMID: 35858274 PMCID: PMC10119785 DOI: 10.1097/iae.0000000000003571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To provide a concise review of induced pluripotent stem cells (iPSCs) and retinal organoids as models for human retinal diseases and their role in gene discovery and treatment of inherited retinal diseases (IRDs). METHODS A PubMed literature review was performed for models of human retinal disease, including animal models and human pluripotent stem cell-derived models. RESULTS There is a growing body of research on retinal disease using human pluripotent stem cells. This is a significant change from just a decade ago when most research was performed on animal models. The advent of induced pluripotent stem cells has permitted not only the generation of two-dimensional human cell cultures such as RPE but also more recently the generation of three-dimensional retinal organoids that better reflect the multicellular laminar architecture of the human retina. CONCLUSION Modern stem cell techniques are improving our ability to model human retinal disease in vitro, especially with the use of patient-derived induced pluripotent stem cells. In the future, a personalized approach may be used in which the individual's unique genotype can be modeled in two-dimensional culture or three-dimensional organoids and then rescued with an optimized therapy before treating the patient.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Department of Ophthalmology, Karalis Johnson Retina Center, University of Washington, Seattle, Washington
- Department of Ophthalmology, Seattle Children's Hospital, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Sumitha P Bharathan
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Rosanna Calderon
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Department of Development, Stem Cells and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
91
|
Subramanian R, Sahoo D. Boolean implication analysis of single-cell data predicts retinal cell type markers. BMC Bioinformatics 2022; 23:378. [PMID: 36114457 PMCID: PMC9482279 DOI: 10.1186/s12859-022-04915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background The retina is a complex tissue containing multiple cell types that are essential for vision. Understanding the gene expression patterns of various retinal cell types has potential applications in regenerative medicine. Retinal organoids (optic vesicles) derived from pluripotent stem cells have begun to yield insights into the transcriptomics of developing retinal cell types in humans through single cell RNA-sequencing studies. Previous methods of gene reporting have relied upon techniques in vivo using microarray data, or correlational and dimension reduction methods for analyzing single cell RNA-sequencing data computationally. We aimed to develop a state-of-the-art Boolean method that filtered out noise, could be applied to a wide variety of datasets and lent insight into gene expression over differentiation. Results Here, we present a bioinformatic approach using Boolean implication to discover genes which are retinal cell type-specific or involved in retinal cell fate. We apply this approach to previously published retina and retinal organoid datasets and improve upon previously published correlational methods. Our method improves the prediction accuracy of marker genes of retinal cell types and discovers several new high confidence cone and rod-specific genes. Conclusions The results of this study demonstrate the benefits of a Boolean approach that considers asymmetric relationships. We have shown a statistically significant improvement from correlational, symmetric methods in the prediction accuracy of retinal cell-type specific genes. Furthermore, our method contains no cell or tissue-specific tuning and hence could impact other areas of gene expression analyses in cancer and other human diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04915-4.
Collapse
|
92
|
Petridou E, Godinho L. Cellular and Molecular Determinants of Retinal Cell Fate. Annu Rev Vis Sci 2022; 8:79-99. [DOI: 10.1146/annurev-vision-100820-103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate retina is regarded as a simple part of the central nervous system (CNS) and thus amenable to investigations of the determinants of cell fate. Its five neuronal cell classes and one glial cell class all derive from a common pool of progenitors. Here we review how each cell class is generated. Retinal progenitors progress through different competence states, in each of which they generate only a small repertoire of cell classes. The intrinsic state of the progenitor is determined by the complement of transcription factors it expresses. Thus, although progenitors are multipotent, there is a bias in the types of fates they generate during any particular time window. Overlying these competence states are stochastic mechanisms that influence fate decisions. These mechanisms are determined by a weighted set of probabilities based on the abundance of a cell class in the retina. Deterministic mechanisms also operate, especially late in development, when preprogrammed progenitors solely generate specific fates.
Collapse
Affiliation(s)
- Eleni Petridou
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
- Graduate School of Systemic Neurosciences (GSN), Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
| |
Collapse
|
93
|
Chew SH, Martinez C, Chirco KR, Kandoi S, Lamba DA. Timed Notch Inhibition Drives Photoreceptor Fate Specification in Human Retinal Organoids. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36129723 PMCID: PMC9513742 DOI: 10.1167/iovs.63.10.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Transplanting photoreceptors from human pluripotent stem cell-derived retinal organoids have the potential to reverse vision loss in affected individuals. However, transplantable photoreceptors are only a subset of all cells in the organoids. Hence, the goal of our current study was to accelerate and synchronize photoreceptor differentiation in retinal organoids by inhibiting the Notch signaling pathway at different developmental time-points using a small molecule, PF-03084014 (PF). Methods Human induced pluripotent stem cell- and human embryonic stem cells-derived retinal organoids were treated with 10 µM PF for 3 days starting at day 45 (D45), D60, D90, and D120 of differentiation. Organoids were collected at post-treatment days 14, 28, and 42 and analyzed for progenitor and photoreceptor markers and Notch pathway inhibition by immunohistochemistry (IHC), quantitative PCR, and bulk RNA sequencing (n = 3-5 organoids from three independent experiments). Results Retinal organoids collected after treatment showed a decrease in progenitor markers (KI67, VSX2, PAX6, and LHX2) and an increase in differentiated pan-photoreceptor markers (OTX2, CRX, and RCVRN) at all organoid stages except D120. PF-treated organoids at D45 and D60 exhibited an increase in cone photoreceptor markers (RXRG and ARR3). PF treatment at D90 revealed an increase in cone and rod photoreceptors markers (ARR3, NRL, and NR2E3). Bulk RNA sequencing analysis mirrored the immunohistochemistry data and quantitative PCR confirmed Notch effector inhibition. Conclusions Timing the Notch pathway inhibition in human retinal organoids to align with progenitor competency stages can yield an enriched population of early cone or rod photoreceptors.
Collapse
Affiliation(s)
- Shereen H. Chew
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Cassandra Martinez
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Kathleen R. Chirco
- Department of Ophthalmology, University of California San Francisco, California, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| |
Collapse
|
94
|
Paganos P, Ullrich-Lüter E, Caccavale F, Zakrzewski A, Voronov D, Fournon-Berodia I, Cocurullo M, Lüter C, Arnone MI. A New Model Organism to Investigate Extraocular Photoreception: Opsin and Retinal Gene Expression in the Sea Urchin Paracentrotus lividus. Cells 2022; 11:2636. [PMID: 36078045 PMCID: PMC9454927 DOI: 10.3390/cells11172636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular research on the evolution of extraocular photoreception has drawn attention to photosensitive animals lacking proper eye organs. Outside of vertebrates, little is known about this type of sensory system in any other deuterostome. In this study, we investigate such an extraocular photoreceptor cell (PRC) system in developmental stages of the sea urchin Paracentrotus lividus. We provide a general overview of the cell type families present at the mature rudiment stage using single-cell transcriptomics, while emphasizing the PRCs complexity. We show that three neuronal and one muscle-like PRC type families express retinal genes prior to metamorphosis. Two of the three neuronal PRC type families express a rhabdomeric opsin as well as an echinoderm-specific opsin (echinopsin), and their genetic wiring includes sea urchin orthologs of key retinal genes such as hlf, pp2ab56e, barh, otx, ac/sc, brn3, six1/2, pax6, six3, neuroD, irxA, isl and ato. Using qPCR, in situ hybridization, and immunohistochemical analysis, we found that the expressed retinal gene composition becomes more complex from mature rudiment to juvenile stage. The majority of retinal genes are expressed dominantly in the animals' podia, and in addition to the genes already expressed in the mature rudiment, the juvenile podia express a ciliary opsin, another echinopsin, and two Go-opsins. The expression of a core of vertebrate retinal gene orthologs indicates that sea urchins have an evolutionarily conserved gene regulatory toolkit that controls photoreceptor specification and function, and that their podia are photosensory organs.
Collapse
Affiliation(s)
- Periklis Paganos
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Esther Ullrich-Lüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Anne Zakrzewski
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Danila Voronov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Inés Fournon-Berodia
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Maria Cocurullo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Carsten Lüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
95
|
Li J, Yang W, Wang YJ, Ma C, Curry CJ, McGoldrick D, Nickerson DA, Chong JX, Blue EE, Mullikin JC, Reefhuis J, Nembhard WN, Romitti PA, Werler MM, Browne ML, Olshan AF, Finnell RH, Feldkamp ML, Pangilinan F, Almli LM, Bamshad MJ, Brody LC, Jenkins MM, Shaw GM. Exome sequencing identifies genetic variants in anophthalmia and microphthalmia. Am J Med Genet A 2022; 188:2376-2388. [PMID: 35716026 PMCID: PMC9283271 DOI: 10.1002/ajmg.a.62874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022]
Abstract
Anophthalmia and microphthalmia (A/M) are rare birth defects affecting up to 2 per 10,000 live births. These conditions are manifested by the absence of an eye or reduced eye volumes within the orbit leading to vision loss. Although clinical case series suggest a strong genetic component in A/M, few systematic investigations have been conducted on potential genetic contributions owing to low population prevalence. To overcome this challenge, we utilized DNA samples and data collected as part of the National Birth Defects Prevention Study (NBDPS). The NBDPS employed multi-center ascertainment of infants affected by A/M. We performed exome sequencing on 67 family trios and identified numerous genes affected by rare deleterious nonsense and missense variants in this cohort, including de novo variants. We identified 9 nonsense changes and 86 missense variants that are absent from the reference human population (Genome Aggregation Database), and we suggest that these are high priority candidate genes for A/M. We also performed literature curation, single cell transcriptome comparisons, and molecular pathway analysis on the candidate genes and performed protein structure modeling to determine the potential pathogenic variant consequences on PAX6 in this disease.
Collapse
Affiliation(s)
- Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuejun Jessie Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Chen Ma
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cynthia J. Curry
- Genetic Medicine, Department of Pediatrics, University of California, San Francisco/Fresno, CA, USA
| | - Daniel McGoldrick
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Elizabeth E. Blue
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James C. Mullikin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wendy N. Nembhard
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Martha M. Werler
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marilyn L. Browne
- Birth Defects Registry, New York State Department of Health, Albany, NY, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Marcia L. Feldkamp
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Faith Pangilinan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Lawrence C. Brody
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
96
|
Bachu VS, Kandoi S, Park KU, Kaufman ML, Schwanke M, Lamba DA, Brzezinski JA. An enhancer located in a Pde6c intron drives transient expression in the cone photoreceptors of developing mouse and human retinas. Dev Biol 2022; 488:131-150. [PMID: 35644251 PMCID: PMC10676565 DOI: 10.1016/j.ydbio.2022.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
How cone photoreceptors are formed during retinal development is only partially known. This is in part because we do not fully understand the gene regulatory network responsible for cone genesis. We reasoned that cis-regulatory elements (enhancers) active in nascent cones would be regulated by the same upstream network that controls cone formation. To dissect this network, we searched for enhancers active in developing cones. By electroporating enhancer-driven fluorescent reporter plasmids, we observed that a sequence within an intron of the cone-specific Pde6c gene acted as an enhancer in developing mouse cones. Similar fluorescent reporter plasmids were used to generate stable transgenic human induced pluripotent stem cells that were then grown into three-dimensional human retinal organoids. These organoids contained fluorescently labeled cones, demonstrating that the Pde6c enhancer was also active in human cones. We observed that enhancer activity was transient and labeled a minor population of developing rod photoreceptors in both mouse and human systems. This cone-enriched pattern argues that the Pde6c enhancer is activated in cells poised between rod and cone fates. Additionally, it suggests that the Pde6c enhancer is activated by the same regulatory network that selects or stabilizes cone fate choice. To further understand this regulatory network, we identified essential enhancer sequence regions through a series of mutagenesis experiments. This suggested that the Pde6c enhancer was regulated by transcription factor binding at five or more locations. Binding site predictions implicated transcription factor families known to control photoreceptor formation and families not previously associated with cone development. These results provide a framework for deciphering the gene regulatory network that controls cone genesis in both human and mouse systems. Our new transgenic human stem cell lines provide a tool for determining which cone developmental mechanisms are shared and distinct between mice and humans.
Collapse
Affiliation(s)
- Vismaya S Bachu
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael L Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Schwanke
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
97
|
Single-cell atlas of keratoconus corneas revealed aberrant transcriptional signatures and implicated mechanical stretch as a trigger for keratoconus pathogenesis. Cell Discov 2022; 8:66. [PMID: 35821117 PMCID: PMC9276680 DOI: 10.1038/s41421-022-00397-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/15/2022] [Indexed: 12/22/2022] Open
Abstract
Keratoconus is a common ectatic corneal disorder in adolescents and young adults that can lead to progressive visual impairment or even legal blindness. Despite the high prevalence, its etiology is not fully understood. In this study, we performed single-cell RNA sequencing (scRNA-Seq) analysis on 39,214 cells from central corneas of patients with keratoconus and healthy individuals, to define the involvement of each cell type during disease progression. We confirmed the central role of corneal stromal cells in this disease, where dysregulation of collagen and extracellular matrix (ECM) occurred. Differential gene expression and histological analyses revealed two potential novel markers for keratoconus stromal cells, namely CTSD and CTSK. Intriguingly, we detected elevated levels of YAP1 and TEAD1, the master regulators of biomechanical homeostasis, in keratoconus stromal cells. Cyclical mechanical experiments implicated the mechanical stretch in prompting protease production in corneal stromal cells during keratoconus progression. In the epithelial cells of keratoconus corneas, we observed reduced basal cells and abnormally differentiated superficial cells, unraveling the corneal epithelial lesions that were usually neglected in clinical diagnosis. In addition, several elevated cytokines in immune cells of keratoconus samples supported the involvement of inflammatory response in the progression of keratoconus. Finally, we revealed the dysregulated cell-cell communications in keratoconus, and found that only few ligand-receptor interactions were gained but a large fraction of interactional pairs was erased in keratoconus, especially for those related to protease inhibition and anti-inflammatory process. Taken together, this study facilitates the understanding of molecular mechanisms underlying keratoconus pathogenesis, providing insights into keratoconus diagnosis and potential interventions.
Collapse
|
98
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
99
|
Daniszewski M, Senabouth A, Liang HH, Han X, Lidgerwood GE, Hernández D, Sivakumaran P, Clarke JE, Lim SY, Lees JG, Rooney L, Gulluyan L, Souzeau E, Graham SL, Chan CL, Nguyen U, Farbehi N, Gnanasambandapillai V, McCloy RA, Clarke L, Kearns LS, Mackey DA, Craig JE, MacGregor S, Powell JE, Pébay A, Hewitt AW. Retinal ganglion cell-specific genetic regulation in primary open-angle glaucoma. CELL GENOMICS 2022; 2:100142. [PMID: 36778138 PMCID: PMC9903700 DOI: 10.1016/j.xgen.2022.100142] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/08/2021] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
To assess the transcriptomic profile of disease-specific cell populations, fibroblasts from patients with primary open-angle glaucoma (POAG) were reprogrammed into induced pluripotent stem cells (iPSCs) before being differentiated into retinal organoids and compared with those from healthy individuals. We performed single-cell RNA sequencing of a total of 247,520 cells and identified cluster-specific molecular signatures. Comparing the gene expression profile between cases and controls, we identified novel genetic associations for this blinding disease. Expression quantitative trait mapping identified a total of 4,443 significant loci across all cell types, 312 of which are specific to the retinal ganglion cell subpopulations, which ultimately degenerate in POAG. Transcriptome-wide association analysis identified genes at loci previously associated with POAG, and analysis, conditional on disease status, implicated 97 statistically significant retinal ganglion cell-specific expression quantitative trait loci. This work highlights the power of large-scale iPSC studies to uncover context-specific profiles for a genetically complex disease.
Collapse
Affiliation(s)
- Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Anne Senabouth
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Helena H. Liang
- Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Grace E. Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Damián Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Priyadharshini Sivakumaran
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Jordan E. Clarke
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Shiang Y. Lim
- Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,O’Brien Institute Department of St Vincent’s Institute of Medical Research, Melbourne, Fitzroy, VIC 3065, Australia
| | - Jarmon G. Lees
- O’Brien Institute Department of St Vincent’s Institute of Medical Research, Melbourne, Fitzroy, VIC 3065, Australia,Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Louise Rooney
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Lerna Gulluyan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Stuart L. Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Chia-Ling Chan
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Uyen Nguyen
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Nona Farbehi
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Vikkitharan Gnanasambandapillai
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Rachael A. McCloy
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Linda Clarke
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Lisa S. Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - David A. Mackey
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Crawley, WA 6009, Australia,School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Joseph E. Powell
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia,UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW 2052, Australia,Corresponding author
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia,Corresponding author
| | - Alex W. Hewitt
- Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia,School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, Australia,Corresponding author
| |
Collapse
|
100
|
Abbas F, Becker S, Jones BW, Mure LS, Panda S, Hanneken A, Vinberg F. Revival of light signalling in the postmortem mouse and human retina. Nature 2022; 606:351-357. [PMID: 35545677 PMCID: PMC10000337 DOI: 10.1038/s41586-022-04709-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.
Collapse
Affiliation(s)
- Fatima Abbas
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Ludovic S Mure
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Institute of Physiology, University of Bern, Bern, Switzerland
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| | | | - Anne Hanneken
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Retina Consultants San Diego, La Jolla, CA, USA.
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|