51
|
Abstract
Telomeres are composed of repetitive G-rich sequence and an abundance of associated proteins that together form a dynamic cap that protects chromosome ends and allows them to be distinguished from deleterious DSBs. Telomere-associated proteins also function to regulate telomerase, the ribonucleoprtotein responsible for addition of the species-specific terminal repeat sequence. Loss of telomere function is an important mechanism for the chromosome instability commonly found in cancer. Dysfunctional telomeres can result either from alterations in the telomere-associated proteins required for end-capping function, or from alterations that promote the gradual or sudden loss of sufficient repeat sequence necessary to maintain proper telomere structure. Regardless of the mechanism, loss of telomere function can result in sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles, leading to extensive DNA amplification and large terminal deletions. B/F/B cycles terminate primarily when the unstable chromosome acquires a new telomere, most often by translocation of the ends of other chromosomes, thereby providing a mechanism for transfer of instability from one chromosome to another. Thus, the loss of a single telomere can result in on-going instability, affect multiple chromosomes, and generate many of the types of rearrangements commonly associated with human cancer.
Collapse
Affiliation(s)
- Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
52
|
Bolzán AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 2006; 612:189-214. [PMID: 16490380 DOI: 10.1016/j.mrrev.2005.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022]
Abstract
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina
| |
Collapse
|
53
|
O'Driscoll M, Jeggo PA. The role of double-strand break repair - insights from human genetics. Nat Rev Genet 2006; 7:45-54. [PMID: 16369571 DOI: 10.1038/nrg1746] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The efficient repair of DNA double-strand breaks is crucial in safeguarding the genomic integrity of organisms. Responses to double-strand breaks include complex signal-transduction, cell-cycle-checkpoint and repair pathways. Defects in these pathways lead to several human disorders with pleiotropic clinical features. Dissection of the molecular basis that underlies the diverse clinical features is enhancing our understanding of the damage-response mechanisms and their role in development, and might ultimately facilitate treatment.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, East Sussex BN1 9RQ, UK.
| | | |
Collapse
|
54
|
Genescà A, Martín M, Latre L, Soler D, Pampalona J, Tusell L. Telomere dysfunction: a new player in radiation sensitivity. Bioessays 2006; 28:1172-80. [PMID: 17120191 DOI: 10.1002/bies.20501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human individuals often exhibit important differences in their sensitivity to ionising radiation. Extensive literature links radiation sensitivity with impaired DNA repair which is due to a lack of correct functioning in many proteins involved in DNA-repair pathways and/or in DNA-damage checkpoint responses. Given that ionising radiation is an important and widespread diagnostic and therapeutic tool, it is important to investigate further those factors and mechanisms that underlie individual radiosensitivity. Recently, evidence is accumulating that telomere function may well be involved in cellular and organism responses to ionising radiation, broadening still further the currently complex and challenging scenario.
Collapse
Affiliation(s)
- Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
55
|
Martín M, Genescà A, Latre L, Jaco I, Taccioli GE, Egozcue J, Blasco MA, Iliakis G, Tusell L. Postreplicative Joining of DNA Double-Strand Breaks Causes Genomic Instability in DNA-PKcs–Deficient Mouse Embryonic Fibroblasts. Cancer Res 2005; 65:10223-32. [PMID: 16288010 DOI: 10.1158/0008-5472.can-05-0932] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Combined cytogenetic and biochemical approaches were used to investigate the contributions of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in the maintenance of genomic stability in nonirradiated and irradiated primary mouse embryo fibroblasts (MEF). We show that telomere dysfunction contributes only marginally to genomic instability associated with DNA-PKcs deficiency in the absence of radiation. Following exposure to ionizing radiation, DNA-PKcs-/- MEFs are radiosensitized mainly as a result of the associated DNA double-strand break (DSB) repair defect. This defect manifests as an increase in the fraction of DSB rejoining with slow kinetics although nearly complete rejoining is achieved within 48 hours. Fifty-four hours after ionizing radiation, DNA-PKcs-/- cells present with a high number of simple and complex chromosome rearrangements as well as with unrepaired chromosome breaks. Overall, induction of chromosome aberrations is 6-fold higher in DNA-PKcs-/- MEFs than in their wild-type counterparts. Spectral karyotyping-fluorescence in situ hybridization technology distinguishes between rearrangements formed by prereplicative and postreplicative DSB rejoining and identifies sister chromatid fusion as a significant source of genomic instability and radiation sensitivity in DNA-PKcs-/- MEFs. Because DNA-PKcs-/- MEFs show a strong G1 checkpoint response after ionizing radiation, we propose that the delayed rejoining of DNA DSBs in DNA-PKcs-/- MEFs prolongs the mean life of broken chromosome ends and increases the probability of incorrect joining. The preponderance of sister chromatid fusion as a product of incorrect joining points to a possible defect in S-phase arrest and emphasizes proximity in these misrepair events.
Collapse
Affiliation(s)
- Marta Martín
- Department of Cell Biology, Physiology, and Immunology, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Zhang Q, Williams ES, Askin KF, Peng Y, Bedford JS, Liber HL, Bailey SM. Suppression of DNA-PK by RNAi has different quantitative effects on telomere dysfunction and mutagenesis in human lymphoblasts treated with gamma rays or HZE particles. Radiat Res 2005; 164:497-504. [PMID: 16187756 DOI: 10.1667/rr3366.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Basic to virtually all relevant biological effects of ionizing radiation is the underlying damage produced in DNA and the subsequent cellular processing of such damage. The damage can be qualitatively different for different kinds of radiations, and the genetics of the biological systems exposed can greatly affect damage processing and ultimate outcome--the biological effect of concern. The accurate repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and function. Incorrect repair of such lesions results in chromosomal rearrangements and mutations that can lead to cancer and heritable defects in the progeny of irradiated parents. We have focused on the consequent phenotypic effects of faulty repair by examining connections between cellular radiosensitivity phenotypes relevant for carcinogenesis after exposure to ionizing radiation, and deficiencies in various components of the non-homologous end-joining (NHEJ) system. Here we produced deficiencies of individual components of the DNA-dependent protein kinase (DNA-PK) holoenzyme (Ku86 and the catalytic subunit, DNA-PKcs), both singly and in combination, using RNA interference (RNAi) in human lymphoblastoid cell lines. Exposure of cells exhibiting reduced protein expression to either gamma rays or 1 GeV/nucleon iron particles demonstrated differential effects on telomere dysfunction and mutation frequency as well as differential effects between radiation qualities.
Collapse
Affiliation(s)
- Qinming Zhang
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Wang Y, Erdmann N, Giannone RJ, Wu J, Gomez M, Liu Y. An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres. Proc Natl Acad Sci U S A 2005; 102:10256-60. [PMID: 16000404 PMCID: PMC1177420 DOI: 10.1073/pnas.0504635102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Telomerase deficiency leads to a progressive loss of telomeric DNA that eventually triggers cell apoptosis in human primary cells during prolonged growth in culture. Rare survivors can maintain telomere length through either activation of telomerase or recombination-based telomere lengthening, and thus proliferate indefinitely. We have explored the possibility that telomeres may be maintained through telomere sister chromatid exchange (T-SCE) in murine telomere reverse transcriptase-deficient (mTert-/-) splenocytes and ES cells. Because telomerase deficiency leads to gradual loss of telomeric DNA in mTert-/- splenocytes and ES cells and eventually to chromosomes with telomere signal-free ends (SFEs), we examined these cell types for evidence of sister chromatid exchange at telomeres, and observed an increase in T-SCEs only in a subset of mTert-/- splenocytes or ES cells that possessed multiple SFEs. Furthermore, T-SCEs were more often detected in ES cells than in splenocytes that harbored a similar frequency of SFEs. In mTert heterozygous (mTert+/-) ES cells or splenocytes, which are known to exhibit a decrease in average telomere length but no SFEs, no increase in T-SCE was observed. In addition to T-SCE, other genomic rearrangements (i.e., SCE) were also significantly increased in mTert-/- ES cells possessing critically short telomeres, but not in splenocytes. Our results suggest that animals and cell culture differ in their ability to carry out genomic rearrangements as a means of maintaining telomere integrity when telomeres become critically shortened.
Collapse
Affiliation(s)
- Yisong Wang
- Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6445, USA
| | | | | | | | | | | |
Collapse
|
58
|
Qi L, Strong MA, Karim BO, Huso DL, Greider CW. Telomere fusion to chromosome breaks reduces oncogenic translocations and tumour formation. Nat Cell Biol 2005; 7:706-11. [PMID: 15965466 DOI: 10.1038/ncb1276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 06/06/2005] [Indexed: 12/13/2022]
Abstract
Telomeres protect chromosome ends from fusion, degradation and recombination. Loss of telomere function has opposite effects on tumorigenesis: apoptosis, which inhibits tumour growth, and genomic instability, which accelerates tumour formation. Here we describe a new mechanism by which short telomeres inhibit tumorigenesis through interference with oncogenic translocations. In mice that are null for both ataxia-telangiectasia-mutated (Atm) and telomerase RNA (mTR), the first generation (G1) Atm-/- mTR-/- mice have a lower rate of tumour formation than Atm-/- mTR+/+ mice. These Atm-/- mTR-/- G1 tumours show no increase in either apoptosis or overall genomic instability. Strikingly, the tumours show a high fraction of translocations containing telomere signals at the translocation junctions. Translocations of the T-cell receptors on chromosome 14, which initiate tumorigenesis, were interrupted by fusion with telomeres. Telomere repeats were also detected at the translocation junctions in pre-malignant thymocytes. We propose that telomere fusion to DNA double-strand breaks competes with the generation of oncogenic translocations and thus reduces tumour formation.
Collapse
MESH Headings
- Age Factors
- Animals
- Apoptosis/genetics
- Ataxia Telangiectasia Mutated Proteins
- B-Lymphocytes/chemistry
- B-Lymphocytes/metabolism
- Body Weight/genetics
- Cell Cycle Proteins/genetics
- Cell Proliferation
- Chromosome Breakage/genetics
- Crosses, Genetic
- DNA-Binding Proteins/genetics
- Female
- Gene Rearrangement, T-Lymphocyte/genetics
- Genes, T-Cell Receptor/genetics
- Genomic Instability/genetics
- Genotype
- In Situ Hybridization, Fluorescence
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Male
- Mice
- Mice, Knockout
- Mice, SCID
- Models, Genetic
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Protein Serine-Threonine Kinases/genetics
- Spectral Karyotyping
- Survival Analysis
- Telomerase/genetics
- Telomere/genetics
- Telomere/metabolism
- Translocation, Genetic/genetics
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Ling Qi
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
59
|
Al-Wahiby S, Slijepcevic P. Chromosomal aberrations involving telomeres in BRCA1 deficient human and mouse cell lines. Cytogenet Genome Res 2005; 109:491-6. [PMID: 15905643 DOI: 10.1159/000084208] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 09/13/2004] [Indexed: 11/19/2022] Open
Abstract
Cells defective in BRCA1 show genomic instability as evidenced by increased radiosensitivity, the presence of chromosomal abnormalities and the loss of heterozygosity at many loci. Reported chromosomal abnormalities in BRCA1 deficient cells include dicentric chromosomes. Dicentric chromosomes, in some cases, may arise as a result of end-to-end chromosome fusions, which represent signatures of telomere dysfunction. In this study we examined BRCA1 deficient human and mouse cells for the presence of chromosomal aberrations indicative of telomere dysfunction. We identified a lymphoblastoid cell line, GM14090, established from a BRCA1 carrier that showed elevated levels of dicentric chromosomes. Molecular cytogenetic analysis revealed that these dicentric chromosomes result from end-to-end chromosome fusions. The frequency of end-to-end chromosome fusions did not change after exposure of GM14090 cells to bleomycin but we observed elevated levels of chromosomal abnormalities involving interactions between DNA double strand breaks and uncapped telomeres in this cell line. We observed similar chromosomal abnormalities involving telomeres in the breast cancer cell line, HCC1937, homozygous for BRCA1 mutation. Finally, we analyzed mouse embryonic stem cells lacking functional Brca1 and observed the presence of telomere dysfunction following exposure of these cells to bleomycin. Our results reveal cytogenetic evidence of telomere dysfunction in BRCA1 deficient cells.
Collapse
Affiliation(s)
- S Al-Wahiby
- Brunel Institute of Cancer Genetics and Pharmacogenomics, Department of Biological Sciences, Brunel University, Uxbridge, UK
| | | |
Collapse
|
60
|
Blasco MA. Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 2005; 24:1095-103. [PMID: 15775986 PMCID: PMC556402 DOI: 10.1038/sj.emboj.7600598] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 02/04/2005] [Indexed: 12/13/2022] Open
Abstract
Telomeres are capping structures at the ends of eukaryotic chromosomes, which consist of repetitive DNA bound to an array of specialized proteins. Telomeres are part of the constitutive heterochromatin and are subjected to epigenetic modifications. The function of telomeres is to prevent chromosome ends from being detected as damaged DNA. Both the length of telomere repeats and the integrity of the telomere-binding proteins are important for telomere protection. Telomere length is regulated by telomerase, by the telomere-binding proteins, as well as by activities that modify the state of the chromatin. Various mouse models with altered levels of telomerase activity, or mutant for different telomere-binding proteins, have been recently generated. Here, I will discuss how these different mouse models have contributed to our understanding on the role of telomeres and telomerase in cancer and aging.
Collapse
Affiliation(s)
- María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain.
| |
Collapse
|
61
|
Abstract
Double-strand breaks (DSBs) arise endogenously during normal cellular processes and exogenously by genotoxic agents such as ionizing radiation (IR). DSBs are one of the most severe types of DNA damage, which if left unrepaired are lethal to the cell. Several different DNA repair pathways combat DSBs, with nonhomologous end-joining (NHEJ) being one of the most important in mammalian cells. Competent NHEJ catalyses repair of DSBs by joining together and ligating two free DNA ends of little homology (microhomology) or DNA ends of no homology. The core components of mammalian NHEJ are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), Ku subunits Ku70 and Ku80, Artemis, XRCC4 and DNA ligase IV. DNA-PK is a nuclear serine/threonine protein kinase that comprises a catalytic subunit (DNA-PK(cs)), with the Ku subunits acting as the regulatory element. It has been proposed that DNA-PK is a molecular sensor for DNA damage that enhances the signal via phosphorylation of many downstream targets. The crucial role of DNA-PK in the repair of DSBs is highlighted by the hypersensitivity of DNA-PK(-/-) mice to IR and the high levels of unrepaired DSBs after genotoxic insult. Recently, DNA-PK has emerged as a suitable genetic target for molecular therapeutics such as siRNA, antisense and novel inhibitory small molecules. This review encompasses the recent literature regarding the role of DNA-PK in the protection of genomic stability and focuses on how this knowledge has aided the development of specific DNA-PK inhibitors, via both small molecule and directed molecular targeting techniques. This review promotes the inhibition of DNA-PK as a valid approach to enhance the tumor-cell-killing effects of treatments such as IR.
Collapse
Affiliation(s)
- Spencer J Collis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
62
|
Abstract
Functional analysis of the XRCC genes continues to make an important contribution to the understanding of mammalian DNA double-strand break repair processes and mechanisms of genetic instability leading to cancer. New data implicate XRCC genes in long-standing questions, such as how homologous recombination (HR) intermediates are resolved and how DNA replication slows in the presence of damage (intra-S checkpoint). Examining the functions of XRCC genes involved in non-homologous end joining (NHEJ), paradoxical roles in repair fidelity and telomere maintenance have been found. Thus, XRCC5-7 (DNA-PK)-dependent NHEJ commonly occurs with fidelity, perhaps by aligning ends accurately in the absence of sequence microhomologies, but NHEJ-deficient mice show reduced frequencies of mutation. NHEJ activity seems to be involved in both mitigating and mediating telomere fusions; however, defective NHEJ can lead to telomere elongation, while loss of HR activity leads to telomere shortening. The correct functioning of XRCC genes involved in both HR and NHEJ is important for genetic stability, but loss of each pathway leads to different consequences, with defects in HR additionally leading to mitotic disruption and aneuploidy. Confirmation that these responses are likely to contribute to cancer induction and/or progression, is given by studies of humans and mice with XRCC gene disruptions: those affecting NHEJ show increased lymphoid tumours, while those affecting HR lead to breast cancer and perhaps to gynaecological tumours.
Collapse
Affiliation(s)
- John Thacker
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
63
|
Kadhim MA, Moore SR, Goodwin EH. Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response. Mutat Res 2004; 568:21-32. [PMID: 15530536 DOI: 10.1016/j.mrfmmm.2004.06.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 06/03/2004] [Accepted: 06/04/2004] [Indexed: 05/01/2023]
Abstract
Over the past two decades, our understanding of radiation biology has undergone a fundamental shift in paradigms away from deterministic "hit-effect" relationships and towards complex ongoing "cellular responses". These responses include now familiar, but still poorly understood, phenomena associated with radiation exposure such as bystander effects, genomic instability, and adaptive responses. All three have been observed at very low doses, and at time points far removed from the initial radiation exposure, and are extremely relevant for linear extrapolation to low doses; the adaptive response is particularly relevant when exposure is spread over a period of time. These are precisely the circumstances that are most relevant to understanding cancer risk associated with environmental and occupational radiation exposures. This review will provide a synthesis of the known, and proposed, interrelationships amongst low-dose cellular responses to radiation. It also will examine the potential importance of non-targeted cellular responses to ionizing radiation in setting acceptable exposure limits especially to low-LET radiations.
Collapse
Affiliation(s)
- Munira A Kadhim
- MRC Radiation and Genome Stability Unit, Harwell, Didcot, Oxfordshire OX110RD, UK.
| | | | | |
Collapse
|
64
|
Espejel S, Klatt P, Ménissier-de Murcia J, Martín-Caballero J, Flores JM, Taccioli G, de Murcia G, Blasco MA. Impact of telomerase ablation on organismal viability, aging, and tumorigenesis in mice lacking the DNA repair proteins PARP-1, Ku86, or DNA-PKcs. ACTA ACUST UNITED AC 2004; 167:627-38. [PMID: 15545322 PMCID: PMC2172587 DOI: 10.1083/jcb.200407178] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DNA repair proteins poly(ADP-ribose) polymerase-1 (PARP-1), Ku86, and catalytic subunit of DNA-PK (DNA-PKcs) have been involved in telomere metabolism. To genetically dissect the impact of these activities on telomere function, as well as organismal cancer and aging, we have generated mice doubly deficient for both telomerase and any of the mentioned DNA repair proteins, PARP-1, Ku86, or DNA-PKcs. First, we show that abrogation of PARP-1 in the absence of telomerase does not affect the rate of telomere shortening, telomere capping, or organismal viability compared with single telomerase-deficient controls. Thus, PARP-1 does not have a major role in telomere metabolism, not even in the context of telomerase deficiency. In contrast, mice doubly deficient for telomerase and either Ku86 or DNA-PKcs manifest accelerated loss of organismal viability compared with single telomerase-deficient mice. Interestingly, this loss of organismal viability correlates with proliferative defects and age-related pathologies, but not with increased incidence of cancer. These results support the notion that absence of telomerase and short telomeres in combination with DNA repair deficiencies accelerate the aging process without impacting on tumorigenesis.
Collapse
Affiliation(s)
- Silvia Espejel
- Molecular Oncology Program, Spanish National Cancer Center (CNIO), E-28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|