51
|
Du Z, Niu S, Xu X, Xu Q. MicroRNA31-NDRG3 regulation axes are essential for hepatocellular carcinoma survival and drug resistance. Cancer Biomark 2018; 19:221-230. [PMID: 28269758 DOI: 10.3233/cbm-170568] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUNDS Hepatocellular carcinoma (HCC) is an epithelial cancer that originates from hepatocytes and it is the most common primary malignant tumor of the liver. Till now the prognosis of HCC patients is generally poor. The molecular mechanism giving rise to HCC development and recurrence is still largely unknown. MicroRNA-31 (miR-31) is among the most commonly altered microRNAs in human cancers, and alternations of miR-31 expression were reported to play pivotal roles in tumorigenesis and tumor progression. METHODS In this work, the primary biological function of miR-31 in HCC tumorigenesis was investigated. RESULTS Our data showed that overexpression of miR-31 induced markedly inhibition of HCC cell proliferation, migration in vitro and inhibited xenograft tumor growth in vivo. One target gene of miR-31, NDRG3, was also demonstrated indispensable for HCC cell survival. Furthermore, miR-31 and NDRG3 were both essential for HCC cell drug resistance in adriamycin. CONCLUSIONS We conclude that miR-31 is a crucial regulator in hepatocellular carcinoma, miR-31 and its target gene NDRG3 may be potential therapeutic targets for HCC treatment in the future.
Collapse
Affiliation(s)
- Zhonghai Du
- Cancer Center of Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Shuxian Niu
- Department of Internal Medicine of Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xiaoyu Xu
- Medical Imaging Center of Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Qinghui Xu
- Department of Internal Medicine of Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
52
|
Pal JK, Ray SS, Cho SB, Pal SK. Fuzzy-Rough Entropy Measure and Histogram Based Patient Selection for miRNA Ranking in Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:659-672. [PMID: 27831888 DOI: 10.1109/tcbb.2016.2623605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are known as an important indicator of cancers. The presence of cancer can be detected by identifying the responsible miRNAs. A fuzzy-rough entropy measure (FREM) is developed which can rank the miRNAs and thereby identify the relevant ones. FREM is used to determine the relevance of a miRNA in terms of separability between normal and cancer classes. While computing the FREM for a miRNA, fuzziness takes care of the overlapping between normal and cancer expressions, whereas rough lower approximation determines their class sizes. MiRNAs are sorted according to the highest relevance (i.e., the capability of class separation) and a percentage among them is selected from the top ranked ones. FREM is also used to determine the redundancy between two miRNAs and the redundant ones are removed from the selected set, as per the necessity. A histogram based patient selection method is also developed which can help to reduce the number of patients to be dealt during the computation of FREM, while compromising very little with the performance of the selected miRNAs for most of the data sets. The superiority of the FREM as compared to some existing methods is demonstrated extensively on six data sets in terms of sensitivity, specificity, and score. While for these data sets the score of the miRNAs selected by our method varies from 0.70 to 0.91 using SVM, those results vary from 0.37 to 0.90 for some other methods. Moreover, all the selected miRNAs corroborate with the findings of biological investigations or pathway analysis tools. The source code of FREM is available at http://www.jayanta.droppages.com/FREM.html.
Collapse
|
53
|
Negative Regulation of PTEN by MicroRNA-221 and Its Association with Drug Resistance and Cellular Senescence in Lung Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7908950. [PMID: 29876362 PMCID: PMC5831993 DOI: 10.1155/2018/7908950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/01/2018] [Indexed: 01/14/2023]
Abstract
Objective Chemotherapy is the routine method for treating many cancers, but long-term treatment may result in developing resistance to the drugs. The aim of this study was to identify whether noncoding RNAs play a role in drug resistance and how they affect drug resistance. Materials and Methods The expression levels of miR-221 in different lung cancer cell lines H226, H1299, and A549 were measured. H1299 and A549 cell lines were transfected to overexpress and downexpress miR-221, and cell viability and cell senescence were determined. The PTEN/Akt pathway was then examined by real-time polymerase chain reaction and Western blot analysis. Results MiR-221 together with proteins MDR1 and ABCG2 was upregulated in Cisplatin-resistant A549 lung cancer cells. Anti-miR-221 inhibits proliferation and induces senescence in lung cancer cells. PTEN/Akt pathway axis was identified as a target of drug resistance induced by miR-221. Conclusion Our results revealed that miR-221 is an important regulator for chemotherapy sensitivity and showed miR-221 as a potential target for drug sensitization.
Collapse
|
54
|
Wu D, Lu P, Mi X, Miao J. Downregulation of miR-503 contributes to the development of drug resistance in ovarian cancer by targeting PI3K p85. Arch Gynecol Obstet 2018; 297:699-707. [DOI: 10.1007/s00404-018-4649-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
|
55
|
Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018; 9:genes9010026. [PMID: 29315268 PMCID: PMC5793179 DOI: 10.3390/genes9010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common occurring solid paediatric cancer in children under the age of five years. Whether of familial or sporadic origin, chromosome abnormalities contribute to the development of NB and cause dysregulation of microRNAs (miRNAs). MiRNAs are small non-coding, single stranded RNAs that target messenger RNAs at the post-transcriptional levels by repressing translation within all facets of human physiology. Such gene 'silencing' activities by miRNAs allows the development of regulatory feedback loops affecting multiple functions within the cell, including the possible differentiation of neural stem cell (NSC) lineage selection. Neurogenesis includes stages of self-renewal and fate specification of NSCs, migration and maturation of young neurones, and functional integration of new neurones into the neural circuitry, all of which are regulated by miRNAs. The role of miRNAs and their interaction in cellular processes are recognised aspects of cancer genetics, and miRNAs are currently employed as biomarkers for prognosis and tumour characterisation in multiple cancer models. Consequently, thorough understanding of the mechanisms of how these miRNAs interplay at the transcriptomic level will definitely lead to the development of novel, bespoke and efficient therapeutic measures, with this review focusing on the influences of miRNAs on neuroblast modulations leading to neuroblastoma.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, PTA1010 G'Mangia, Malta.
- School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
56
|
Wang W. Study of miR-10b regulatory mechanism for epithelial-mesenchymal transition, invasion and migration in nasopharyngeal carcinoma cells. Oncol Lett 2017; 14:7207-7210. [PMID: 29344154 PMCID: PMC5754829 DOI: 10.3892/ol.2017.7172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to investigate the miR-10b regulatory mechanism for epithelial-mesenchymal transition (EMT) and its effect on the proliferation and migration of nasopharyngeal carcinoma cells. RT-qPCR was used to detect the expression of miR-10b in CNE1 nasopharyngeal carcinoma cell line. The NP69 nasopharyngeal mucosal cell line was used to determine the expression of miR-10b after infection with lentivirus. The effect of miR-10b on the proliferation of NP69 was examined using cell counting kit-8. The effect of miR-10b on NP69 migration was examined using scratch assay. Western blot analysis was used to detect the effects of miR-10b on the expression of epithelial cell markers E-cadherin and β-catenin and mesenchymal cell markers fibronectin, N-cadherin, vimentin and matrix metalloproteinase-9 (MMP-9). The present study showed that miR-10b was highly expressed in CNE1 cells. The stable expression of miR-10b promoted the proliferation and migration of NP69 cells, downregulated the expression of epithelial cell markers E-cadherin and β-catenin, and upregulated the expression of mesenchymal cell markers fibronectin, N-cadherin, vimentin and MMP-9 resulting in cell EMT. In conclusion, miR-10b promotes the proliferation and migration of nasopharyngeal carcinoma cells, and induces EMT in nasopharyngeal carcinoma cells, thereby having the potential to become a new target for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Ear-Nose-Throat, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
57
|
Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin. Cell Signal 2017; 38:146-158. [DOI: 10.1016/j.cellsig.2017.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
|
58
|
Korourian A, Roudi R, Shariftabrizi A, Madjd Z. MicroRNA-31 inhibits RhoA-mediated tumor invasion and chemotherapy resistance in MKN-45 gastric adenocarcinoma cells. Exp Biol Med (Maywood) 2017; 242:1842-1847. [PMID: 28836853 DOI: 10.1177/1535370217728460] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
microRNAs are small single-stranded non-coding RNA molecules which modify gene expression by silencing potential target genes. The aberrant expression of RhoA, a small GTPase protein of Rho family, is involved in gastric cancer tumorigenesis. Since miR-31 is a pleomorphic molecule, we evaluated the miR-31/RhoA axis in inducing the malignant phenotype of gastric cancer cells MKN-45. Also, the clinicopathological significance of RhoA was investigated in a well-defined collection of gastric carcinomas which were embedded in tissue microarray blocks. Induction of miR-31 in MKN-45 followed by suppression of RhoA expression resulted in increased sensitivity to 5-fluorouracil, inhibition of cell proliferation, and invasion compared to the control groups. Immunohistochemical analysis in gastric adenocarcinoma patients' samples showed significantly higher expression of RhoA in diffuse versus intestinal subtype tumors ( P = 0.009), poorly differentiated versus well and moderately differentiated tumors ( P = 0.03) and the presence of vascular invasion versus the absence of vascular invasion ( P = 0.04). Our findings suggest a critical role for miR-31, as a tumor suppressor gene, in gastric cancer tumorigenesis by targeting the RhoA. Impact statement Gastric cancer ranks as the third leading cause of cancer-associated deaths worldwide. The RhoA gene encodes a small GTPase protein of Rho family (RhoA) that its dysregulation is associated with cell motility and invasion. A strong line of evidence supports the regulation of RhoA by a number of miRs, including miR-31 in tumors. Our findings revealed that miR-31 is involved in gastric cancer tumorigenesis as a tumor suppressor gene. Through down-regulation of RhoA, miR-31 decreased cell proliferation, migration, and invasion in gastric cancer cells. In addition, induction of miR-31 increased sensitivity to 5-FU; thus, increasing its tissue concentrations could be a potential target for treatment of gastric cancer in the future.
Collapse
Affiliation(s)
- Alireza Korourian
- 1 Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14530, Iran
| | - Raheleh Roudi
- 2 Oncopathology Research Center, Iran University of Medical Sciences, Tehran 14496-14530, Iran
| | - Ahmad Shariftabrizi
- 3 Department of Nuclear Medicine and Molecular Imaging, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zahra Madjd
- 1 Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14530, Iran.,2 Oncopathology Research Center, Iran University of Medical Sciences, Tehran 14496-14530, Iran
| |
Collapse
|
59
|
Geretto M, Pulliero A, Rosano C, Zhabayeva D, Bersimbaev R, Izzotti A. Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 2017; 7:1350-1371. [PMID: 28670496 PMCID: PMC5489783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023] Open
Abstract
Chemo-resistance, which is the main obstacle in cancer therapy, is caused by the onset of drug-resistant cells in the heterogeneous cell population in cancer tissues. MicroRNAs regulate gene expression at the post-transcriptional level, and they are involved in many different biological processes, including cell proliferation, differentiation, metabolism, stress response, and apoptosis. The aberrant expression of microRNAs plays a major pathogenic role from the early stages of the carcinogenesis process. Recently, microRNAs have been reported to play an important role in inducing resistance to anti-cancer drugs. Specific microRNA alterations occur selectively in cancer cells, rendering these cells resistant to various chemotherapeutic agents. For example, resistance to 5-fluorouracil is mediated by alterations in miR-21, miR-27a/b, and miR-155; the sensitivity to Docetaxel is influenced by miR-98, miR-192, miR-194, miR-200b, miR-212, and miR-424; and the resistance to Cisplatin is mediated by miR-let-7, miR-15, miR-16 miR-21 and miR-214. Chemo-resistant cancer cells are characterized by altered functions in enzymes that are involved in microRNA maturation, primarily including Dicer, as demonstrated in ovarian cancer, oral squamous cell carcinoma, breast cancer and cervical cancer. Based on the evidence reviewed in this paper, various strategies have been developed to artificially re-establish microRNA expression in resistant cells, thus restoring chemo-sensitivity. These strategies employ synthetic analogs, anti-microRNA oligonucleotides, locked nucleic acid, microRNA sponges, drugs that inhibit DNA methylation or histone deacetylation, and the introduction of microRNA mimics. The ability to modulate microRNA expression is a promising strategy for overcoming the problem of drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Marta Geretto
- Department of Health Sciences, University of GenoaItaly
| | | | | | - Dinara Zhabayeva
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| | - Rakhmet Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| | - Alberto Izzotti
- Department of Health Sciences, University of GenoaItaly
- IRCCS AOU San Martino ISTGenoa, Italy
| |
Collapse
|
60
|
Li M, Gu K, Liu W, Xie X, Huang X. MicroRNA-200c as a prognostic and sensitivity marker for platinum chemotherapy in advanced gastric cancer. Oncotarget 2017; 8:51190-51199. [PMID: 28881640 PMCID: PMC5584241 DOI: 10.18632/oncotarget.17087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/21/2017] [Indexed: 11/25/2022] Open
Abstract
We examined microRNA-200c (miR-200c) expression in tumor tissues and plasma of patients with advanced gastric cancer and correlated miR-200c expression with treatment efficacy of platinum chemotherapy and patient prognosis. Tumor tissues were collected from 51 patients with advanced gastric cancer who received platinum-containing chemotherapies. The plasma was collected from the same group of patients and 51 subjects with chronic superficial gastritis. Quantitative RT-PCR was used to evaluate miR-200c expression, and its correlation with treatment efficacy and patient prognosis was analyzed. The results showed that the miR-200c expression in gastric cancer tissues and in plasma were significantly lower than tumor-adjacent tissues and in patients with chronic superficial gastritis (both p <0.05). No significant correlation was found between miR-200c expression in tumors or plasma and clinical characteristics. Patients with higher miR-200c expression had better treatment outcomes with platinum chemotherapy and longer progression-free survival and overall survival than patients with lower miR-200c expression. Receiver-operating characteristic curve analysis showed that miR-200c expression in gastric cancer tissues and plasma distinguished patients' treatment outcomes. Multivariate analyses confirmed that over expression of miR-200c both in gastric cancer tissue and plasma is associated with longer progression-free survival and overall survival. Taken together, our study indicated that miR-200c expression in gastric cancer tissues and plasma of patients with advanced gastric cancer is associated with better treatment efficacy and prognosis with platinum chemotherapy, suggesting that expression of miR-200c may be predictive for chemotherapy and prognosis in advanced gastric cancer patients.
Collapse
Affiliation(s)
- Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wei Liu
- Department of Oncology, Huaibei People's Hospital, Huaibei, Anhui 235000, P.R. China
| | - Xiaoque Xie
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiaolu Huang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
61
|
MiR-222 promotes drug-resistance of breast cancer cells to adriamycin via modulation of PTEN/Akt/FOXO1 pathway. Gene 2017; 596:110-118. [DOI: 10.1016/j.gene.2016.10.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
|
62
|
Abstract
The dysregulation of autophagy is implicated in many pathological disorders including infections, aging, neurodegenerative diseases, and cancer. Autophagy can be precisely controlled both transcriptionally and translationally. Accumulating evidences show that the autophagy response is regulated by microRNAs, which therefore becomes subject area of interest in recent years. Herein, we give a brief introduction of the recent advancement in the regulation of microRNA on autophagy, and then we focus on the microRNA regulation of the mitophagy receptor, NIX. Finally, we present the methodology on how to study it in detail.
Collapse
|
63
|
Guo P, Xiong X, Zhang S, Peng D. miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin. Oncol Rep 2016; 36:3552-3558. [PMID: 27748936 DOI: 10.3892/or.2016.5140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the malignant tumors that seriously affects women's health and chemotherapy resistance is an important reason for the poor prognosis. The present study was conducted to investigate whether microRNA-100 (miR-100) can be used to modulate the tolerance to cisplatin in EOC. Expression of miR-100 was compared between ovarian cancer cells tolerant and not tolerant to cisplatin. Mimic and antisense were used to study the roles and related mechanisms of miR-100 in cisplatin sensitivity in EOC. The alternation in the cisplatin sensitivity was investigated using grafted tumors derived from SKOV3/DDP cells with upregulated or downregulated miR-100 expression. miR-100 was lower in cisplatin resistant cell line SKOV3/DDP than in cisplatin sensitive cell line SKOV3. miR-100 might increase cisplatin sensitivity by inhibiting cell proliferation and conversion from G1 to S phase and increasing apoptosis. We showed that mTOR and PLK1 are targets of miR-100 and the cells were resensitized probably due to targeted downregulation of mTOR and PLK1 by miR-100. In vivo study with nude mice showed that tumors derived from miR-100 mimic-transfected cells were more sensitive to cisplatin and had reduced expression of mTOR and PLK1. miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin probably by inhibiting cell proliferation, inducing apoptosis and arresting cell cycle and by targeted downregulation of mTOR and PLK1 expression.
Collapse
Affiliation(s)
- Peng Guo
- Department of Obstetrics and Gynecology, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xiangpeng Xiong
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sainan Zhang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dongxian Peng
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
64
|
Fu Q, Cheng J, Zhang J, Zhang Y, Chen X, Luo S, Xie J. miR-20b reduces 5-FU resistance by suppressing the ADAM9/EGFR signaling pathway in colon cancer. Oncol Rep 2016; 37:123-130. [PMID: 27878272 DOI: 10.3892/or.2016.5259] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance is a major obstacle to cancer therapy including that of colon cancer (CC). Although the dysregulation of many miRNAs has been implicated in 5-fluorouracil (5-FU) resistance in CC cells, the specific role of miR-20b in chemoresistance has not been documented. In the present study, we first determined the expression of miR-20b by RT-PCR and the levels of a disintegrin and metalloprotease 9 (ADAM9) and epidermal growth factor receptor (EGFR) by western blotting in CC and adjacent non-cancerous tissues from 5-FU-sensitive or -resistant CC patients. Subsequently, 5-FU-sensitive (HCT116) and -resistant (HCT116-R) cells were obtained, and the levels of miR-20b, ADAM9 and EGFR were detected. Meanwhile, the 5-FU resistance of the cells was examined by assessing cell viability (by MTT assay) and apoptosis (by flow cytometry). After transfection of miR-20b into HCT116-R cells, drug resistance was reexamined. We then confirmed the relationship between miR-20b and ADAM9 by luciferase reporter assay. Finally, 5-FU resistance in HCT116 and HCT116-R cells was compared after transfection with miR-20b. Our results showed that miR-20b was expressed at lower levels in the 5-FU-resistant tissues and cells than in the 5-FU-sensitive tissues and cells. The opposite was the case for expression of ADAM9 and EGFR. In addition, we demonstrated that ADAM9 is a direct target of miR-20b and that miR-20b decreased the 5-FU resistance of HCT116-R cells. Our findings suggest that miR-20b reduces 5-FU resistance to induce apoptosis in vitro by suppressing ADAM9/EGFR in CC cells.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Jing Cheng
- Department of Medical Oncology, Zhengzhou Central Hospital, Zhengzhou, Henan 450007, P.R. China
| | - Jindai Zhang
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Yonglei Zhang
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Xiaobing Chen
- Department of Digestion and Medical Oncology, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Suxia Luo
- Department of Digestion and Medical Oncology, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Jianguo Xie
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
65
|
Combination therapy of RY10-4 with the γ-secretase inhibitor DAPT shows promise in treating HER2-amplified breast cancer. Oncotarget 2016; 7:4142-54. [PMID: 26716652 PMCID: PMC4826195 DOI: 10.18632/oncotarget.6769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022] Open
Abstract
RY10-4, a novel protoapigenone analog, shows potent cytotoxicity against human breast cancer cells. However, breast cancer cell lines overexpressing human epidermal growth factor receptor 2 (HER2), SKBR3 and BT474, showed less sensitivity to RY10-4 when compared to breast cancer cells lines expressing lower levels of HER2, such as MDA-MB-231 and MCF-7 cells. This was associated with aberrant hyperactivity in Notch signaling in cells treated with RY10-4, since treatment with RY10-4 causes an increase in Notch activity by 2-to3.5-fold in SKBR3 and BT474 cell lines. The increase in activity was abrogated with a γ-secretase inhibitor, DAPT, or with Notch1 small-interfering RNA (si-Notch1). Cell proliferation was inhibited more effectively by RY10-4 plus DAPT or si-Notch1 than either agent alone. RY10-4 plus DAPT increases apoptosis in both HER2-overexpressing cell lines by two-fold compared to RY10-4 alone, while DAPT alone has no significant effects on apoptosis. In addition, we previously found RY10-4 could inhibit tumor growth through the PI3K/AKT pathway. Here we report that the combination of RY10-4 and DAPT exhibit additive suppression on AKT phosphorylation, contributing to the anti-cancer effects. In an animal model, this combination therapy inhibits the growth of SKBR3 tumor xenografts in nude mice to a greater extent than treatment with either reagent alone. These results indicate that the aberrant activation of Notch signaling impedes the inhibitory effect of RY10-4 on HER2-amplified cell proliferation. Furthermore, these adverse effects can be prevented by treatment combining RY10-4 with a Notch pathway inhibitor.
Collapse
|
66
|
MicroRNA-29a contributes to drug-resistance of breast cancer cells to adriamycin through PTEN/AKT/GSK3β signaling pathway. Gene 2016; 593:84-90. [DOI: 10.1016/j.gene.2016.08.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022]
|
67
|
Mullick Chowdhury S, Wang TY, Bachawal S, Devulapally R, Choe JW, Abou Elkacem L, Yakub BK, Wang DS, Tian L, Paulmurugan R, Willmann JK. Ultrasound-guided therapeutic modulation of hepatocellular carcinoma using complementary microRNAs. J Control Release 2016; 238:272-280. [PMID: 27503707 DOI: 10.1016/j.jconrel.2016.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/05/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Treatment options for patients with hepatocellular carcinoma (HCC) are limited, in particular in advanced and drug resistant HCC. MicroRNAs (miRNA) are non-coding small RNAs that are emerging as novel drugs for the treatment of cancer. The aim of this study was to assess treatment effects of two complementary miRNAs (sense miRNA-122, and antisense antimiR-21) encapsulated in biodegradable poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP), administered by an ultrasound-guided and microbubble-enhanced delivery approach in doxorubicin-resistant and non-resistant human HCC xenografts. Proliferation and invasiveness of human HCC cells after miRNA-122/antimiR-21 and doxorubicin treatment were assessed in vitro. Confocal microscopy and qRT-PCR were used to visualize and quantitate successful intracellular miRNA-loaded PLGA-NP delivery. Up and down-regulation of miRNA downstream targets and multidrug resistance proteins and extent of apoptosis were assessed in vivo in treated human HCC xenografts in mice. Compared to single miRNA therapy, combination therapy with the two complementary miRNAs resulted in significantly (P<0.05) stronger decrease in cell proliferation, invasion, and migration of HCC cells as well as higher resensitization to doxorubicin. Ultrasound-guided delivery significantly increased in vivo miRNA-loaded PLGA-NP delivery in human HCC xenografts compared to control conditions by 5-9 fold (P<0.001). miRNA-loaded PLGA-NP were internalized in HCC cells and anti-apoptotic proteins were down regulated with apoptosis in ~27% of the tumor volume of doxorubicin-resistant human HCC after a single treatment with complementary miRNAs and doxorubicin. Thus, ultrasound-guided delivery of complementary miRNAs is highly efficient in the treatment of doxorubicin- resistant and non-resistant HCC. Further development of this new treatment approach could aid in better treatment of patients with HCC.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Tzu-Yin Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Sunitha Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Rammohan Devulapally
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Jung Woo Choe
- Department of Electrical Engineering, Stanford University Stanford, CA, USA
| | - Lotfi Abou Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Butrus Khuri Yakub
- Department of Electrical Engineering, Stanford University Stanford, CA, USA
| | - David S Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Lu Tian
- Department of Health, Research & Policy, Stanford University, Stanford, CA, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
68
|
Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 2016; 21:molecules21070965. [PMID: 27455225 PMCID: PMC6273543 DOI: 10.3390/molecules21070965] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is known to play an important role in cancer progression, metastasis and drug resistance. Although there are controversies surrounding the causal relationship between EMT and cancer metastasis, the role of EMT in cancer drug resistance has been increasingly recognized. Numerous EMT-related signaling pathways are involved in drug resistance in cancer cells. Cells undergoing EMT show a feature similar to cancer stem cells (CSCs), such as an increase in drug efflux pumps and anti-apoptotic effects. Therefore, targeting EMT has been considered a novel opportunity to overcome cancer drug resistance. This review describes the mechanism by which EMT contributes to drug resistance in cancer cells and summarizes new advances in research in EMT-associated drug resistance.
Collapse
|
69
|
Komatsu S, Ichikawa D, Kawaguchi T, Miyamae M, Okajima W, Ohashi T, Imamura T, Kiuchi J, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Otsuji E. Circulating miR-21 as an independent predictive biomarker for chemoresistance in esophageal squamous cell carcinoma. Am J Cancer Res 2016; 6:1511-1523. [PMID: 27508093 PMCID: PMC4969400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023] Open
Abstract
Only a few studies indentified the significance of circulating microRNAs in blood as a predictive biomarker for chemoresistance in esophageal squamous cell carcinoma (ESCC). In this study, we tested whether oncogenic miR-21 promoted chemoresistance in ESCC and served as a biomarker for predicting chemoresistance in plasma of patients with ESCC. All consecutive patients underwent the preoperative chemotherapy regimen (JCOG9907 trial) with cisplatin plus 5-fluorouracil. As a result, pretreatment plasma concentrations of miR-21 were significantly higher in ESCC patients with a low histopathological response than in those with a high histopathological response (P = 0.0416). Multivariate analysis revealed that a high pretreatment plasma concentration of miR-21 was an independent risk factor of chemoresistance (p = 0.0150; Odds Ratio 9.95 (range: 1.56-63.4)). The expression of miR-21 was also significantly higher in pretreatment ESCC tissues with a low histopathological response than in those with a high histopathological response (P = 0.0409). In vitro, although the growth of KYSE 170 ESCC cells transfected with the control mimics was markedly inhibited by the 5-fluorouracil or cisplatin treatment, the inhibitory effects of 5-FU (P < 0.05) or cisplatin (P < 0.05) were significantly reduced in KYSE170 cells that overexpressed miR-21. Taken together, the overexpression of miR-21 contributed to chemoresistance and circulating miR-21 in plasma of patients with ESCC could be a useful biomarker for predicting chemoresistance.
Collapse
|
70
|
Li L, Zhu T, Gao YF, Zheng W, Wang CJ, Xiao L, Huang MS, Yin JY, Zhou HH, Liu ZQ. Targeting DNA Damage Response in the Radio(Chemo)therapy of Non-Small Cell Lung Cancer. Int J Mol Sci 2016; 17:ijms17060839. [PMID: 27258253 PMCID: PMC4926373 DOI: 10.3390/ijms17060839] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide due to its high incidence and mortality. As the most common lung cancer, non-small cell lung cancer (NSCLC) is a terrible threat to human health. Despite improvements in diagnosis and combined treatments including surgical resection, radiotherapy and chemotherapy, the overall survival for NSCLC patients still remains poor. DNA damage is considered to be the primary cause of lung cancer development and is normally recognized and repaired by the intrinsic DNA damage response machinery. The role of DNA repair pathways in radio(chemo)therapy-resistant cancers has become an area of significant interest in the clinical setting. Meanwhile, some studies have proved that genetic and epigenetic factors can alter the DNA damage response and repair, which results in changes of the radiation and chemotherapy curative effect in NSCLC. In this review, we focus on the effect of genetic polymorphisms and epigenetic factors such as miRNA regulation and lncRNA regulation participating in DNA damage repair in response to radio(chemo)therapy in NSCLC. These may provide novel information on the radio(chemo)therapy of NSCLC based on the individual DNA damage response.
Collapse
Affiliation(s)
- Ling Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Wei Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Chen-Jing Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Ling Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
71
|
MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl) 2016; 94:1129-1141. [DOI: 10.1007/s00109-016-1417-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 03/13/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
|
72
|
Zadeh MM, Motamed N, Ranji N, Majidi M, Falahi F. Silibinin-Induced Apoptosis and Downregulation of MicroRNA-21 and MicroRNA-155 in MCF-7 Human Breast Cancer Cells. J Breast Cancer 2016; 19:45-52. [PMID: 27066095 PMCID: PMC4822106 DOI: 10.4048/jbc.2016.19.1.45] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
Purpose MicroRNAs (miRNAs) have received much attention owing to their aberrant expression in various stages of cancer. In many biological processes, miRNAs negatively regulate gene expression, and may be useful in therapeutic strategies. The present study evaluated the effects of silibinin (silybin), a natural flavonoid, on miRNA expression and attempted to elucidate therapeutic targets in MCF-7 breast cancer cells. Methods The rates of cell proliferation and apoptosis were determined in silibinin-treated and untreated MCF-7 cells. Furthermore, the expression levels of miR-21 and miR-155 were measured in MCF-7 cells after incubation with silibinin (100 µg/mL), and the putative targets of the miRNAs within the apoptotic pathways were predicted using bioinformatic approaches. The expression levels of some of these targets were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Silibinin induced apoptosis in MCF-7 cells in a dose- and time-dependent manner. qRT-PCR analysis revealed a decrease in miR-21 and miR-155 expression levels in silibinin-treated cells relative to the levels in the untreated cells. Potential miR-21 and miR-155 targets within the apoptotic pathways, such as CASP-9, BID, APAF-1, CASP-3, CASP-8, and PDCD4, were predicted by in silico analysis. qRT-PCR analysis showed upregulation of some of these potential targets including caspase-9 (CASP-9) and BID after silibinin treatment for 48 hours. Conclusion Our results suggest a correlation between the expression of miR-21 and miR-155, and MCF-7 cell proliferation. The antiproliferative activity of silibinin may partly be attributable to the downregulation of miR-21 and miR-155, and the upregulation of their apoptotic targets. Furthermore, the upregulation of CASP-9 and BID indicates that silibinin induces apoptosis through both the extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Masoud Maleki Zadeh
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nasrin Motamed
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Najmeh Ranji
- Department of Genetics, College of Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Majidi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Fahimeh Falahi
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research & School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
73
|
MiR-203 downregulation is responsible for chemoresistance in human glioblastoma by promoting epithelial-mesenchymal transition via SNAI2. Oncotarget 2016; 6:8914-28. [PMID: 25871397 PMCID: PMC4496192 DOI: 10.18632/oncotarget.3563] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/10/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been recognized as a key element of cell migration, invasion, and drug resistance in several types of cancer. In this study, our aim was to clarify microRNAs (miRNAs)-related mechanisms underlying EMT followed by acquired resistance to chemotherapy in glioblastoma (GBM). We used multiple methods to achieve our goal including microarray analysis, qRT-PCR, western blotting analysis, loss/gain-of-function analysis, luciferase assays, drug sensitivity assays, wound-healing assay and invasion assay. We found that miR-203 expression was significantly lower in imatinib-resistant GBM cells (U251AR, U87AR) that underwent EMT than in their parental cells (U251, U87). Ectopic expression of miR-203 with miRNA mimics effectively reversed EMT in U251AR and U87AR cells, and sensitized them to chemotherapy, whereas inhibition of miR-203 in the sensitive lines with antisense oligonucleotides induced EMT and conferred chemoresistance. SNAI2 was identified as a direct target gene of miR-203. The knockdown of SNAI2 by short hairpin RNA (shRNA) inhibited EMT and drug resistance. In GBM patients, miR-203 expression was inversely related to SNAI2 expression, and those tumors with low expression of miR-203 experienced poorer clinical outcomes. Our findings indicate that re-expression of miR-203 or targeting SNAI2 might serve as potential therapeutic approaches to overcome chemotherapy resistance in GBM.
Collapse
|
74
|
Yang Y, Dai C, Cai Z, Hou A, Cheng D, Wu G, Li J, Cui J, Xu D. The Pathway Analysis of Micrornas Regulated Drug-Resistant Responses in HeLa Cells. IEEE Trans Nanobioscience 2016; 15:113-8. [DOI: 10.1109/tnb.2016.2539365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
75
|
The Role of miRNAs in the Regulation of Pancreatic Cancer Stem Cells. Stem Cells Int 2016; 2016:8352684. [PMID: 27006664 PMCID: PMC4783541 DOI: 10.1155/2016/8352684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/24/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is currently one of the deadliest cancers with low overall survival rate. This disease leads to an aggressive local invasion and early metastases and is poorly responsive to treatment with chemotherapy or chemoradiotherapy. Several studies have shown that pancreatic cancer stem cells (PCSCs) play different roles in the regulation of drug resistance and recurrence in pancreatic cancer. MicroRNA (miRNA), a class of newly emerging small noncoding RNAs, is involved in the modulation of several biological activities ranging from invasion to metastases development, as well as drug resistance of pancreatic cancer. In this review, we synthesize the latest findings on the role of miRNAs in regulating different biological properties of pancreatic cancer stem cells.
Collapse
|
76
|
Winther M, Knudsen S, Dahlgaard J, Jensen T, Hansen A, Jensen PB, Tramm T, Alsner J, Nordsmark M. Clinical Impact of a Novel MicroRNA Chemo-Sensitivity Predictor in Gastrooesophageal Cancer. PLoS One 2016; 11:e0148070. [PMID: 26885979 PMCID: PMC4757421 DOI: 10.1371/journal.pone.0148070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/12/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND miRNAs might be potentially useful biomarkers for prediction of response to chemotherapeutic agents, radiotherapy and survival. The aim of this retrospective study was to validate miRNA response predictors in a cohort of patients with gastrooesophageal cancer in order to predict overall survival (OS) and disease-specific survival (DSS). MATERIAL AND METHODS The study population encompassed 53 patients treated with curative intend for loco-regional gastrooesophageal cancer. miRNA expression was quantified from pre-therapeutic and diagnostic, formalin-fixed, paraffin embedded tumour specimens using Affymetrix GeneChip miRNA 1.0 Array. Based on growth inhibition of the NCI60 panel in the presence of cisplatin, epirubicine and capecitabine, a miRNA based response predictor was developed. The Cox proportional hazards model was applied to assess the correlations of the response predictor with OS and DSS. RESULTS A univariate analysis demonstrated a statistical significant improvement of OS for patients who had undergone surgical resection with prediction scores above the median prediction score (HR: 0.41 (95% CI: 0.17-0.96). Adjusting for surgery and stage, this predictor was identified to be independently associated with both OS (HR: 0.37 (95% CI: 0.16-0.87)) and DSS (HR: 0.32 (0.12-0.87)). CONCLUSION The miRNA profile predictive for sensitivity to cisplatin, epirubicine and capecitabine was shown to be independently associated with OS and DSS in patients with gastrooesophageal cancer.
Collapse
Affiliation(s)
- Mette Winther
- Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | | | - Jesper Dahlgaard
- Centre for Health Promotion and Rehabilitation, Faculty of Health Sciences, VIA University College, Aarhus, Denmark
| | | | | | | | - Trine Tramm
- Dept. of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Alsner
- Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
77
|
Yahyanejad S, Theys J, Vooijs M. Targeting Notch to overcome radiation resistance. Oncotarget 2016; 7:7610-28. [PMID: 26713603 PMCID: PMC4884942 DOI: 10.18632/oncotarget.6714] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful targeting of Notch signaling requires a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to be safe and effective. Here we summarize the role of Notch in mediating resistance to radiotherapy, the different strategies to block Notch in cancer cells and how treatment scheduling can improve tumor response. Finally, we discuss a need for reliable Notch related biomarkers in specific tumors to measure pathway activity and to allow identification of a subset of patients who are likely to benefit from Notch targeted therapies.
Collapse
Affiliation(s)
- Sanaz Yahyanejad
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
78
|
MacDonagh L, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ, Barr MP. Lung cancer stem cells: The root of resistance. Cancer Lett 2016; 372:147-56. [PMID: 26797015 DOI: 10.1016/j.canlet.2016.01.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
In the absence of specific treatable mutations, platinum-based chemotherapy remains the gold standard of treatment for lung cancer patients. However, 5-year survival rates remain poor due to the development of resistance and eventual relapse. Resistance to conventional cytotoxic therapies presents a significant clinical challenge in the treatment of this disease. The cancer stem cell (CSC) hypothesis suggests that tumors are arranged in a hierarchical structure, with the presence of a small subset of stem-like cells that are responsible for tumor initiation and growth. This CSC population has a number of key properties such as the ability to asymmetrically divide, differentiate and self-renew, in addition to having increased intrinsic resistance to therapy. While cytotoxic chemotherapy kills the bulk of tumor cells, CSCs are spared and have the ability to recapitulate the heterogenic tumor mass. The identification of lung CSCs and their role in tumor biology and treatment resistance may lead to innovative targeted therapies that may ultimately improve clinical outcomes in lung cancer patients. This review will focus on lung CSC markers, their role in resistance and their relevance as targets for future therapies.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Eamon Breen
- Flow Cytometry Core Facility, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland; Department of Histopathology, St. James's Hospital and Trinity College Dublin, Ireland
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland.
| |
Collapse
|
79
|
The miR-491-3p/mTORC2/FOXO1 regulatory loop modulates chemo-sensitivity in human tongue cancer. Oncotarget 2016; 6:6931-43. [PMID: 25749387 PMCID: PMC4466660 DOI: 10.18632/oncotarget.3165] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/18/2015] [Indexed: 12/14/2022] Open
Abstract
We found that levels of miR-491-3p were decreased in multidrug-resistant tongue cancer (TC) cells. Induction of miR-491-3p expression sensitized TC cells to chemotherapy. In agreement, functional inhibition of miR-491-3p enhanced resistance of TC cells to chemotherapy. We found that miR-491-3p directly targeted mTORC2 component Rictor and inhibited mTORC2 activity, which was increased in resistant TC cells with high p-Akt(Ser473), p-SGK1(Ser422) and p-FOXO1(Thr24) levels. Inhibition of mTORC2 activity via either Rictor knockdown or mTOR inhibitor in turn sensitized TC cells to chemotherapy. In agreement, overexpression of Rictor increased the mTORC2 activity and induced resistance of TC cells to chemotherapy. As a feedback loop, mTORC2 downregulated miR-491-3p expression by inactivating FOXO1, which otherwise would transcriptionally induce miR-491-3p expression. Levels of miR-491-3 and Rictor or mTORC2 activity negatively correlated in TC tissues. Finally, low levels of miR-491-3p and highly expressed Rictor were associated with poor prognosis in tongue cancer patients. These data provide a rationale for targeted intervention on miR-491-3p/mTORC2 axis to enhance the efficacy of chemotherapy against tongue cancer.
Collapse
|
80
|
Deregulation of miR-21 and miR-155 and their putative targets after silibinin treatment in T47D breast cancer cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:1209-14. [PMID: 26877850 PMCID: PMC4744360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are a class of short RNAs that control the biological processes including cell proliferation, apoptosis and development. Aberrant expression of miRNAs was determined in the different stages of tumor development and metastasis. To study the effect of silibinin on miRNAs expression, we evaluated quantitative expression of miR-21 and miR-155 as two oncomiRs and several potential targets in silibinin-treated T47D cells. MATERIALS AND METHODS The rate of proliferation and apoptosis was measured in silibinin-treated and untreated cells. The expression levels of miR-21 and miR-155 were evaluated in T47D cells treated with silibinin (100 µg/ml). Also, their putative targets were predicted in apoptotic pathways using multiple algorithms; as a confirmation, the transcription level of APAF-1, CASP-9 and BID was evaluated. RESULTS In silibinin-treated cells, death was occurred in a dose and time-dependent manner. miR-21 and miR-155 was downregulated in cells treated with silibinin (100 µg/ml). It is noticeable that the expression of their potential targets including CASP-9 and APAF-1 was increased in silibinin-treated cells after 48 hr. CONCLUSION Our findings showed a correlation between the expression of miR-21 and miR-155 and apoptosis in silibinin treated T47D cells. It seems that miRNAs such as miR-21 and miR-155 were regulated by silibinin. Also, increase in the transcript level of APAF-1 and CASP-9 after downregulation of miR-21 and miR-155 might indicate that these genes were targeted by aforementioned miRNAs in T47D cells.
Collapse
|
81
|
Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015; 8:122. [PMID: 26514126 PMCID: PMC4627430 DOI: 10.1186/s13045-015-0220-7] [Citation(s) in RCA: 549] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) displays high resistance to conventional chemotherapy. Considering that microRNA-122 (miR-122) performs an essential function to promote chemosensitivity of HCC cells, an effective vehicle-mediated miR-122 delivery may represent a promising strategy for HCC chemotherapy. An increasing interest is focused on the use of exosomes as biological vehicles for microRNAs (miRNA) transfer. Mesenchymal stem cells (MSCs) are known for their capacity to produce large amounts of exosomes. This study aimed to determine whether adipose tissue-derived MSC (AMSC) exosomes can be used for miR-122 delivery. Methods AMSCs were transfected with a miR-122 expression plasmid. At 48 h after transfection, AMSC-derived exosomes (122-Exo) were harvested and added to recipient HCC cells. Expression levels of miR-122 in AMSCs, exosomes, and HCC cells were quantified by real-time PCR. The mRNA and protein levels of miR-122-target genes in recipient HCC cells were quantified by real-time PCR and Western blot, respectively. The effects of 122-Exo on cell viability, apoptosis, and cell cycle of HCC cells were evaluated by MTT and flow cytometry analysis. Xenograft models were used to determine whether 122-Exo can sensitize HCC cells to sorafenib in vivo. Results Data showed that miR-122-transfected AMSC can effectively package miR-122 into secreted exosomes, which can mediate miR-122 communication between AMSCs and HCC cells, thereby rendering cancer cells sensitive to chemotherapeutic agents through alteration of miR-122-target gene expression in HCC cells. Moreover, intra-tumor injection of 122-Exo significantly increased the antitumor efficacy of sorafenib on HCC in vivo. Conclusions The findings suggest that the export of miR-122 via AMSC exosomes represents a novel strategy to enhance HCC chemosensitivity.
Collapse
Affiliation(s)
- Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Xiuli Song
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310003, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| |
Collapse
|
82
|
Zhang Y, Wang Y, Wei Y, Li M, Yu S, Ye M, Zhang H, Chen S, Liu W, Zhang J. MiR-129-3p promotes docetaxel resistance of breast cancer cells via CP110 inhibition. Sci Rep 2015; 5:15424. [PMID: 26487539 PMCID: PMC4614026 DOI: 10.1038/srep15424] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
Docetaxel is commonly used as an effective chemotherapeutic agent in breast cancer treatment, but the underlying mechanisms of drug resistance are not fully understood. The purpose of this study was to investigate the possible role of miR-129-3p in breast cancer cell resistance to docetaxel. MiR-129 and miR-129-3p inhibitor were transfected into breast cancer cells to investigate their effects on chemoresistance to docetaxel. The function of miR-129-3p was evaluated by apoptosis, cell proliferation, and cell cycle assays. We found that miR-129-3p was up-regulated in MDA-MB-231/Doc cells, concurrent with CP110 down-regulation, compared to the parental MDA-MB-231 cells. In vitro drug sensitivity assays demonstrated that miR-129-3p inhibition sensitized MDA-MB-231/Doc and MCF-7 cells to docetaxel, whereas miR-129 overexpression enhanced MDA-MB-231 and MCF-7 cell resistance to docetaxel. Ectopic miR-129 expression reduced CP110 expression and the luciferase activity of a CP110 3′ untranslated region-based reporter construct in MDA-MB-231 cells, suggesting that CP110 is a direct miR-129-3p target. We demonstrated that restoration of CP110 expression in MDA-MB-231 and MCF-7 cells by miR-129 overexpression rendered the cells sensitive to docetaxel. In a nude xenograft model, miR-129 up-regulation significantly decreased MDA-MB-231 cells’ response to docetaxel. Our findings suggest that miR-129-3p down-regulation potentially sensitizes breast cancer cells to docetaxel treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- The State Key Laboratory of Cancer Biology and Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.,The State Key Laboratory of Cancer Biology and Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yu Wang
- The State Key Laboratory of Cancer Biology and Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yifang Wei
- The State Key Laboratory of Cancer Biology and Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China
| | - Mengyang Li
- The State Key Laboratory of Cancer Biology and Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China
| | - Shentong Yu
- The State Key Laboratory of Cancer Biology and Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China
| | - Mingxiang Ye
- Department of Pulmonary Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hongmei Zhang
- The State Key Laboratory of Cancer Biology and Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Suning Chen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Wenchao Liu
- The State Key Laboratory of Cancer Biology and Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology and Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
83
|
Ahmad A, Ginnebaugh KR, Yin S, Bollig-Fischer A, Reddy KB, Sarkar FH. Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer 2015. [PMID: 26206152 PMCID: PMC4512090 DOI: 10.1186/s12885-015-1561-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background For breast cancer patients diagnosed with estrogen receptor (ER)-positive tumors, treatment with tamoxifen is the gold standard. A significant number of patients, however, develop resistance to tamoxifen, and management of such tamoxifen-resistant patients is a major clinical challenge. With an eye to identify novel targets for the treatment of tamoxifen-resistant tumors, we observed that tamoxifen-resistant cells derived from ER-positive MCF-7 cells (MCF7TR) exhibit an increased expression of microRNA-10b (miR-10b). A role of miR-10b in drug-resistance of breast cancer cells has never been investigated, although its is very well known to influence invasion and metastasis. Methods To dileneate a role of miR-10b in tamoxifen-resistance, we over-expressed miR-10b in MCF-7 cells and down-regulated its levels in MCF7TR cells. The mechanistic role of HDAC4 in miR-10b-mediated tamoxifen resistance was studied using HDAC4 cDNA and HDAC4-specific siRNA in appropriate models. Results Over-expression of miR-10b in ER-positive MCF-7 and T47D cells led to increased resistance to tamoxifen and an attenuation of tamoxifen-mediated inhibition of migration, whereas down-regulation of miR-10b in MCF7TR cells resulted in increased sensitivity to tamoxifen. Luciferase assays identified HDAC4 as a direct target of miR-10b. In MCF7TR cells, we observed down-regulation of HDAC4 by miR-10b. HDAC4-specific siRNA-mediated inactivation of HDAC4 in MCF-7 cells led to acquisition of tamoxifen resistance, and, moreover, reduction of HDAC4 in MCF7TR cells by HDAC4-specific siRNA transfection resulted in further enhancement of tamoxifen-resistance. Conclusions We propose miR-10b-HDAC4 nexus as one of the molecular mechanism of tamoxifen resistance which can potentially be expolited as a novel targeted therapeutic approach for the clinical management of tamoxifen-resistant breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1561-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Kevin R Ginnebaugh
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Shuping Yin
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Aliccia Bollig-Fischer
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Kaladhar B Reddy
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA. .,Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| |
Collapse
|
84
|
Wang WZ, Pu QH, Lin XH, Liu MY, Wu LR, Wu QQ, Chen YH, Liao FF, Zhu JY, Jin XB. Silencing of miR-21 sensitizes CML CD34+ stem/progenitor cells to imatinib-induced apoptosis by blocking PI3K/AKT pathway. Leuk Res 2015; 39:1117-24. [PMID: 26248946 DOI: 10.1016/j.leukres.2015.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023]
Abstract
BCR-ABL tyrosine kinase inhibitor imatinib fails to eradicate leukemia stem cells (LSCs), the underlying mechanisms maintaining CML LSCs remain poorly understood. Here, we showed that transient inhibition of miR-21 by antagomiR-21 markedly increased imatinib-induced apoptosis in CML, but not normal CD34+ stem/progenitor cells. Furthermore, PI3K inhibitors also significantly sensitized CML CD34+ cells to imatinib-induced apoptosis. MiR-21 or PI3K inhibitor in combination with imatinib treatment significantly decreased AKT phosphorylation and c-Myc expression than either agent did alone, but did not affect Bim and Bcl-6 expresssion. These findings indicate that miR-21 is required for maintaining the imatinib-resistant phenotype of CML CD34+ cells through PI3K/AKT signaling pathway, thus providing the basis for a promising therapeutic approach to eliminate CML LSCs.
Collapse
Affiliation(s)
- Wei-Zhang Wang
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Qiao-Hong Pu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiang-Hua Lin
- Department of clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Man-Yu Liu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Li-Rong Wu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Qing-Qing Wu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yong-Heng Chen
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Fen-Fang Liao
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Jia-Yong Zhu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Xiao-Bao Jin
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China.
| |
Collapse
|
85
|
Wang L, Wang YM, Xu S, Wang WG, Chen Y, Mao JY, Tian BL. MicroRNA-215 is upregulated by treatment with Adriamycin and leads to the chemoresistance of hepatocellular carcinoma cells and tissues. Mol Med Rep 2015; 12:5274-80. [PMID: 26135967 DOI: 10.3892/mmr.2015.4012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/05/2015] [Indexed: 02/05/2023] Open
Abstract
Non-coding microRNAs (miRNAs), involved in post-transcriptional control, are widely involved in the mechanism of cellular resistance to antitumor chemotherapy. Ectopic expression of one of these miRNAs, miRNA‑215 (miR‑215), leads to chemoresistance by directly targeting dihydrofolate reductase (DHFR) and thymidylate synthase (TS), which are two of the most important targets of chemotherapeutic agents. This indicates the possible upregulation of endogenous miR‑215 in the process of chemoresistance by interfering with important transcripts. In the present study, the upregulation of miR‑215 was examined in hepatocellular carcinoma (HCC) subcell lines, Adriamycin (ADM)‑resistant HepG2 (HepG2/AR), Hep3B (Hep3B/AR) cell lines, and in ADM‑treated patients with HCC. Upregulated miR‑215 directly targeted DHFR and TS mRNA and reduced their protein expression levels, without altering mRNA levels. The ectopic expression of miR‑215 anti‑sense oligo‑nucleotides in HepG2/AR and Hep3B/AR cells enhanced chemosensitivity, whereas the expression of the miR‑215 mimics led to chemoresistance. Notably, the upregulation of miR‑215 indirectly increased the protein levels of P53 and P21 levels in the HepG2 cells, which contain functional P53, which is expected to result in the inhibition of proliferation and colony formation. Taken together, the present study demonstrated that the upregulation of miR‑215 resulting from ADM treatment in HCC cells leads to the development of insensitivity to ADM and worsens the prognosis of patients with HCC exhibiting mutated P53.
Collapse
Affiliation(s)
- Li Wang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan Ming Wang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Song Xu
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wei Guo Wang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Chen
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing Yu Mao
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bo Le Tian
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
86
|
Jeon YJ, Middleton J, Kim T, Laganà A, Piovan C, Secchiero P, Nuovo GJ, Cui R, Joshi P, Romano G, Di Leva G, Lee BK, Sun HL, Kim Y, Fadda P, Alder H, Garofalo M, Croce CM. A set of NF-κB-regulated microRNAs induces acquired TRAIL resistance in lung cancer. Proc Natl Acad Sci U S A 2015; 112:E3355-64. [PMID: 26080425 PMCID: PMC4491797 DOI: 10.1073/pnas.1504630112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. However, TRAIL can also stimulate the proliferation of cancer cells through the activation of NF-κB, but the exact mechanism is still poorly understood. In this study, we show that chronic exposure to subtoxic concentrations of TRAIL results in acquired resistance. This resistance is associated with the increase in miR-21, miR-30c, and miR-100 expression, which target tumor-suppressor genes fundamental in the response to TRAIL. Importantly, down-regulation of caspase-8 by miR-21 blocks receptor interacting protein-1 cleavage and induces the activation of NF-κB, which regulates these miRNAs. Thus, TRAIL activates a positive feedback loop that sustains the acquired resistance and causes an aggressive phenotype. Finally, we prove that combinatory treatment of NF-κB inhibitors and TRAIL is able to revert resistance and reduce tumor growth, with important consequences for the clinical practice.
Collapse
Affiliation(s)
- Young-Jun Jeon
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Justin Middleton
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Taewan Kim
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Alessandro Laganà
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Claudia Piovan
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210; Department of Experimental Oncology and Molecular Medicine, Start Up Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale per lo Studio e la Cura dei Tumori, 20133 Milan, Italy
| | - Paola Secchiero
- Department of Morphology and Embryology, Human Anatomy Section, University of Ferrara, 44100 Ferrara, Italy
| | - Gerard J Nuovo
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Ri Cui
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Pooja Joshi
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Giulia Romano
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Gianpiero Di Leva
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Hui-Lung Sun
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Yonghwan Kim
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Paolo Fadda
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research United Kingdom Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
87
|
Dandawate P, Padhye S, Ahmad A, Sarkar FH. Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res 2015; 3:165-82. [PMID: 24076568 DOI: 10.1007/s13346-012-0079-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSCs) are cells that exist within a tumor with a capacity of self-renewal and an ability to differentiate, giving rise to heterogeneous populations of cancer cells. These cells are increasingly being implicated in resistance to conventional therapeutics and have also been implicated in tumor recurrence. Several cellular signaling pathways including Notch, Wnt, phosphoinositide-3-kinase-Akt-mammalian target of rapamycin pathways, and known markers such as CD44, CD133, CD166, ALDH, etc. have been associated with CSCs. Here, we have reviewed our current understanding of self-renewal pathways and factors that help in the survival of CSCs with special emphasis on those that have been documented to be modulated by well characterized natural agents such as curcumin, sulforaphane, resveratrol, genistein, and epigallocatechin gallate. With the inclusion of a novel derivative of curcumin, CDF, we showcase how natural agents can be effectively modified to increase their efficacy, particularly against CSCs. We hope that this article will generate interest among researchers for further mechanistic and clinical studies exploiting the cancer preventive and therapeutic role of nutraceuticals by targeted elimination of CSCs.
Collapse
Affiliation(s)
- Prasad Dandawate
- ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune, Pune 411001, India
| | | | | | | |
Collapse
|
88
|
Rebucci M, Sermeus A, Leonard E, Delaive E, Dieu M, Fransolet M, Arnould T, Michiels C. miRNA-196b inhibits cell proliferation and induces apoptosis in HepG2 cells by targeting IGF2BP1. Mol Cancer 2015; 14:79. [PMID: 25889892 PMCID: PMC4403945 DOI: 10.1186/s12943-015-0349-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/19/2015] [Indexed: 12/19/2022] Open
Abstract
Background Tumor hypoxia is one of the features of tumor microenvironment that contributes to chemoresistance. miRNAs have recently been shown to play important roles in tumorigenesis and drug resistance. Moreover, hypoxia also regulates the expression of a series of miRNAs. However, the interaction between chemoresistance, hypoxia and miRNAs has not been explored yet. The aim of this study is to understand the mechanisms activated/inhibited by miRNAs under hypoxia that induce resistance to chemotherapy-induced apoptosis. Methods TaqMan low-density array was used to identify changes in miRNA expression when cells were exposed to etoposide under hypoxia or normoxia. The effects of miR-196b overexpression on apoptosis and cell proliferation were studied in HepG2 cells. miR-196b target mRNAs were identified by proteomic analysis, luciferase activity assay, RT-qPCR and western blot analysis. Results Results showed that hypoxia down-regulated miR-196b expression that was induced by etoposide. miR-196b overexpression increased the etoposide-induced apoptosis and reversed the protection of cell death observed under hypoxia. By a proteomic approach combined with bioinformatics analyses, we identified IGF2BP1 as a potential target of miR-196b. Indeed, miR-196b overexpression decreased IGF2BP1 RNA expression and protein level. The IGF2BP1 down-regulation by either miR-196b or IGF2BP1 siRNA led to an increase in apoptosis and a decrease in cell viability and proliferation in normal culture conditions. However, IGF2BP1 silencing did not modify the chemoresistance induced by hypoxia, probably because it is not the only target of miR-196b involved in the regulation of apoptosis. Conclusions In conclusion, for the first time, we identified IGF2BP1 as a direct and functional target of miR-196b and showed that miR-196b overexpression reverses the chemoresistance induced by hypoxia. These results emphasize that the chemoresistance induced by hypoxia is a complex mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0349-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magali Rebucci
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Audrey Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Elodie Leonard
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Edouard Delaive
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Marc Dieu
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
89
|
Papadopoulos EI, Yousef GM, Scorilas A. Gemcitabine impacts differentially on bladder and kidney cancer cells: distinct modulations in the expression patterns of apoptosis-related microRNAs and BCL2 family genes. Tumour Biol 2015; 36:3197-207. [PMID: 25833690 DOI: 10.1007/s13277-014-2190-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/03/2014] [Indexed: 12/22/2022] Open
Abstract
Bladder and renal cancer are two representative cases of tumors that respond differentially to gemcitabine. Previous studies have shown that gemcitabine can trigger apoptosis in various cancer cells. Herein, we sought to investigate the impact of gemcitabine on the expression levels of the BCL2 family members BCL2, BAX, and BCL2L12 and the apoptosis-related microRNAs miR-182, miR-96, miR-145, and miR-16 in the human bladder and kidney cancer cell lines T24 and Caki-1, respectively. Cancer cells' viability as well as the IC50 doses of gemcitabine were estimated by the MTT assay, while the detection of cleaved PARP via Western blotting was used as an indicator of apoptosis. Furthermore, T24 and Caki-1 cells' ability to recover from treatment was also monitored. Two different highly sensitive quantitative real-time RT-PCR methodologies were developed in order to assess the expression levels of BCL2 family genes and microRNAs. Exposure of cancer cells to gemcitabine produced the IC50 values of 30 and 3 nM for Caki-1 and T24 cells, correspondingly, while cleaved PARP was detected only in Caki-1 cells. T24 cells demonstrated the ability to recover from gemcitabine treatment, whereas Caki-1 cells' recovery capability was dependent on the initial time of exposure. BCL2 and BAX were significantly modulated in treated Caki-1 cells. Instead, T24 cells exhibited alterations only in the latter, as well as in all studied microRNAs. Therefore, according to our data, bladder and renal cancer cells' response to gemcitabine is accompanied by distinct alterations in the expression levels of their apoptosis-related genes and microRNAs.
Collapse
Affiliation(s)
- Emmanuel I Papadopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | | | | |
Collapse
|
90
|
Hargraves KG, He L, Firestone GL. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol Carcinog 2015; 55:486-98. [PMID: 25789847 DOI: 10.1002/mc.22296] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
The tumor suppressive microRNA miR-34a is transcriptionally regulated by p53 and shown to inhibit breast cancer cell proliferation as well as being a marker of increased disease free survival. Indole-3-carbinol (I3C) derived from cruciferous vegetables, artemisinin, extracted from the sweet wormwood plant, and artesunate, a semi-synthetic derivative of artemisinin, are phytochemicals with anti-tumorigenic properties however, little is known about the role of microRNAs in their mechanism of action. Human breast cancer cells expressing wild-type (MCF-7) or mutant p53 (T47D) were treated with a concentration range and time course of each phytochemical under conditions of cell cycle arrest as detected by flow cytometry to examine the potential connection between miR-34a expression and their anti-proliferative responses. Real-time PCR and western blot analysis of extracted RNA and total protein revealed artemsinin and artesunate increased miR-34a expression in a dose-dependent manner correlating with down-regulation of the miR-34a target gene, CDK4. I3C stimulation of miR-34a expression required functional p53, whereas, both artemisinin and artesunate up-regulated miR-34a expression regardless of p53 mutational status or in the presence of dominant negative p53. Phytochemical treatments inhibited the luciferase activity of a construct containing the wild-type 3'UTR of CDK4, but not those with a mutated miR-34a binding site, whereas, transfection of miR-34a inhibitors ablated the phytochemical mediated down-regulation of CDK4 and induction of cell cycle arrest. Our results suggest that miR-34a is an essential component of the anti-proliferative activities of I3C, artemisinin, and artesunate and demonstrate that both wild-type p53 dependent and independent pathways are responsible for miR-34a induction.
Collapse
Affiliation(s)
- Kris G Hargraves
- Department of Molecular and Cell Biology, The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| | - Lin He
- Department of Molecular and Cell Biology, The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| | - Gary L Firestone
- Department of Molecular and Cell Biology, The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California
| |
Collapse
|
91
|
Non-small-cell lung cancer and miRNAs: novel biomarkers and promising tools for treatment. Clin Sci (Lond) 2015; 128:619-34. [PMID: 25760961 DOI: 10.1042/cs20140530] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with approximately 80–85% of cases being non-small-cell lung cancer (NSCLC). The miRNAs are small non-coding RNAs that regulate gene expression at a post-transcriptional level by either degradation or inhibition of the translation of target genes. Evidence is mounting that miRNAs exert pivotal effects in the development and progression of human malignancies, including NSCLC. A better understanding of the role that miRNAs play in the disease will contribute to the development of new diagnostic biomarkers and individualized therapeutic tools. In the present review, we briefly describe the role of miRNAs in NSCLC as well as the possible future of these discoveries in clinical applications.
Collapse
|
92
|
Wang T, Huang B, Guo R, Ma J, Peng C, Zu X, Tang H, Lei X. A let-7b binding site SNP in the 3'-UTR of the Bcl-xL gene enhances resistance to 5-fluorouracil and doxorubicin in breast cancer cells. Oncol Lett 2015; 9:1907-1911. [PMID: 25789066 PMCID: PMC4356428 DOI: 10.3892/ol.2015.2938] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022] Open
Abstract
The development of acquired resistance to chemotherapy is a major obstacle in the successful treatment of cancer. In breast cancer cells, B-cell lymphoma-extra large (Bcl-xL) is involved in the development of resistance to various chemotherapeutic agents; therefore, preliminary biological prediction was performed to identify a putative binding site for let-7b in the 3'-untranslated region (UTR) of the Bcl-xL gene and a single nucleotide polymorphism (SNP) within this binding region. The present study investigated the association between the SNP rs3208684 A>C and chemotherapeutic agent resistance in breast cancer cells. The data indicated that let-7b negatively regulates the expression of Bcl-xL and appears to sensitize MCF-7 cells to the chemotherapeutic agents 5-fluorouracil (5-FU) and doxorubicin. Furthermore, the SNP rs3208684 A>C was demonstrated to enhance Bcl-xL protein expression by disrupting the binding of let-7b to the 3'-UTR of Bcl-xL and, in MCF-7 cells, overexpression of let-7b in the presence of a mutant Bcl-xL 3'-UTR (C allele) significantly increased 5-FU and doxorubicin resistance. Thus, the results of the present study demonstrate that the SNP rs3208684 A>C may upregulate Bcl-xL protein expression and enhance the resistance of the MCF-7 cells to 5-FU and doxorubicin by decreasing the binding of let-7b to the 3'-UTR of Bcl-xL.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China ; Department of Pharmacy, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bin Huang
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Rui Guo
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jin Ma
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Cuiying Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xuyu Zu
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Huifang Tang
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
93
|
Manipulating miRNA Expression: A Novel Approach for Colon Cancer Prevention and Chemotherapy. ACTA ACUST UNITED AC 2015; 1:141-153. [PMID: 26029495 DOI: 10.1007/s40495-015-0020-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small non-coding RNA has been implicated in the control of various cellular processes such as proliferation, apoptosis, and differentiation. About 50% of the miRNA genes are positioned in cancer-associated genomic regions. Several studies have shown that miRNA expression is deregulated in cancer and modulating their expression has reversed the cancer phenotype. Therefore, mechanisms to modulate microRNA (miRNA) activity have provided a novel opportunity for cancer prevention and therapy. In addition, a common cause for development of colorectal cancers is environmental and lifestyle factors. One such factor, diet has been shown to modulate miRNA expression in colorectal cancer patients. In this chapter, we will summarize the work demonstrating that miRNAs are novel promising drug targets for cancer chemoprevention and therapy. Improved delivery, increased stability and enhanced regulation of off-target effects will overcome the current challenges of this exciting approach in the field of cancer prevention and therapy.
Collapse
|
94
|
Drug resistance-related microRNAs in hematological malignancies: Translating basic evidence into therapeutic strategies. Blood Rev 2015; 29:33-44. [DOI: 10.1016/j.blre.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
|
95
|
MacDonagh L, Gray SG, Finn SP, Cuffe S, O'Byrne KJ, Barr MP. The emerging role of microRNAs in resistance to lung cancer treatments. Cancer Treat Rev 2014; 41:160-9. [PMID: 25592062 DOI: 10.1016/j.ctrv.2014.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/08/2014] [Accepted: 12/13/2014] [Indexed: 12/21/2022]
Abstract
One of the major challenges in the treatment of lung cancer is the development of drug resistance. This represents a major obstacle in the treatment of patients, limiting the efficacy of both conventional chemotherapy and biological therapies. Deciphering the mechanisms of resistance is critical to further understanding the multifactorial pathways involved, and in developing more specific targeted treatments. To date, numerous studies have reported the potential role of microRNAs (miRNAs) in resistance to various cancer treatments. MicroRNAs are a family of small non-coding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing translational repression or mRNA degradation. More than 1200 validated human miRNAs have been identified to date. While as little as one miRNA can regulate hundreds of targets, a single target can also be affected by multiple miRNAs. Evidence suggests that dysregulation of specific miRNAs may be involved in the acquisition of resistance to a number of cancer treatments, thereby modulating the sensitivity of cancer cells to such therapies. Therefore, targeting miRNAs may be an attractive strategy for developing novel and more effective individualized therapies, improving drug efficiency, and for predicting patient response to different treatments. In this review, we provide an overview on the role of miRNAs in resistance to current lung cancer therapies and novel biological agents.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland; Department of Histopathology, St James's Hospital & Trinity College Dublin, Ireland.
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| | - Kenneth J O'Byrne
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland; Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| |
Collapse
|
96
|
Shen H, Shen J, Wang L, Shi Z, Wang M, Jiang BH, Shu Y. Low miR-145 expression level is associated with poor pathological differentiation and poor prognosis in non-small cell lung cancer. Biomed Pharmacother 2014; 69:301-5. [PMID: 25661374 DOI: 10.1016/j.biopha.2014.12.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/10/2014] [Indexed: 11/30/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the first cause of cancer related death in the world. Biomarkers to predict the relapse and drug resistance could be extremely useful for a clinical doctor to monitor high risk patients and select rational regimen. miRNAs play an important role in lung cancer and detection samples are relatively easy to be obtained, miRNAs could become a promising means of comprehending the oncogenesis and pathogenesis of lung cancer. This study aimed to investigate the function of miR-145 to work as a biomarker in NSCLC. miR-145 expression level in 48 NSCLC tumor tissues and their matched normal tissues were detected by qRT-PCR. miR-145 in 18 paraffin-embedded samples underwent chemotherapy and were assessed by in situ hybridization (ISH). Here we show that miR-145 was down-regulated in NSCLC tissues; down-regulation of miR-145 was correlated with late clinical stage and poorly differentiated carcinoma, and, low expression level of miR-145 could also predict chemotherapy resistance and shorter disease-free survival (DFS). These findings indicated that miR-145 expression may be a useful prognostic marker that could be used for predicting poor differentiation, chemo-resistance and shore DFS.
Collapse
Affiliation(s)
- Hua Shen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing , 210029 Jiangsu Province, China
| | - Jianxin Shen
- Department of Clinical Laborotory, First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| | - Lin Wang
- Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Nanjing Ninggao Individual Medical Technology Innovation Center Ltd, Nanjing, 210029 Jiangsu Province, China
| | - Zhumei Shi
- Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Nanjing Ninggao Individual Medical Technology Innovation Center Ltd, Nanjing, 210029 Jiangsu Province, China
| | - Min Wang
- Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Nanjing Ninggao Individual Medical Technology Innovation Center Ltd, Nanjing, 210029 Jiangsu Province, China
| | - Bing-Hua Jiang
- Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Nanjing Ninggao Individual Medical Technology Innovation Center Ltd, Nanjing, 210029 Jiangsu Province, China
| | - Yongqian Shu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing , 210029 Jiangsu Province, China.
| |
Collapse
|
97
|
DI C, Zhao Y. Multiple drug resistance due to resistance to stem cells and stem cell treatment progress in cancer (Review). Exp Ther Med 2014; 9:289-293. [PMID: 25574188 PMCID: PMC4280950 DOI: 10.3892/etm.2014.2141] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
In recent years, the cancer stem cell (CSC) theory has provided a new angle in the research of cancer, and has gradually gained significance. According to this theory, the multiple drug resistance (MDR) of cancer is most likely due to the resistance of CSCs, and a significant quantity of research has been carried out into the MDR mechanisms of CSC. Over time, some of these mechanisms have been gradually accepted, including ATP-binding cassette transporters, aldehyde dehydrogenase, the CSC microenvironment and epithelial to mesenchymal transition. In the present review, we summarize these mechanisms in detail and review possible appropriate therapy plans against CSCs based on CSC theory.
Collapse
Affiliation(s)
- Chong DI
- Department of Neurosurgery, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
98
|
He DX, Gu XT, Jiang L, Jin J, Ma X. A methylation-based regulatory network for microRNA 320a in chemoresistant breast cancer. Mol Pharmacol 2014; 86:536-47. [PMID: 25159093 DOI: 10.1124/mol.114.092759] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We previously demonstrated that the overexpression of transient receptor potential channel C5 (TRPC5) and nuclear factor of activated T-cells isoform c3 (NFATC3) are essential for cancer chemoresistance, but how TRPC5 and NFATC3 are regulated was still unclear. In this study, microRNA 320a (miR-320a) was found to be down-regulated in chemoresistant cancer cells. MiR-320a directly targeted TRPC5 and NFATC3, and down-regulation of miR-320a triggered TRPC5 and NFATC3 overexpression. In chemoresistant cells, down-regulation of miR-320a was associated with regulation by methylation, which implicated promoter methylation of the miR-320a coding sequence. Furthermore, the transcription factor v-ets erythroblastosis virus E26 oncogene homolog 1 (ETS-1), which inhibited miR-320a expression, was activated in chemoresistant cancer cells; such activation was associated with hypomethylation of the ETS-1 promoter. Lastly, the down-regulation of miR-320a and high expression of TRPC5, NFATC3, and ETS-1 were verified in clinically chemoresistant samples. Low expression of MiR-320a was also found to be a significant unfavorable predictor for clinic outcome. In conclusion, miR-320a is a mediator of chemoresistance by targeting TRPC5 and NFATC3. Expression of miR-320a is regulated by methylation of its promoter and that of ETS-1.
Collapse
Affiliation(s)
- Dong-Xu He
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| | - Xiao-Ting Gu
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| | - Li Jiang
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| | - Jian Jin
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| | - Xin Ma
- National Engineering Laboratory for Cereal Fermentation Technology (D.X.H.), and Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics (X.T.G., L.J., J.J., X.M.), Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
99
|
He DX, Gu XT, Li YR, Jiang L, Jin J, Ma X. Methylation-regulated miR-149 modulates chemoresistance by targeting GlcNAc N-deacetylase/N-sulfotransferase-1 in human breast cancer. FEBS J 2014; 281:4718-30. [PMID: 25156775 DOI: 10.1111/febs.13012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 02/06/2023]
Abstract
Dysregulation of microRNA is strongly implicated in the chemoresistance of cancer. In this study, we found that miR-149 was downregulated and involved in chemoresistance in adriamycin (ADM)-resistant human breast cancer cells (MCF-7/ADM). Downregulation of miR-149 was related to hypermethylation of its 5'-UTR; this methylation also affected the expression of the glypican 1 gene, which is both the host and the target gene of miR-149. Furthermore, we found that miR-149 modulated chemoresistance through targeting the expression of GlcNAc N-deacetylase/N-sulfotransferase-1 (NDST1). With downregulated miR-149, NDST1 expression was increased in chemoresistant MCF-7/ADM cells versus control MCF-7 wild-type cells. The increased NDST1 then activated a heparan sulfate-related pathway involving activation of heparanase. Finally, expression of miR-149 and NDST1 was confirmed in clinical chemoresistant samples of breast cancers receiving anthracycline/taxane-based chemotherapies. The high expression of NDST1 was also an unfavorable predictor for distant relapse-free survival in Her2 and basal breast cancers. Taken together, our findings demonstrate that miR-149 is regulated by methylation, and is a modulator of cancer chemoresistance by targeting NDST1.
Collapse
Affiliation(s)
- Dong-Xu He
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | | | | | | | | | | |
Collapse
|
100
|
Lin Y, Wang X, Jin H. EGFR-TKI resistance in NSCLC patients: mechanisms and strategies. Am J Cancer Res 2014; 4:411-435. [PMID: 25232485 PMCID: PMC4163608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/16/2014] [Indexed: 06/03/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a kind of receptor tyrosine kinase (RTK) that plays a critical role in the initiation and development of malignant tumors via modulating downstream signaling pathways. In non-small cell lung cancer (NSCLC), the activating mutations located in the tyrosine kinase domains of EGFR have been demonstrated in multiple researches as the "Achilles' heel" of this deadly disease since they could be well-targeted by epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). However, it's still too early to celebrate since the first-generation EGFR-TKIs such as gefitinib and erlotinib have only achieved limited clinical benefits and acquired resistance to this kind of drugs occurred inevitably in almost all the NSCLC patients. In order to make the most of EGFR-TKIs and develop more effective regimens for the NSCLC patients, researchers majoring in different aspects start a battle against EGFR-TKI resistance. Challenging as it is, we still progress stably and step firmly toward the final victory. This review will summarize the major mechanisms of acquired resistance to EGFR-TKIs, and then discuss the development of rationally designed molecular target drugs in accordance with each mechanism, in the hope of shedding light on the great achievements we have obtained and tough obstacles we have to overcome in the battle against this deadly disease.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Medical Oncology, Sir Runrun Shaw Hospital, Medical School of Zhejiang University Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Runrun Shaw Hospital, Medical School of Zhejiang University Hangzhou, China
| | - Hongchuan Jin
- Department of Medical Oncology, Sir Runrun Shaw Hospital, Medical School of Zhejiang University Hangzhou, China
| |
Collapse
|