51
|
Hu S, Ogle BM, Cheng K. Body builder: from synthetic cells to engineered tissues. Curr Opin Cell Biol 2018; 54:37-42. [PMID: 29704858 PMCID: PMC6202268 DOI: 10.1016/j.ceb.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022]
Abstract
It is estimated that 18 Americans die every day waiting for an organ donation. And even if a patient receives the organ that s/he needs, there is still >10% chance that the new organ will not work. The field of tissue engineering and regenerative medicine aims to actively use a patient's own cells, plus biomaterials and factors, to grow specific tissues for replacement or to restore normal functions of that organ, which would eliminate the need for donors and the risk of alloimmune rejection. In this review, we summarized recent advances in fabricating synthetic cells, with a specific focus on their application to cardiac regenerative medicine and tissue engineering. At the end, we pointed to challenges and future directions for the field.
Collapse
Affiliation(s)
- Shiqi Hu
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, NC State University, Raleigh, NC 27607, USA; Joint Department of Biomedical Engineering and Comparative Medicine Institute, UNC-Chapel Hill & NC State University, Raleigh, NC 27607, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, Stem Cell Institute, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, NC State University, Raleigh, NC 27607, USA; Joint Department of Biomedical Engineering and Comparative Medicine Institute, UNC-Chapel Hill & NC State University, Raleigh, NC 27607, USA.
| |
Collapse
|
52
|
Kim S, Cho AN, Min S, Kim S, Cho SW. Organoids for Advanced Therapeutics and Disease Models. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Suran Kim
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Sungjin Min
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Sooyeon Kim
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| |
Collapse
|
53
|
Paoletti C, Divieto C, Chiono V. Impact of Biomaterials on Differentiation and Reprogramming Approaches for the Generation of Functional Cardiomyocytes. Cells 2018; 7:E114. [PMID: 30134618 PMCID: PMC6162411 DOI: 10.3390/cells7090114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022] Open
Abstract
The irreversible loss of functional cardiomyocytes (CMs) after myocardial infarction (MI) represents one major barrier to heart regeneration and functional recovery. The combination of different cell sources and different biomaterials have been investigated to generate CMs by differentiation or reprogramming approaches although at low efficiency. This critical review article discusses the role of biomaterial platforms integrating biochemical instructive cues as a tool for the effective generation of functional CMs. The report firstly introduces MI and the main cardiac regenerative medicine strategies under investigation. Then, it describes the main stem cell populations and indirect and direct reprogramming approaches for cardiac regenerative medicine. A third section discusses the main techniques for the characterization of stem cell differentiation and fibroblast reprogramming into CMs. Another section describes the main biomaterials investigated for stem cell differentiation and fibroblast reprogramming into CMs. Finally, a critical analysis of the scientific literature is presented for an efficient generation of functional CMs. The authors underline the need for biomimetic, reproducible and scalable biomaterial platforms and their integration with external physical stimuli in controlled culture microenvironments for the generation of functional CMs.
Collapse
Affiliation(s)
- Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.
| | - Carla Divieto
- Division of Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin, Italy.
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.
| |
Collapse
|
54
|
Matsuda Y, Takahashi K, Kamioka H, Naruse K. Human gingival fibroblast feeder cells promote maturation of induced pluripotent stem cells into cardiomyocytes. Biochem Biophys Res Commun 2018; 503:1798-1804. [PMID: 30060947 DOI: 10.1016/j.bbrc.2018.07.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 11/26/2022]
Abstract
The use of human induced pluripotent stem (iPS) cells has been investigated in multiple regenerative medicine studies. However, although methods for efficient differentiation of iPS cells into heart tissues have been devised, it remains difficult to obtain cardiac tissue with high contractility. Herein, we established a method for differentiating iPS cells into highly contractile cardiomyocytes (CMs), and demonstrate that the use of human gingival fibroblasts (HGFs) as a feeder cells promotes maturation of iPS-derived CMs (iPS-CMs) in vitro. After CM differentiation of iPS cells, iPS-CMs showed increased mRNA expression of the CM specific maker cardiac troponin T (cTnT) in the absence and presence (on-feeder condition) of cocultured HGFs, and decreased expression of pluripotent markers was observed under both conditions. Protein expression of cTnT was also observed in immunocytochemical analyses, although on-feeder CMs showed comparatively robust sarcomere structure and significantly stronger contractility than feederless cardiomyocytes, suggesting that HGF feeder cells facilitate CM differentiation of iPS cells.
Collapse
Affiliation(s)
- Yusuke Matsuda
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan; Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
55
|
Teng CF, Jeng LB, Shyu WC. Role of Insulin-like Growth Factor 1 Receptor Signaling in Stem Cell Stemness and Therapeutic Efficacy. Cell Transplant 2018; 27:1313-1319. [PMID: 29882416 PMCID: PMC6168993 DOI: 10.1177/0963689718779777] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Evidence has emerged that stem cells represent a promising therapeutic tool for tissue engineering and regenerative medicine. Thus, identifying functional markers for selecting stem cells capable of superior self-renewal and pluripotency (or multipotency) and maintaining stem cell identity under appropriate culture conditions are critical for guiding the use of stem cells toward clinical applications. Many investigations have implicated the insulin-like growth factor 1 receptor (IGF1R) signaling in maintenance of stem cell characteristics and enhancement of stem cell therapy efficacy. IGF1R-expressing stem cells display robust pluripotent or multipotent properties. In this review, we summarize the essential roles of IGF1R signaling in self-renewal, pluripotency (or multipotency), and therapeutic efficacy of stem cells, including human embryonic stem cells, neural stem cells, cardiac stem cells, bone marrow mesenchymal stem cells, placental mesenchymal stem cells, and dental pulp mesenchymal stem cells. Modifying IGF1R signaling may thus provide potential strategies for maintaining stem cell properties and improving stem-cell-based therapeutic applications.
Collapse
Affiliation(s)
- Chiao-Fang Teng
- 1 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,2 Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- 2 Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Woei-Cherng Shyu
- 1 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,3 Translational Medicine Research Center and Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,4 Department of Occupational Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
56
|
Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N. 3D and 4D Bioprinting of the Myocardium: Current Approaches, Challenges, and Future Prospects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6497242. [PMID: 29850546 PMCID: PMC5937623 DOI: 10.1155/2018/6497242] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/04/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
3D and 4D bioprinting of the heart are exciting notions in the modern era. However, myocardial bioprinting has proven to be challenging. This review outlines the methods, materials, cell types, issues, challenges, and future prospects in myocardial bioprinting. Advances in 3D bioprinting technology have significantly improved the manufacturing process. While scaffolds have traditionally been utilized, 3D bioprinters, which do not require scaffolds, are increasingly being employed. Improved understanding of the cardiac cellular composition and multiple strategies to tackle the issues of vascularization and viability had led to progress in this field. In vivo studies utilizing small animal models have been promising. 4D bioprinting is a new concept that has potential to advance the field of 3D bioprinting further by incorporating the fourth dimension of time. Clinical translation will require multidisciplinary collaboration to tackle the pertinent issues facing this field.
Collapse
Affiliation(s)
- Chin Siang Ong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Lucy Nam
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Kingsfield Ong
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore
| | - Aravind Krishnan
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chen Yu Huang
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Takuma Fukunishi
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
57
|
Mattapally S, Zhu W, Fast VG, Gao L, Worley C, Kannappan R, Borovjagin AV, Zhang J. Spheroids of cardiomyocytes derived from human-induced pluripotent stem cells improve recovery from myocardial injury in mice. Am J Physiol Heart Circ Physiol 2018; 315:H327-H339. [PMID: 29631371 DOI: 10.1152/ajpheart.00688.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microenvironment of native heart tissue may be better replicated when cardiomyocytes are cultured in three-dimensional clusters (i.e., spheroids) than in monolayers or as individual cells. Thus, we differentiated human cardiac lineage-induced pluripotent stem cells in cardiomyocytes (hiPSC-CMs) and allowed them to form spheroids and spheroid fusions that were characterized in vitro and evaluated in mice after experimentally induced myocardial infarction (MI). Synchronized contractions were observed within 24 h of spheroid formation, and optical mapping experiments confirmed the presence of both Ca2+ transients and propagating action potentials. In spheroid fusions, the intraspheroid conduction velocity was 7.0 ± 3.8 cm/s on days 1- 2 after formation, whereas the conduction velocity between spheroids increased significantly ( P = 0.003) from 0.8 ± 1.1 cm/s on days 1- 2 to 3.3 ± 1.4 cm/s on day 7. For the murine MI model, five-spheroid fusions (200,000 hiPSC-CMs/spheroid) were embedded in a fibrin patch and the patch was transplanted over the site of infarction. Later (4 wk), echocardiographic measurements of left ventricular ejection fraction and fractional shortening were significantly greater in patch-treated animals than in animals that recovered without the patch, and the engraftment rate was 25.6% or 30% when evaluated histologically or via bioluminescence imaging, respectively. The exosomes released from the spheroid patch seemed to increase cardiac function. In conclusion, our results established the feasibility of using hiPSC-CM spheroids and spheroid fusions for cardiac tissue engineering, and, when fibrin patches containing hiPSC-CM spheroid fusions were evaluated in a murine MI model, the engraftment rate was much higher than the rates we have achieved via the direct intramyocardial injection. NEW & NOTEWORTHY Spheroids fuse in culture to produce structures with uniformly distributed cells. Furthermore, human cardiac lineage-induced pluripotent stem cells in cardiomyocytes in adjacent fused spheroids became electromechanically coupled as the fusions matured in vitro, and when the spheroids were combined with a biological matrix and administered as a patch over the infarcted region of mouse hearts, the engraftment rate exceeded 25%, and the treatment was associated with significant improvements in cardiac function via a paracrine mechanism, where exosomes released from the spheroid patch.
Collapse
Affiliation(s)
- Saidulu Mattapally
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Ling Gao
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Chelsea Worley
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Ramaswamy Kannappan
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Anton V Borovjagin
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
58
|
Majidinia M, Aghazadeh J, Jahanban‐Esfahlani R, Yousefi B. The roles of Wnt/β‐catenin pathway in tissue development and regenerative medicine. J Cell Physiol 2018; 233:5598-5612. [DOI: 10.1002/jcp.26265] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Javad Aghazadeh
- Department of NeurosurgeryUrmia University of Medical SciencesUrmiaIran
| | - Rana Jahanban‐Esfahlani
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Bahman Yousefi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical SciencesTabrizIran
- Molecular Targeting Therapy Research GroupFaculty of MedicineTabriz University ofMedical SciencesTabrizIran
| |
Collapse
|
59
|
"Good things come in small packages": application of exosome-based therapeutics in neonatal lung injury. Pediatr Res 2018; 83:298-307. [PMID: 28985201 PMCID: PMC5876073 DOI: 10.1038/pr.2017.256] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
Infants born at very low gestational age contribute disproportionately to neonatal morbidity and mortality. Advancements in antenatal steroid therapies and surfactant replacement have favored the survival of infants with ever-more immature lungs. Despite such advances in medical care, cardiopulmonary and neurological impairment prevail in constituting the major adverse outcomes for neonatal intensive care unit survivors. With no single effective therapy for either the prevention or treatment of such neonatal disorders, the need for new tools to treat and reduce risk of further complications associated with extreme preterm birth is urgent. Mesenchymal stem/stromal cell (MSC)-based approaches have shown promise in numerous experimental models of lung injury relevant to neonatology. Recent studies have highlighted that the therapeutic potential of MSCs is harnessed in their secretome, and that the therapeutic vector therein is represented by the exosomes released by MSCs. In this review, we summarize the development and significance of stem cell-based therapies for neonatal diseases, focusing on preclinical models of neonatal lung injury. We emphasize the development of MSC exosome-based therapeutics and comment on the challenges in bringing these promising interventions to clinic.
Collapse
|
60
|
Estarás C, Hsu HT, Huang L, Jones KA. YAP repression of the WNT3 gene controls hESC differentiation along the cardiac mesoderm lineage. Genes Dev 2017; 31:2250-2263. [PMID: 29269485 PMCID: PMC5769769 DOI: 10.1101/gad.307512.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
Here, Estaras et al. researched how the Hippo effector YAP represses hESC differentiation and demonstrate that YAP binds to the WNT3 gene enhancer and prevents the gene from being induced by Activin in proliferating hESCs. Their findings indicate that YAP maintains hESC pluripotency by preventing WNT3 expression in response to Activin, thereby blocking a direct route to embryonic cardiac mesoderm formation. Activin/SMAD signaling in human embryonic stem cells (hESCs) ensures NANOG expression and stem cell pluripotency. In the presence of Wnt ligand, the Activin/SMAD transcription network switches to cooperate with Wnt/β-catenin and induce mesendodermal (ME) differentiation genes. We show here that the Hippo effector YAP binds to the WNT3 gene enhancer and prevents the gene from being induced by Activin in proliferating hESCs. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) data show that YAP impairs SMAD recruitment and the accumulation of P-TEFb-associated RNA polymerase II (RNAPII) C-terminal domain (CTD)-Ser7 phosphorylation at the WNT3 gene. CRISPR/CAS9 knockout of YAP in hESCs enables Activin to induce Wnt3 expression and stabilize β-catenin, which then synergizes with Activin-induced SMADs to activate a subset of ME genes that is required to form cardiac mesoderm. Interestingly, exposure of YAP−/− hESCs to Activin induces cardiac mesoderm markers (BAF60c and HAND1) without activating Wnt-dependent cardiac inhibitor genes (CDX2 and MSX1). Moreover, canonical Wnt target genes are up-regulated only modestly, if at all, under these conditions. Consequently, YAP-null hESCs exposed to Activin differentiate precisely into beating cardiomyocytes without further treatment. We conclude that YAP maintains hESC pluripotency by preventing WNT3 expression in response to Activin, thereby blocking a direct route to embryonic cardiac mesoderm formation.
Collapse
Affiliation(s)
- Conchi Estarás
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Hui-Ting Hsu
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ling Huang
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
61
|
Kwon H, Kim M, Seo Y, Moon YS, Lee HJ, Lee K, Lee H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2017; 156:172-193. [PMID: 29197748 DOI: 10.1016/j.biomaterials.2017.11.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
The field of gene therapy has evolved over the past two decades after the first introduction of nucleic acid drugs, such as plasmid DNA (pDNA). With the development of in vitro transcription (IVT) methods, synthetic mRNA has become an emerging class of gene therapy. IVT mRNA has several advantages over conventional pDNA for the expression of target proteins. mRNA does not require nuclear localization to mediate protein translation. The intracellular process for protein expression is much simpler and there is no potential risk of insertion mutagenesis. Having these advantages, the level of protein expression is far enhanced as comparable to that of viral expression systems. This makes IVT mRNA a powerful alternative gene expression system for various applications in regenerative medicine. In this review, we highlight the synthesis and preparation of IVT mRNA and its therapeutic applications. The article includes the design and preparation of IVT mRNA, chemical modification of IVT mRNA, and therapeutic applications of IVT mRNA in cellular reprogramming, stem cell engineering, and protein replacement therapy. Finally, future perspectives and challenges of IVT mRNA are discussed.
Collapse
Affiliation(s)
- Hyokyoung Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yae Seul Moon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
62
|
An M, Kwon K, Park J, Ryu DR, Shin JA, Lee Kang J, Choi JH, Park EM, Lee KE, Woo M, Kim M. Extracellular matrix-derived extracellular vesicles promote cardiomyocyte growth and electrical activity in engineered cardiac atria. Biomaterials 2017; 146:49-59. [PMID: 28898757 DOI: 10.1016/j.biomaterials.2017.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) plays a critical role in the provision of the necessary microenvironment for the proper regeneration of the cardiac tissue. However, specific mechanisms that lead to ECM-mediated cardiac regeneration are not well understood. To elucidate the potential mechanisms, we investigated ultra-structures of the cardiac ECM using electron microscopy. Intriguingly, we observed large quantities of micro-vesicles from decellularized right atria. RNA and protein analyses revealed that these contained exosomal proteins and microRNAs (miRNAs), which we referred to herein as ECM-derived extracellular vesicles (ECM-EVs). One particular miRNA from ECM-EVs, miR-199a-3p, promoted cell growth of isolated neonatal cardiomyocytes and sinus nodal cells by repressing homeodomain-only protein (HOPX) expression and increasing GATA-binding 4 (Gata4) acetylation. To determine the mechanisms, we knocked down Gata4 and showed that miR-199a-3p actions required Gata4 for cell proliferation in isolated neonatal cardiomyocytes and sinus nodal cells. To further explore the role of this miRNA, we isolated neonatal cardiac cells and recellularized into atrial ECM, referred here has engineered atria. Remarkably, miR-199a-3p mediated the enrichment of cardiomyocyte and sinus nodal cell population, and enhanced electrocardiographic signal activity of sinus nodal cells in the engineered atria. Importantly, antisense of miRNA (antagomir) against miR-199a-3p was capable of abolishing these actions of miR-199a-3p in the engineered atria. We further showed in Ang II-infused animal model of sinus nodal dysfunction that miR-199-3p-treated cardiac cells remarkably ameliorated and restored the electrical activity as shown by normalization of the ECG, in contrast to untreated cells, which did not show electrical recovery. In conclusion, these results provide clear evidence of the critical role of ECM, in not only providing a scaffold for cardiac tissue growth, but also in promoting atrial electrical function through ECM-derived miR-199a-3p.
Collapse
Affiliation(s)
- Minae An
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kihwan Kwon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Junbeom Park
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Dong-Ryeol Ryu
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jung-A Shin
- Department of Anatomy, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Ji Ha Choi
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minna Woo
- Toronto General Hospital Research Institute and Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Minsuk Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
63
|
Rotini A, Martínez-Sarrà E, Pozzo E, Sampaolesi M. Interactions between microRNAs and long non-coding RNAs in cardiac development and repair. Pharmacol Res 2017. [PMID: 28629929 DOI: 10.1016/j.phrs.2017.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-coding RNAs (ncRNAs) are emerging players in muscle regulation. Based on their length and differences in molecular structure, ncRNAs are subdivided into several categories including small interfering RNAs, stable non-coding RNAs, microRNAs (miRs), long non-coding RNAs (lncRNAs), and circular RNAs. miRs and lncRNAs are able to post-transcriptionally regulate many genes and bring into play several traits simultaneously due to a myriad of different targets. Recent studies have emphasized their importance in cardiac regeneration and repair. As their altered expression affects cardiac function, miRs and lncRNAs could be potential targets for therapeutic intervention. In this context, miR- and lncRNA-based gene therapies are an interesting field for harnessing the complexity of ncRNA-based therapeutic approaches in cardiac diseases. In this review we will focus on lncRNA- and miR-driven regulations of cardiac development and repair. Finally, we will summarize miRs and lncRNAs as promising candidates for the treatment of heart diseases.
Collapse
Affiliation(s)
- Alessio Rotini
- Translational Cardiomyology, Stem Cell Research Institute, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Herestraat 49 B-3000 Leuven, Belgium; Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy; Interuniversity Institute of Myology, Italy
| | - Ester Martínez-Sarrà
- Translational Cardiomyology, Stem Cell Research Institute, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Herestraat 49 B-3000 Leuven, Belgium; Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Enrico Pozzo
- Translational Cardiomyology, Stem Cell Research Institute, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Herestraat 49 B-3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology, Stem Cell Research Institute, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Herestraat 49 B-3000 Leuven, Belgium; Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 8, 27100 Pavia, Italy.
| |
Collapse
|