51
|
Zhu Y, Li G, Dong Y, Zhou HH, Kong B, Aleksunes LM, Richardson JR, Li F, Guo GL. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver. Toxicol Appl Pharmacol 2012. [PMID: 23178280 DOI: 10.1016/j.taap.2012.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in mice leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver.
Collapse
Affiliation(s)
- Yan Zhu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Li J, Luthra S, Wang XH, Chandran UR, Sobol RW. Transcriptional profiling reveals elevated Sox2 in DNA polymerase ß null mouse embryonic fibroblasts. Am J Cancer Res 2012; 2:699-713. [PMID: 23226616 DOI: 10.1158/1538-7445.am2012-699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/02/2012] [Indexed: 11/16/2022] Open
Abstract
There are over 150 human proteins that have been categorized as bona fide DNA repair proteins. These DNA repair proteins maintain the integrity of the genome, reducing the onset of cancer, disease and aging phenotypes. Variations in expression and/or function would therefore impact genome integrity as well as the cellular response to genotoxins. Global gene expression analysis is an effective approach to uncover defects in DNA repair gene expression and to discover cellular and/or organismal effects brought about by external stimuli such as environmental genotoxicants, chemotherapeutic regimens, viral infections as well as developmental and age-related stimuli. Given the significance of genome stability in cell survival and response to stimuli, we have hypothesized that cells may undergo transcriptional re-programming to accommodate defects in basal DNA repair capacity to promote survival. As a test of this hypothesis, we have compared the transcriptome in three DNA polymerase ß knockout (Polß-KO) mouse embryonic fibroblasts (MEFs) and the corresponding wild-type (WT) littermate control cell lines. Each Polß-KO cell line was found to have a range of genes up-regulated, when compared to its WT littermate control cell line. Interestingly, six (6) genes were commonly up regulated in all three Polß-KO cell lines, including Sox2, one of several genes associated with the induction of pluripotent stem cells. Herein, we present these findings and suggest that loss of DNA repair and the induction of cellular transcriptional re-programming may, in part, contribute to tumor formation and the cellular response to external stimuli.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15213, USA ; University of Pittsburgh Cancer Institute, Hillman Cancer Center Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
53
|
G-Protein-Coupled Receptor (GPCR)-Dependent ADAM-17 Regulated Ectodomain Shedding. Cancer Biomark 2012. [DOI: 10.1201/b14318-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
54
|
Liu HR, Meng LY, Lin ZY, Shen Y, Yu YQ, Zhu YZ. Cochinchina momordica seed extract induces apoptosis and cell cycle arrest in human gastric cancer cells via PARP and p53 signal pathways. Nutr Cancer 2012; 64:1070-7. [PMID: 23020228 DOI: 10.1080/01635581.2012.712737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cochinchina momordica seed is the dried ripe seed of Momordica cochinchinensis (Lour.) Spreng, which is a kind of fruit and consumed for dietary as well as medicinal uses. In this study, using the human SGC7901 and MKN-28 gastric cancer cell lines, we explored the anticancer activity of the extract from cochinchina momordica seed (ECMS). ECMS inhibited significantly the survival rates of SGC7901 and MKN-28 cells in concentration- and time-dependent manners by MTT assay. The typical apoptotic morphological changes were observed by Hoechst 33258 dye assay after SGC7901 and MKN-28 cells were treated with ECMS for 48 h. Flow cytometry analysis revealed that ECMS-treatment blocked the cells at the S phase of cell cycle. Furthermore, the protein expression levels of poly (ADP-ribose) polymerase (PARP) and Bcl-2 were downregulated notably by ECMS-treatment, whereas those of Fas/Fas-associated death domain, p53, and Bax were upregulated in SGC7901 cells. ECMS dramatically enhanced the enzymatic activities of caspase-3 and caspase-9 whilst slightly increased caspase-8 activity. Taken together, this study demonstrated that ECMS exerted cytotoxic activities via PARP and p53 signal pathways in the human gastric cancer cells.
Collapse
Affiliation(s)
- Hong-Rui Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
55
|
Kimbung S, Biskup E, Johansson I, Aaltonen K, Ottosson-Wadlund A, Gruvberger-Saal S, Cunliffe H, Fadeel B, Loman N, Berglund P, Hedenfalk I. Co-targeting of the PI3K pathway improves the response of BRCA1 deficient breast cancer cells to PARP1 inhibition. Cancer Lett 2012; 319:232-241. [DOI: 10.1016/j.canlet.2012.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 12/30/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
56
|
Topophore C: a liposomal nanoparticle formulation of topotecan for treatment of ovarian cancer. Invest New Drugs 2012; 31:46-58. [DOI: 10.1007/s10637-012-9832-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/07/2012] [Indexed: 12/31/2022]
|
57
|
Therapeutic intervention by the simultaneous inhibition of DNA repair and type I or type II DNA topoisomerases: one strategy, many outcomes. Future Med Chem 2012; 4:51-72. [PMID: 22168164 DOI: 10.4155/fmc.11.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Many anticancer drugs reduce the integrity of DNA, forming strand breaks. This can cause mutations and cancer or cell death if the lesions are not repaired. Interestingly, DNA repair-deficient cancer cells (e.g., those with BRCA1/2 mutations) have been shown to exhibit increased sensitivity to chemotherapy. Based on this observation, a new therapeutic approach termed 'synthetic lethality' has been developed, in which radiation therapy or cytotoxic anticancer agents are employed in conjunction with selective inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). Such combinations can cause severe genomic instability in transformed cells resulting in cell death. The synergistic effects of combining PARP-1 inhibition with anticancer drugs have been demonstrated. However, the outcome of this therapeutic strategy varies significantly between cancer types, suggesting that synthetic lethality may be influenced by additional cellular factors. This review focuses on the outcomes of the combined action of PARP-1 inhibitors and agents that affect the activity of DNA topoisomerases.
Collapse
|
58
|
Sousa FG, Matuo R, Soares DG, Escargueil AE, Henriques JAP, Larsen AK, Saffi J. PARPs and the DNA damage response. Carcinogenesis 2012; 33:1433-40. [PMID: 22431722 DOI: 10.1093/carcin/bgs132] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is an important posttranslational modification catalyzed by a variety of enzymes, including poly (ADP ribose) polymerases (PARPs), which use nicotinamide adenine dinucleotide (NAD(+)) as a substrate to synthesize and transfer ADP-ribose units to acceptor proteins. The PARP family members possess a variety of structural domains, span a wide range of functions and localize to various cellular compartments. Among the molecular actions attributed to PARPs, their role in the DNA damage response (DDR) has been widely documented. In particular, PARPs 1-3 are involved in several cellular processes that respond to DNA lesions, which include DNA damage recognition, signaling and repair as well as local transcriptional blockage, chromatin remodeling and cell death induction. However, how these enzymes are able to participate in such numerous and diverse mechanisms in response to DNA damage is not fully understood. Herein, the DDR functions of PARPs 1-3 and the emerging roles of poly (ADP ribose) polymers in DNA damage are reviewed. The development of PARP inhibitors, their applications and mechanisms of action are also discussed in the context of the DDR.
Collapse
Affiliation(s)
- Fabricio G Sousa
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
59
|
Chionh F, Mitchell G, Lindeman GJ, Friedlander M, Scott CL. The role of poly adenosine diphosphate ribose polymerase inhibitors in breast and ovarian cancer: current status and future directions. Asia Pac J Clin Oncol 2012; 7:197-211. [PMID: 21884432 DOI: 10.1111/j.1743-7563.2011.01430.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly adenosine diphosphate ribose polymerase (PARP) inhibitors have demonstrated single agent activity in the treatment of patients with recurrent BRCA1-mutated and BRCA2-mutated breast and ovarian cancers. They also appear to have a potential role as maintenance therapy following chemotherapy in patients with platinum sensitive recurrent sporadic and BRCA1/2 related high-grade serous ovarian cancers. The concept of BRCAness raises the possibility that PARP inhibitors may be active in selected patients with homologous recombination (HR) DNA repair-deficient tumors, even if they do not harbor a BRCA1/2 germline mutation. Further research will be required to identify the subset of patients with sporadic cancers who may benefit from PARP inhibitor therapy. Precise details on the mechanisms of action, relative potency and anti-cancer effects of different PARP inhibitors remain to be clarified and are being investigated. PARP inhibitors are known to inhibit the base excision repair (BER) pathway but in addition, recent reports indicate that aberrant activation of the error-prone non-homologous end-joining (NHEJ) pathway occurs in HR-deficient cells and that cell death provoked by PARP inhibition is dependent on NHEJ-induced genomic instability. Characterization of the precise molecular mechanisms responsible for PARP inhibitor activity should lead to the identification of predictive biomarkers of response and help identify which patients should be treated with PARP inhibitors. This is a very active field of research and the current status and future directions are reviewed.
Collapse
Affiliation(s)
- Fiona Chionh
- The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
60
|
Khaliq W, Visvanathan K. Breast Cancer Chemoprevention: Current Approachesand Future Directions. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2012. [DOI: 10.1007/s13669-011-0005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Abstract
Observations that genome-wide DNA hypomethylation induces genomic instability and tumors in animals caution against the indiscriminate use of demethylating agents, such as 5-aza-2′-deoxycytidine (5-Aza-dC). Using primary mouse embryonic fibroblasts harboring a lacZ mutational reporter construct that allows the quantification and characterization of a wide range of mutational events, we found that in addition to demethylation, treatment with 5-Aza-dC induces γ-H2AX expression, a marker for DNA breaks, and both point mutations and genome rearrangements. To gain insight into the source of these mutations we first tested the hypothesis that the mutagenic effect of 5-Aza-dC may be directly mediated through the DNA methyltransferase 1 (DNMT1) covalently trapped in 5-Aza-dC-substituted DNA. Knock-down of DNMT1 resulted in increased resistance to the cytostatic effects of 5-Aza-dC, delayed onset of γ-H2AX expression and a significant reduction in the frequency of genome rearrangements. There was no effect on the 5-Aza-dC-induced point mutations. An alternative mechanism for 5-Aza-dC-induced demethylation and genome rearrangements via activation-induced cytidine deaminase (AID) followed by base excision repair (BER) was found not to be involved. That is, 5-Aza-dC treatment did not significantly induce AID expression and inhibition of BER did not reduce the frequency of genome rearrangements. Thus, our results indicate that the formation of DNMT1 adducts is the prevalent mechanism of 5-Aza-dC-induced genome rearrangements, although hypomethylation per se may still contribute. Since the therapeutic effects of 5-Aza-dC greatly depend on the presence of DNMT1, the expression level of DNA methyltransferases in tumors may serve as a prognostic factor for the efficacy of 5-Aza-dC treatment.
Collapse
|
62
|
Kedar PS, Stefanick DF, Horton JK, Wilson SH. Increased PARP-1 association with DNA in alkylation damaged, PARP-inhibited mouse fibroblasts. Mol Cancer Res 2012; 10:360-8. [PMID: 22246237 DOI: 10.1158/1541-7786.mcr-11-0477] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Treatment of base excision repair-proficient mouse fibroblasts with the DNA alkylating agent methyl methanesulfonate (MMS) and a small molecule inhibitor of PARP-1 results in a striking cell killing phenotype, as previously reported. Earlier studies showed that the mechanism of cell death is apoptosis and requires DNA replication, expression of PARP-1, and an intact S-phase checkpoint cell signaling system. It is proposed that activity-inhibited PARP-1 becomes immobilized at DNA repair intermediates, and that this blocks DNA repair and interferes with DNA replication, eventually promoting an S-phase checkpoint and G(2)-M block. Here we report studies designed to evaluate the prediction that inhibited PARP-1 remains DNA associated in cells undergoing repair of alkylation-induced damage. Using chromatin immunoprecipitation with anti-PARP-1 antibody and qPCR for DNA quantification, a higher level of DNA was found associated with PARP-1 in cells treated with MMS plus PARP inhibitor than in cells without inhibitor treatment. These results have implications for explaining the extreme hypersensitivity phenotype after combination treatment with MMS and a PARP inhibitor.
Collapse
Affiliation(s)
- Padmini S Kedar
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
63
|
Irshad S, Ashworth A, Tutt A. Therapeutic potential of PARP inhibitors for metastatic breast cancer. Expert Rev Anticancer Ther 2012; 11:1243-51. [PMID: 21916578 DOI: 10.1586/era.11.52] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increasing understanding of the cellular aberrations inherent to cancer cells has allowed the development of therapies to target biological pathways, an important step towards individualization of breast cancer therapy. The clinical development of poly(ADP-ribose) polymerase (PARP) inhibitors, with their novel and selective mechanism of action, are an example of this strategy. PARP plays a key role in DNA repair mechanisms, particularly the base excision repair pathway. Initially developed as inhibitors able to enhance the cytotoxicity of radiation and certain DNA-damaging agents, they have more recently been shown to have single-agent activity in certain tumors. Inhibition of PARP in a DNA repair-defective tumor can lead to gross genomic instability and cell death by exploiting the paradigm of synthetic lethality. Several studies have evaluated the role of PARP inhibitors for treatment of breast cancer, particularly in the context of BRCA-mutated and triple-negative breast cancers. In addition, inhibition of PARPs repair functions for chemotherapy-induced DNA lesions has been shown to potentiate the effect of some chemotherapy regimens. This article discusses the current understanding of PARP inhibition as a treatment for metastatic breast cancer, evidence from clinical trials and addresses its future implications.
Collapse
Affiliation(s)
- Sheeba Irshad
- Breakthrough Breast Cancer Unit Research Oncology, 3rd Floor Bermondsey Wing, Guy's Hospital Campus, Kings College London School of Medicine, London, SE1 9RT, UK
| | | | | |
Collapse
|
64
|
Morandell S, Yaffe MB. Exploiting synthetic lethal interactions between DNA damage signaling, checkpoint control, and p53 for targeted cancer therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:289-314. [PMID: 22749150 DOI: 10.1016/b978-0-12-387665-2.00011-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA damage signaling and checkpoint control pathways are among the most commonly mutated networks in human tumors. Emerging data suggest that synthetic lethal interactions between mutated oncogenes or tumor suppressor genes with molecules involved in the DNA damage response and DNA repair pathways can be therapeutically exploited to preferentially kill cancer cells. In this review, we discuss the concept of synthetic lethality with a focus on p53, a commonly lost tumor suppressor gene, in the context of DNA damage signaling. We describe several recent examples in which this concept was successfully applied to target tumor cells in culture or in mouse models, as well as in human cancer patients.
Collapse
Affiliation(s)
- Sandra Morandell
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
65
|
Abstract
Despite international efforts, the treatment of recurrent glioblastoma (GBM) remains challenging. Although advances in surgical resection, the use of radiotherapy, and, predominantly, improved medical therapies have led to incremental improvements in median survival, few options exist for the management of recurrent or resistant disease. Insight into the molecular pathogenesis of GBM has led to the recent development of targeted therapeutic strategies aimed at the interruption of key molecular signaling pathways. However, due to the complex and redundant activation of the signaling mechanisms in GBM tumors, the evaluation of targeted agents in clinical trials has been largely limited. The ongoing effort to identify effective strategies for the treatment of recurrent GBM includes combination strategies with agents that target complementary or redundant pathways. Incorporation of novel trial designs that permit simultaneous evaluation of several agent combinations and allow for rapid discontinuation of ineffective regimens can accelerate the clinical evaluation of such candidate regimens. This review discusses strategies and outcomes of existing and emerging treatment approaches, and the challenges associated with the integration of novel therapies into clinical practice.
Collapse
Affiliation(s)
- Mark R Gilbert
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
66
|
Lowery MA, O'Reilly EM. Genomics and pharmacogenomics of pancreatic adenocarcinoma. THE PHARMACOGENOMICS JOURNAL 2011; 12:1-9. [PMID: 22186617 DOI: 10.1038/tpj.2011.52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The last decade has brought significant advances in the development of molecularly targeted therapies for treatment of a variety of human malignancies. In contrast to other solid tumors, however, the impact of novel therapeutic strategies on clinical outcomes in patients with pancreas adenocarcinoma (PAC) has been limited to date. Gemcitabine was established as a standard of care for treatment of advanced PAC in 1997 based on an observed improvement in clinical benefit as adjudicated principally by pain scores and analgesic consumption, and demonstration of an overall survival (OS) benefit in a randomized comparison with 5-fluorouracil (5-FU). Since then, multiple agents targeting oncogenic signaling pathways and mediators of angiogenesis have failed to improve outcomes in phase III clinical trials when compared with gemcitabine monotherapy. An exception to this is the anti-epidermal growth factor receptor therapy erlotinib, which yielded a survival benefit in patients with advanced disease in combination with gemcitabine compared with gemcitabine alone, although this was a marginal incremental improvement for which the clinical significant has been heavily debated. More recently, the most significant therapeutic advance in PAC has come from the combination of several cytotoxic agents; infusional 5-FU, irinotecan and oxaliplatin. This combination chemotherapy regimen, known as FOLFIRINOX, improved survival in patients with an excellent functional status and stage IV disease by 4.3 months compared with gemcitabine alone. This improvement in survival did come at the cost expectedly of a significant increase in toxicities, including gastrointestinal and hematologic particularly. Other gemcitabine-based combination chemotherapy regimens including gemcitabine and platinum analogs and gemcitabine and capecitabine have consistently shown an increased response rate but no OS benefit in individual trials; albeit pooled and meta-analyses have indicated a survival benefit in good performance status patient for both these cytotoxic combinations. Accordingly, the 5-year survival for patients with PAC remains <5%, with an annual disease-specific mortality which approaches the incidence. The challenge remains therefore, to develop more effective systemic therapies against this challenging malignancy. Recent progress toward understanding the genetic events in the development of PAC, in combination with advances in the field of pharmacogenomics offer hope that we may build on achievements to-date to develop more effective therapeutic strategies for PAC in years to come.
Collapse
Affiliation(s)
- M A Lowery
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
67
|
Lowery MA, O'Reilly EM. New approaches to the treatment of pancreatic cancer: from tumor-directed therapy to immunotherapy. BioDrugs 2011; 25:207-16. [PMID: 21815696 DOI: 10.2165/11592470-000000000-00000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of novel therapeutic strategies for pancreatic adenocarcinoma (PAC) has traditionally been considered particularly challenging for clinical and laboratory investigators due to its aggressive underlying biology and inherent resistance to currently available therapies. More recently, however, advances have been made in the identification of promising therapeutic targets for intervention, along with several key insights into the complex sequence of genetic alterations involved in the evolution of PAC from premalignant precursor lesion to malignant cells with metastatic potential. FOLFIRINOX (5-fluorouracil/leucovorin/irinotecan/oxaliplatin) has recently been identified as a combination cytotoxic therapy associated with a significant survival benefit over single-agent gemcitabine in good performance status patients with advanced disease; it is hoped that a similar benefit will be seen in planned trials of FOLFIRINOX as perioperative therapy. The success of immune therapy with the anti-cytotoxic T-lymphocyte antigen-4 antibody ipilimumab in advanced melanoma has spurred interest in the development of vaccines and immune therapies for other solid tumors. Certainly, the concept of harnessing the power of the immune system for cancer treatment is an attractive concept to patients and clinicians alike. Herein we discuss recent advances in the development of novel therapeutic approaches to PAC, focusing in particular on recent developments in immune and vaccine therapy.
Collapse
Affiliation(s)
- Maeve A Lowery
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | |
Collapse
|
68
|
Berge E, Thompson C, Messersmith W. Development of Novel Targeted Agents in the Treatment of Metastatic Colorectal Cancer. Clin Colorectal Cancer 2011; 10:266-78. [DOI: 10.1016/j.clcc.2011.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 02/08/2023]
|
69
|
Lowery MA, Kelsen DP, Stadler ZK, Yu KH, Janjigian YY, Ludwig E, D'Adamo DR, Salo-Mullen E, Robson ME, Allen PJ, Kurtz RC, O'Reilly EM. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist 2011; 16:1397-402. [PMID: 21934105 DOI: 10.1634/theoncologist.2011-0185] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND BRCA1 and BRCA2 germline mutations are associated with an elevated risk for pancreas adenocarcinoma (PAC). Other BRCA-associated cancers have been shown to have greater sensitivity to platinum and poly(ADP-ribose) polymerase (PARP) inhibitors with better clinical outcomes than in sporadic cases; however, outcomes in BRCA-associated PAC have not been reported. METHODS Patients with a known BRCA1 or BRCA2 mutation and a diagnosis of PAC were identified from the Gastrointestinal Oncology Service, Familial Pancreas Cancer Registry, and Clinical Genetics Service at Memorial Sloan-Kettering Cancer Center. RESULTS Fifteen patients, five male, with a BRCA1 (n = 4) or BRCA2 (n = 11) mutation and PAC and one patient with a BRCA1 mutation and acinar cell carcinoma of the pancreas were identified. Seven female patients (70%) had a prior history of breast cancer. Four patients received a PARP inhibitor alone or in combination with chemotherapy; three demonstrated an initial radiographic partial response by Response Evaluation Criteria in Solid Tumors whereas one patient had stable disease for 6 months. Six patients received platinum-based chemotherapy first line for metastatic disease; five of those patients had a radiographic partial response. CONCLUSION BRCA mutation-associated PAC represents an underidentified, but clinically important, subgroup of patients. This is of particular relevance given the ongoing development of therapeutic agents targeting DNA repair, which may potentially offer a significant benefit to a genetically selected population. We anticipate that further study and understanding of the clinical and biologic features of BRCA-mutant PAC will aid in the identification of tissue biomarkers indicating defective tumor DNA repair pathways in sporadic PAC.
Collapse
Affiliation(s)
- Maeve A Lowery
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Wang S, Wang H, Davis BC, Liang J, Cui R, Chen SJ, Xu ZX. PARP1 inhibitors attenuate AKT phosphorylation via the upregulation of PHLPP1. Biochem Biophys Res Commun 2011; 412:379-84. [PMID: 21821012 DOI: 10.1016/j.bbrc.2011.07.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) inhibitors are emerging as an important class of drugs for treating BRCA-deficient cancers. Recent discoveries have shown that PARP1 inhibitors may treat other cancer patients in addition to the relatively small proportion of patients carrying BRCA mutations. However, the additional targets by which PARP1 inhibitor-mediated tumor suppression remain poorly understood. In this study, we show that two PARP1 inhibitors, PJ-34 and 3-AB, attenuate AKT phosphorylation at serine 473 (S473) independent of DNA repair impairment. These inhibitors decrease the AKT-associated phosphorylation of FOXO3A, enhance the nuclear retention of FOXO3A, and activate its transcriptional activity. We further demonstrate that treatment with PJ-34 or 3-AB dramatically increases the level of PHLPP1. Overexpression of PHLPP1 enhances the PARP1 inhibitor-induced downregulation of AKT phosphorylation and increases tumor cell death. In contrast, knockdown of PHLPP1 abrogates the PARP1 inhibitor-mediated AKT inhibition and desensitizes cells to its treatment. Therefore, our findings not only show the robust role of PARP1 inhibitors in AKT inhibition but also develop a novel strategy to increase the effectiveness of cancer treatment via PARP1 inhibitor-induced PHLPP1 upregulation.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
71
|
Vesprini D, Narod SA, Trachtenberg J, Crook J, Jalali F, Preiner J, Sridhar S, Bristow RG. The therapeutic ratio is preserved for radiotherapy or cisplatin treatment in BRCA2-mutated prostate cancers. Can Urol Assoc J 2011; 5:E31-5. [PMID: 21470549 DOI: 10.5489/cuaj.10080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostate cancers in patients with a mutation in BRCA2 have earlier disease onset and an aggressive course, often necessitating the use of systemic therapy. However, these tumours are DNA repair-defective and could respond favourably to Parp inhibitors or DNA-damaging agents, depending on the therapeutic ratio (ratio of tumour response to normal tissue toxicity). We describe 3 patients treated with precision radiotherapy or cisplatin who responded favourably to both agents, yet did not suffer undue toxicity. We review the concept of treating such patients with agents that are selectively toxic to repair-deficient tumours.
Collapse
Affiliation(s)
- Danny Vesprini
- Department of Radiation Oncology, University of Toronto, Toronto, ON; Sunnybrook Odette Cancer Centre, Toronto, ON
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Synthesis and evaluation of thiopyrano[3,4-c]quinoline-9-carboxamide derivatives as inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Med Chem Res 2011. [DOI: 10.1007/s00044-011-9673-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
73
|
Lainchbury M, Collins I. Checkpoint kinase inhibitors: a patent review (2009 - 2010). Expert Opin Ther Pat 2011; 21:1191-210. [PMID: 21599421 DOI: 10.1517/13543776.2011.586632] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Cells that suffer DNA damage activate the checkpoint kinases CHK1 and CHK2, which signal to initiate repair processes, limit cell-cycle progression and prevent cell replication, until the damaged DNA is repaired. Due to their potential application as novel anticancer therapies, inhibitors of CHK1 and CHK2 have become the focus of numerous drug discovery projects. AREAS COVERED This patent review examines the chemical structures and biological activities of recently reported CHK1 and CHK2 inhibitors. The chemical abstract and patent databases SciFinder and esp@cenet were used to locate patent applications that were published between September 2008 and December 2010, claiming chemical structures for use as CHK1 or CHK2 inhibitors. EXPERT OPINION This is an exciting time for checkpoint kinase inhibitors, with several currently in Phase I or II clinical trials. Many of the CHK1 inhibitors contained within this patent review have shown preclinical efficacy in combination with DNA-damaging chemotherapies. CHK1 inhibitors have recently been demonstrated to be efficacious as single agents in preclinical models of tumors with constitutive activation of CHK1 or high intrinsic DNA damage due to replication stress. The level of newly published patent applications covering CHK1 and CHK2 inhibitors remains high and a diverse range of scaffolds has been claimed.
Collapse
Affiliation(s)
- Michael Lainchbury
- The Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, Haddow Laboratories, Sutton, Surrey, UK.
| | | |
Collapse
|
74
|
Mazzone GL, Nistri A. Effect of the PARP-1 inhibitor PJ 34 on excitotoxic damage evoked by kainate on rat spinal cord organotypic slices. Cell Mol Neurobiol 2011; 31:469-78. [PMID: 21190076 DOI: 10.1007/s10571-010-9640-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/13/2010] [Indexed: 12/20/2022]
Abstract
Excitotoxicity triggered by over-activation of glutamate receptors is thought to be an early mechanism of extensive neuronal death with consequent loss of function following lesion of spinal networks. One important process responsible for excitotoxic death is 'parthanatos' caused by hyperactivation of poly(ADP-ribose) polymerase (PARP) enzyme 1. Using rat organotypic spinal slices as in vitro models, the present study enquired if 2-(dimethylamino)-N-(5,6-dihydro-6-oxophenanthridin-2yl)acetamide (PJ 34), a pharmacological inhibitor of PARP-1, could counteract the excitotoxic damage evoked by transient application (1 h) of kainate, a potent analogue of glutamate. Kainate induced dose-dependent (1 μM threshold) neuronal loss (without damage to astrocytes) detected 24 h later via a PARP-1 dependent process that had peaked at 4 h after washout kainate. All spinal regions (ventral, central and dorsal) were affected, even though the largest damage was found in the dorsal area. Whereas PJ 34 did not protect against a large concentration (100 μM) of kainate, it significantly inhibited neuronal losses evoked by 10 μM kainate as long as it was co-applied with this glutamate agonist. When the application of PJ 34 was delayed to the washout time, neuroprotection was weak and regionally restricted. These data suggest that kainate-induced parthanatos developed early and was prevented by PJ 34 only when it was co-applied together with excitotoxic stimulus. Our results highlight the difficulty to arrest parthanatos as a mechanism of spinal neuron death in view of its low threshold of activation by kainate, its widespread distribution, and relatively fast development.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Neurobiology Sector, International School for Advanced Studies, Trieste, Italy
| | | |
Collapse
|
75
|
Leung M, Rosen D, Fields S, Cesano A, Budman DR. Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Mol Med 2011; 17:854-62. [PMID: 21424107 DOI: 10.2119/molmed.2010.00240] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/10/2011] [Indexed: 12/17/2022] Open
Abstract
The hereditary forms of breast cancer identified by BRCA1 and BRCA2 genes have a defect in homologous DNA repair and demonstrate a dependence on alternate DNA repair processes by base excision repair, which requires poly(ADP-ribose) polymerase 1 (PARP-1). siRNA and deletion mutations demonstrate that interference with PARP-1 function results in enhanced cell death when the malignancy has a defect in homologous recombination. These findings resulted in a plethora of agents in clinical trials that interfere with DNA repair, and these agents offer the potential of being more selective in their effects than classic chemotherapeutic drugs. An electronic search of the National Library of Medicine for published articles written in English used the terms "PARP inhibitors" and "breast cancer" to find prospective, retrospective and review articles. Additional searches were done for articles dealing with mechanism of action. A total of 152 articles dealing with breast cancer and PARP inhibition were identified. PARP inhibition not only affects nonhomologous repair, but also has several other nongenomic functions. Mutational resistance to these agents was seen in preclinical studies. To date, PARP-1 inhibitors were shown to enhance cytotoxic effects of some chemotherapy agents. This new class of agents may offer more therapeutic specificity by exploiting a DNA repair defect seen in some human tumors with initial clinical trials demonstrating antitumor activity. Although PARP inhibitors may offer a therapeutic option for selected malignancies, the long-term effects of these agents have not yet been defined.
Collapse
Affiliation(s)
- Mary Leung
- Division of Experimental Therapeutics, Monter Cancer Center and the Feinstein Institute, Hofstra University School of Medicine, Lake Success, New York, USA
| | | | | | | | | |
Collapse
|
76
|
Abstract
Defects in the DNA damage response often lead to an increased susceptibility to cancer, and so the DDR presents an interesting set of novel therapeutic targets. The maintenance of genomic integrity by the DDR has also been found to be involved in the process of organismal ageing. While the removal of cells containing damaged DNA can be beneficial in the prevention of cancer, it may contribute to both normal and pathological ageing.
Collapse
Affiliation(s)
- Elena G Seviour
- Department of Systems, Biology, M. D. Anderson Cancer Center, Houston, TX 77054, USA
| | | |
Collapse
|
77
|
Linley AJ, Ahmad M, Rees RC. Tumour-associated antigens: considerations for their use in tumour immunotherapy. Int J Hematol 2011; 93:263-273. [DOI: 10.1007/s12185-011-0783-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/01/2011] [Indexed: 12/19/2022]
|
78
|
Dedes KJ, Wetterskog D, Mendes-Pereira AM, Natrajan R, Lambros MB, Geyer FC, Vatcheva R, Savage K, Mackay A, Lord CJ, Ashworth A, Reis-Filho JS. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med 2011; 2:53ra75. [PMID: 20944090 DOI: 10.1126/scitranslmed.3001538] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PTEN (phosphatase and tensin homolog) loss of function is the most common genetic aberration in endometrioid endometrial carcinomas. In addition to its well-described role in cell signaling, PTEN is involved in the maintenance of genomic stability. Loss of PTEN function causes defects in repair of DNA double-strand breaks by homologous recombination and, therefore, sensitizes cells to inhibition of the poly(adenosine diphosphate ribose) polymerase (PARP). Here, we determined the PTEN status of eight endometrioid endometrial carcinoma cell lines and correlated it with in vitro sensitivity to the PARP inhibitor KU0058948. PTEN-deficient cells showed a significantly greater sensitivity to KU0058948 than the two endometrioid endometrial carcinoma cell lines with wild-type PTEN. The cell lines lacking PTEN expression were unable to elicit a homologous recombination damage response as assayed by RAD51 focus function (a marker of competent homologous recombination DNA repair) upon irradiation and treatment with PARP inhibitors. PTEN silencing in PTEN wild-type Hec-1b cells resulted in reduced RAD51 foci formation after DNA damage and increased sensitivity to PARP inhibition. PTEN reexpression in PTEN-null cell lines resulted in enhanced RAD51 foci formation and in relative resistance to KU0058948. Given that up to 80% of endometrioid endometrial cancers lack PTEN expression, our results suggest that PARP inhibitors may be therapeutically useful for a subset of endometrioid endometrial cancers.
Collapse
Affiliation(s)
- Konstantin J Dedes
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, SW3 6JB London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Yap TA, Sandhu SK, Carden CP, de Bono JS. Poly(ADP-ribose) polymerase (PARP) inhibitors: Exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 2011; 61:31-49. [PMID: 21205831 DOI: 10.3322/caac.20095] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is an attractive antitumor target because of its vital role in DNA repair. The homologous recombination (HR) DNA repair pathway is critical for the repair of DNA double-strand breaks and HR deficiency leads to a dependency on error-prone DNA repair mechanisms, with consequent genomic instability and oncogenesis. Tumor-specific HR defects may be exploited through a synthetic lethal approach for the application of anticancer therapeutics, including PARP inhibitors. This theory proposes that targeting genetically defective tumor cells with a specific molecular therapy that inhibits its synthetic lethal gene partner should result in selective tumor cell killing. The demonstration of single-agent antitumor activity and the wide therapeutic index of PARP inhibitors in BRCA1 and BRCA2 mutation carriers with advanced cancers provide strong evidence for the clinical application of this approach. Emerging data also indicate that PARP inhibitors may be effective in sporadic cancers bearing HR defects, supporting a substantially wider role for PARP inhibitors. Drugs targeting this enzyme are now in pivotal clinical trials in patients with sporadic cancers. In this article, the evidence supporting this antitumor synthetic lethal strategy with PARP inhibitors is reviewed, evolving resistance mechanisms and potential molecular predictive biomarker assays are discussed, and the future development of these agents is envisioned.
Collapse
Affiliation(s)
- Timothy A Yap
- Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | | | | | | |
Collapse
|
81
|
Abstract
Cytotoxic therapy and surgery have improved outcomes for patients with gynecologic malignancies over the last twenty years, but women's cancers still account for over ten percent of cancer related deaths annually. Insights into the pathogenesis of cancer have led to the development of drugs that target molecular pathways essential to tumor survival including angiogenesis, DNA repair, and apoptosis. This review outlines several of the promising new biologically targeted drugs currently being tested to treat gynecologic malignancies.
Collapse
Affiliation(s)
- Amy R. Carroll
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Robert L. Coleman
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, TX 77030
- Center for RNAi and Non-Coding RNA, M.D. Anderson Cancer Center, Houston, TX, 77030
| | - Anil K. Sood
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, TX 77030
- Department of Cancer Biology, M.D. Anderson Cancer Center, Houston, TX 77030
- Center for RNAi and Non-Coding RNA, M.D. Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
82
|
Schott S, Sohn C, Schneeweiss A, Heil J. Preoperative Systemic Treatment in BRCA-Positive Breast Cancer Patients: Case Report and Review of the Literature. Breast Care (Basel) 2011; 6:395-398. [DOI: 10.1159/000333129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
83
|
Horton JK, Stefanick DF, Zeng JY, Carrozza MJ, Wilson SH. Requirement for NBS1 in the S phase checkpoint response to DNA methylation combined with PARP inhibition. DNA Repair (Amst) 2010; 10:225-34. [PMID: 21130714 DOI: 10.1016/j.dnarep.2010.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 11/19/2022]
Abstract
Treatment of PARP-1-expressing cells with the combination of a DNA methylating agent (MMS) and the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN) leads to an ATR/Chk1-dependent S phase checkpoint and cell death by apoptosis. Activation of ATM/Chk2 is involved in sustaining the S phase checkpoint, and double strand break (DSB) accumulation was demonstrated. NBS1, part of the MRN complex that responds to DSBs, is known to modulate ATR- and ATM-dependent checkpoint responses to UV and IR, but a role in the response to PARP inhibition has not been addressed. Here we show that the S phase checkpoint observed 4-8h after MMS+4-AN treatment was absent in cells deficient in NBS1, but was present in NBS1-complemented (i.e., functionally wild-type) cells, indicating a critical role for NBS1 in this checkpoint response. NBS1 was phosphorylated in response to MMS+4-AN treatment, and this was partially ATR- and ATM-dependent, suggesting involvement of both upstream kinases. NBS1 expression had little effect on ATR-mediated phosphorylation of Chk1 and ATM-mediated phosphorylation of Chk2 in response to MMS+4-AN. Phosphorylation of SMC1 was also observed in response to MMS+4-AN treatment. In the absence of ATM and NBS1, phosphorylation of SMC1 was weak, especially at early times after MMS+4-AN treatment. In the absence of ATR activation, reduced SMC1 phosphorylation was seen over a 24h time course. These results suggested that both ATR and ATM phosphorylate SMC1 in response to MMS+4-AN and that this phosphorylation is enhanced by phospho-NBS1. The loss of the MMS+4-AN-induced S phase checkpoint in NBS1-deficient cells may be due to a reduced cellular level of the critical downstream effector, phospho-SMC1.
Collapse
Affiliation(s)
- Julie K Horton
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
84
|
Nijman SMB. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett 2010; 585:1-6. [PMID: 21094158 PMCID: PMC3018572 DOI: 10.1016/j.febslet.2010.11.024] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 12/14/2022]
Abstract
Synthetic lethality occurs when the simultaneous perturbation of two genes results in cellular or organismal death. Synthetic lethality also occurs between genes and small molecules, and can be used to elucidate the mechanism of action of drugs. This area has recently attracted attention because of the prospect of a new generation of anti-cancer drugs. Based on studies ranging from yeast to human cells, this review provides an overview of the general principles that underlie synthetic lethality and relates them to its utility for identifying gene function, drug action and cancer therapy. It also identifies the latest strategies for the large-scale mapping of synthetic lethalities in human cells which bring us closer to the generation of comprehensive human genetic interaction maps.
Collapse
Affiliation(s)
- Sebastian M B Nijman
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), Vienna, Austria.
| |
Collapse
|
85
|
Mangerich A, Bürkle A. How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation. Int J Cancer 2010; 128:251-65. [DOI: 10.1002/ijc.25683] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/19/2010] [Indexed: 02/07/2023]
|
86
|
Mégnin-Chanet F, Bollet MA, Hall J. Targeting poly(ADP-ribose) polymerase activity for cancer therapy. Cell Mol Life Sci 2010; 67:3649-62. [PMID: 20725763 PMCID: PMC2955921 DOI: 10.1007/s00018-010-0490-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD(+). The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD(+) at the enzyme's activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated.
Collapse
Affiliation(s)
- Frédérique Mégnin-Chanet
- Institut Curie, Centre de Recherche, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
- INSERM, U612, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
| | - Marc A. Bollet
- Département d’oncologie radiothérapique, Institut Curie, 26, rue d’Ulm, 75248 Paris cedex 05, France
| | - Janet Hall
- Institut Curie, Centre de Recherche, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
- INSERM, U612, Bât. 110–112, Centre Universitaire, 91405 Orsay, France
| |
Collapse
|
87
|
Wilson DM, Simeonov A. Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell Mol Life Sci 2010; 67:3621-31. [PMID: 20809131 PMCID: PMC2956791 DOI: 10.1007/s00018-010-0488-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
APE1 is a multifunctional protein that possesses several nuclease activities, including the ability to incise at apurinic/apyrimidinic (AP) sites in DNA or RNA, to excise 3'-blocking termini from DNA ends, and to cleave at certain oxidized base lesions in DNA. Pre-clinical and clinical data indicate a role for APE1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs, particularly monofunctional alkylators and antimetabolites. In an effort to improve the efficacy of therapeutic compounds, such as temozolomide, groups have begun to develop high-throughput screening assays and to identify small molecule inhibitors against APE1 repair nuclease activities. It is envisioned that such inhibitors will be used in combinatorial treatment paradigms to enhance the efficacy of DNA-interactive drugs that introduce relevant cytotoxic DNA lesions. In this review, we summarize the current state of the efforts to design potent and selective inhibitors against APE1 AP site incision activity.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, IRP, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | |
Collapse
|
88
|
D'Onofrio G, Tramontano F, Dorio AS, Muzi A, Maselli V, Fulgione D, Graziani G, Malanga M, Quesada P. Poly(ADP-ribose) polymerase signaling of topoisomerase 1-dependent DNA damage in carcinoma cells. Biochem Pharmacol 2010; 81:194-202. [PMID: 20875401 DOI: 10.1016/j.bcp.2010.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
A molecular approach to enhance the antitumour activity of topoisomerase 1 (TOP1) inhibitors relies on the use of chemical inhibitors of poly(ADP-ribose)polymerases (PARP). Poly(ADP-ribosyl)ation is involved in the regulation of many cellular processes such as DNA repair, cell cycle progression and cell death. Recent findings showed that poly(ADP-ribosyl)ated PARP-1 and PARP-2 counteract camptothecin action facilitating resealing of DNA strand breaks. Moreover, repair of DNA strand breaks induced by poisoned TOP1 is slower in the presence of PARP inhibitors, leading to increased toxicity. In the present study we compared the effects of the camptothecin derivative topotecan (TPT), and the PARP inhibitor PJ34, in breast (MCF7) and cervix (HeLa) carcinoma cells either PARP-1 proficient or silenced, both BRCA1/2(+/+) and p53(+/+). HeLa and MCF7 cell lines gave similar results: (i) TPT-dependent cell growth inhibition and cell cycle perturbation were incremented by the presence of PJ34 and a 2 fold increase in toxicity was observed in PARP-1 stably silenced HeLa cells; (ii) higher levels of DNA strand breaks were found in cells subjected to TPT+PJ34 combined treatment; (iii) PARP-1 and -2 modification was evident in TPT-treated cells and was reduced by TPT+PJ34 combined treatment; (iv) concomitantly, a reduction of soluble/active TOP1 was observed. Furthermore, TPT-dependent induction of p53, p21 and apoptosis were found 24-72h after treatment and were increased by PJ34 both in PARP-1 proficient and silenced cells. The characterization of such signaling network can be relevant to a strategy aimed at overcoming acquired chemoresistance to TOP1 inhibitors.
Collapse
Affiliation(s)
- Giovanna D'Onofrio
- Department of Structural and Functional Biology, University Federico II of Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Giansanti V, Donà F, Tillhon M, Scovassi AI. PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol 2010; 80:1869-77. [PMID: 20417190 DOI: 10.1016/j.bcp.2010.04.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Poly(ADP-ribosylation) consists in the conversion of β-NAD(+) into ADP-ribose, which is then bound to acceptor proteins and further used to form polymers of variable length and structure. The correct turnover of poly(ADP-ribose) is ensured by the concerted action of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) enzymes, which are responsible for polymer synthesis and degradation, respectively. Despite the positive role of poly(ADP-ribosylation) in sensing and repairing DNA damage, generated also by ROS, PARP over-activation could allow NAD depletion and consequent necrosis, thus leading to an inflammatory condition in many diseases. In this respect, inhibition of PARP enzymes could exert a protective role towards a number of pathological conditions; i.e. the combined treatment of tumors with PARP inhibitors/anticancer agents proved to have a beneficial effect in cancer therapy. Thus, pharmacological inactivation of poly(ADP-ribosylation) could represent a novel therapeutic strategy to limit cellular injury and to attenuate the inflammatory processes that characterize many disorders.
Collapse
Affiliation(s)
- Vincenzo Giansanti
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
90
|
Development of Poly(ADP-Ribose)Polymerase (PARP) Inhibitors in Oncology. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2010. [DOI: 10.1016/s0065-7743(10)45014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|