51
|
Upagupta C, Shimbori C, Alsilmi R, Kolb M. Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev 2018; 27:27/148/180033. [PMID: 29950306 DOI: 10.1183/16000617.0033-2018] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 11/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease, marked by excessive scarring, which leads to increased tissue stiffness, loss in lung function and ultimately death. IPF is characterised by progressive fibroblast and myofibroblast proliferation, and extensive deposition of extracellular matrix (ECM). Myofibroblasts play a key role in ECM deposition. Transforming growth factor (TGF)-β1 is a major growth factor involved in myofibroblast differentiation, and the creation of a profibrotic microenvironment. There is a strong link between increased ECM stiffness and profibrotic changes in cell phenotype and differentiation. The activation of TGF-β1 in response to mechanical stress from a stiff ECM explains some of the influence of the tissue microenvironment on cell phenotype and function. Understanding the close relationship between cells and their surrounding microenvironment will ultimately facilitate better management strategies for IPF.
Collapse
Affiliation(s)
- Chandak Upagupta
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Chiko Shimbori
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Rahmah Alsilmi
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
52
|
Zarkoob H, Chinnathambi S, Selby JC, Sander EA. Substrate deformations induce directed keratinocyte migration. J R Soc Interface 2018; 15:20180133. [PMID: 29899159 PMCID: PMC6030620 DOI: 10.1098/rsif.2018.0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Cell migration is an essential part of many (patho)physiological processes, including keratinocyte re-epithelialization of healing wounds. Physical forces and mechanical cues from the wound bed (in addition to biochemical signals) may also play an important role in the healing process. Previously, we explored this possibility and found that polyacrylamide (PA) gel stiffness affected human keratinocyte behaviour and that mechanical deformations in soft (approx. 1.2 kPa) PA gels produced by neighbouring cells appeared to influence the process of de novo epithelial sheet formation. To clearly demonstrate that keratinocytes do respond to such deformations, we conducted a series of experiments where we observed the response of single keratinocytes to a prescribed local substrate deformation that mimicked a neighbouring cell or evolving multicellular aggregate via a servo-controlled microneedle. We also examined the effect of adding either Y27632 or blebbistatin on cell response. Our results indicate that keratinocytes do sense and respond to mechanical signals comparable to those that originate from substrate deformations imposed by neighbouring cells, a finding that could have important implications for the process of keratinocyte re-epithelialization that takes place during wound healing. Furthermore, the Rho/ROCK pathway and the engagement of NM II are both essential to substrate deformation-directed keratinocyte migration.
Collapse
Affiliation(s)
- Hoda Zarkoob
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Sathivel Chinnathambi
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - John C Selby
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edward A Sander
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
53
|
Zarkoob H, Chinnathambi S, Halberg SA, Selby JC, Magin TM, Sander EA. Mouse Keratinocytes Without Keratin Intermediate Filaments Demonstrate Substrate Stiffness Dependent Behaviors. Cell Mol Bioeng 2018; 11:163-174. [PMID: 31719883 PMCID: PMC6816603 DOI: 10.1007/s12195-018-0526-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 04/26/2018] [Indexed: 10/17/2022] Open
Abstract
INTRODUCTION Traditionally thought to serve active vs. passive mechanical functions, respectively, a growing body of evidence suggests that actin microfilament and keratin intermediate filament (IF) networks, together with their associated cell-cell and cell-matrix anchoring junctions, may have a large degree of functional interdependence. Therefore, we hypothesized that the loss of keratin IFs in a knockout mouse keratinocyte model would affect the kinematics of colony formation, i.e., the spatiotemporal process by which individual cells join to form colonies and eventually a nascent epithelial sheet. METHODS Time-lapse imaging and deformation tracking microscopy was used to observe colony formation for both wild type (WT) and keratin-deficient knockout (KO) mouse keratinocytes over 24 h. Cells were cultured under high calcium conditions on collagen-coated substrates with nominal stiffnesses of ~ 1.2 kPa (soft) and 24 kPa (stiff). Immunofluorescent staining of actin and selected adhesion proteins was also performed. RESULTS The absence of keratin IFs markedly affected cell morphology, spread area, and cytoskeleton and adhesion protein organization on both soft and stiff substrates. Strikingly, an absence of keratin IFs also significantly reduced the ability of mouse keratinocytes to mechanically deform the soft substrate. Furthermore, KO cells formed colonies more efficiently on stiff vs. soft substrates, a behavior opposite to that observed for WT keratinocytes. CONCLUSIONS Collectively, these data are strongly supportive of the idea that an interdependence between actin microfilaments and keratin IFs does exist, while further suggesting that keratin IFs may represent an important and under-recognized component of keratinocyte mechanosensation and the force generation apparatus.
Collapse
Affiliation(s)
- Hoda Zarkoob
- Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA USA
| | - Sathivel Chinnathambi
- Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA USA
| | - Spencer A. Halberg
- Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA USA
| | - John C. Selby
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, IA USA
| | - Thomas M. Magin
- Division of Cell and Developmental Biology and SIKT, Institute of Biology, University of Leipzig, 04103 Leipzig, Germany
| | - E. A. Sander
- Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA USA
| |
Collapse
|
54
|
Baudier J, Jenkins ZA, Robertson SP. The filamin-B–refilin axis – spatiotemporal regulators of the actin-cytoskeleton in development and disease. J Cell Sci 2018; 131:131/8/jcs213959. [DOI: 10.1242/jcs.213959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
During development, cycles of spatiotemporal remodeling of higher-order networks of actin filaments contribute to control cell fate specification and differentiation. Programs for controlling these dynamics are hard-wired into actin-regulatory proteins. The filamin family of actin-binding proteins exert crucial mechanotransduction and signaling functions in tissue morphogenesis. Filamin-B (FLNB) is a key player in chondrocyte progenitor differentiation for endochondral ossification. Biallelic loss-of-function mutations or gain-of-function mutations in FLNB cause two groups of skeletal disorders that can be attributed to either the loss of repressive function on TGF-β signaling or a disruption in mechanosensory properties, respectively. In this Review, we highlight a unique family of vertebrate-specific short-lived filamin-binding proteins, the refilins (refilin-A and refilin-B), that modulate filamin-dependent actin crosslinking properties. Refilins are downstream TGF-β effectors in epithelial cells. Double knockout of both refilin-A and refilin-B in mice results in precocious ossification of some axial skeletal elements, leading to malformations that are similar to those seen in FLNB-deficient mice. Based on these findings, we present a model summarizing the role of refilins in regulating the mechanosensory functions of FLNB during skeletal development. We also discuss the possible contribution of refilins to FLNB-related skeletal pathologies that are associated with gain-of-function mutations.
Collapse
Affiliation(s)
- Jacques Baudier
- Aix Marseille Université, CNRS, IBDM, 13284 Marseille Cedex 07, France
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Campus de Luminy-Case 907, 13288 Marseille Cedex 9, France
| | - Zandra A. Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
55
|
Miyoshi H, Suzuki K, Ju J, Ko JS, Adachi T, Yamagata Y. A Perturbation Analysis to Understand the Mechanism How Migrating Cells Sense and Respond to a Topography in the Extracellular Environment. ANAL SCI 2018; 32:1207-1211. [PMID: 27829627 DOI: 10.2116/analsci.32.1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Migrating cells in vivo monitor the physiological state of an organism by integrating the physical as well as chemical cues in the extracellular microenvironment, and alter the migration mode, in order to achieve their unique function. The clarification of the mechanism focusing on the topographical cues is important for basic biological research, and for biomedical engineering specifically to establish the design concept of tissue engineering scaffolds. The aim of this study is to understand how cells sense and respond to the complex topographical cues in vivo by exploring in vitro analyses to complex in vivo situations in order to simplify the issue. Since the intracellular mechanical events at subcellular scales and the way of the coordination of these events are supposed to change in the migrating cells, a key to success of the analysis is a mechanical point of view with a particular focus of the subcellular mechanical events. We designed an experimental platform to explore the mechanical requirements in a migrating fibroma cell responding to micro-grooves. The micro-grooved structure is a model of gap structures, typically seen in the microenvironments in vivo. In our experiment, the contributions of actomyosin force generation can be spatially divided and analyzed in the cell center and peripheral regions. The analysis specified that rapid leading edge protrusion, and the cell body translocation coordinated with the leading edge protrusion are required for the turning response at a micro-groove.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies
| | | | | | | | | | | |
Collapse
|
56
|
Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, Liu J, Yan Z, Liu X. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget 2017; 7:32876-92. [PMID: 27096955 PMCID: PMC5078059 DOI: 10.18632/oncotarget.8765] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most commonly diagnosed malignancies with high occurrence of tumor metastasis, which usually exposes to fluid shear stress (FSS) in lymphatic channel and blood vessel. Epithelial-mesenchymal transition (EMT) is an important mechanism that induces metastasis and invasion of tumors. We hypothesized that FSS induced a progression of EMT in laryngeal squamous carcinoma. Accordingly, the Hep-2 cells were exposed to 1.4 dyn/cm2 FSS for different durations. Our results showed that most of cells changed their morphology from polygon to elongated spindle with well-organized F-actin and abundant lamellipodia/filopodia in protrusions. After removing the FSS, cells gradually recovered their flat polygon morphology. FSS induced Hep-2 cells to enhance their migration capacity in a time-dependent manner. In addition, FSS down-regulated E-cadherin, and simultaneously up-regulated N-cadherin, translocated β-catenin into the nucleus. These results confirmed that FSS induced the EMT in Hep-2 cells, and revealed a reversible mesenchymal-epithelial transition (MET) process when FSS was removed. We further examined the time-expressions of signaling cascades, and demonstrated that FSS induces the EMT and enhances cell migration depending on integrin-ILK/PI3K-AKT-Snail signaling events. The current study suggests that FSS, an important biophysical factor in tumor microenvironment, is a potential determinant of cell behavior and function regulation.
Collapse
Affiliation(s)
- Shuangfeng Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.,School of Medical Laboratory Science, Chengdu Medical College, Chengdu 610500, China
| | - Fating Zhou
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yang Shen
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yingying Zhang
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongmei Yin
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ye Zeng
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingxia Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhiping Yan
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
57
|
Static Compression Induces ECM Remodeling and Integrin α2β1 Expression and Signaling in a Rat Tail Caudal Intervertebral Disc Degeneration Model. Spine (Phila Pa 1976) 2017; 42:E448-E458. [PMID: 27548579 DOI: 10.1097/brs.0000000000001856] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
STUDY DESIGN A three-level rat tail caudal intervertebral disc (IVD) degeneration (IVDD) model was established to study effects of static compression on extracellular matrix (ECM) remodeling and integrin signaling in IVDs during IVDD. OBJECTIVE The aim of this study was to investigate the effect of compression force on ECM remodeling and integrin signaling in IVDs during IVDD. SUMMARY OF BACKGROUND DATA Integrins sense mechanical environment alteration via binding to ECM ligands and trigger intracellular signaling for pathological ECM remodeling during IVDD. However, the role of compression force in ECM remodeling and integrin signaling during IVDD remains elusive. METHODS Compared with the classical one-level rat tail IVDD model that exerts axial stress on the 8th to 9th caudal vertebral bodies, a three-level model was established by using an Ilizarov-type apparatus to exert stress on the 7th to 10th caudal vertebral bodies in rat tails for four weeks. To exclude side effects from surgical stab injury on manipulated discs, intact coccygeal (Co) disc Co8-9 was analyzed. RESULTS In three-level IVDD model, significant degeneration of the Co8-9 disc was observed. Quantitative real-time polymerase chain reaction (qRT-PCR) showed elevated mRNA expression of collagen types I, III, and V; matrix metalloproteinases (MMPs) 2, 3, 9, 13, 14; and decreased mRNA expression of collagen type II in Co8-9 disc. Compression loading altered the expression of integrin α2β1 (upregulated) and α10β1 (downregulated) in NP cells, and activated integrin downstream signaling. By contrast, one-level model showed more severe disc degeneration and ECM remodeling. Integrin α1, α2, α11, and β1 were upregulated, whereas α10 was downregulated. Similar activation of integrin signaling was observed. CONCLUSION Static compression altered collagen and MMP expression, and promoted β1 integrin expression and signaling in IVD. Compared with one-level rat tail IVDD model, three-level model showed milder effects on disc degeneration, ECM remodeling, and integrin expression, suggesting one-level model might involve other causes that induce IVDD via mechanisms independent of compression force. LEVEL OF EVIDENCE N/A.
Collapse
|
58
|
Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell 2017; 28:3134-3155. [PMID: 28954860 PMCID: PMC5687017 DOI: 10.1091/mbc.e17-04-0228] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mechanosensing depicts the ability of a cell to sense mechanical cues, which under some circumstances is mediated by the surface receptors. In this review, a four-step model is described for receptor-mediated mechanosensing. Platelet GPIb, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Lining Ju
- Charles Perkins Centre and Heart Research Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Muaz Rushdi
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Chenghao Ge
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
59
|
Gemperle J, Hexnerová R, Lepšík M, Tesina P, Dibus M, Novotný M, Brábek J, Veverka V, Rosel D. Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners. Sci Rep 2017; 7:8057. [PMID: 28808245 PMCID: PMC5556061 DOI: 10.1038/s41598-017-08303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CAS is a docking protein downstream of the proto-oncogene Src with a role in invasion and metastasis of cancer cells. The CAS SH3 domain is indispensable for CAS-mediated signaling, but structural aspects of CAS SH3 ligand binding and regulation are not well understood. Here, we identified the consensus CAS SH3 binding motif and structurally characterized the CAS SH3 domain in complex with ligand. We revealed the requirement for an uncommon centrally localized lysine residue at position +2 of CAS SH3 ligands and two rather dissimilar optional anchoring residues, leucine and arginine, at position +5. We further expanded the knowledge of CAS SH3 ligand binding regulation by manipulating tyrosine 12 phosphorylation and confirmed the negative role of this phosphorylation on CAS SH3 ligand binding. Finally, by exploiting the newly identified binding requirements of the CAS SH3 domain, we predicted and experimentally verified two novel CAS SH3 binding partners, DOK7 and GLIS2.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic.
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic.
| |
Collapse
|
60
|
Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K, McIntyre P. Molecular Sensors of Blood Flow in Endothelial Cells. Trends Mol Med 2017; 23:850-868. [PMID: 28811171 DOI: 10.1016/j.molmed.2017.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Mechanical stress from blood flow has a significant effect on endothelial physiology, with a key role in initiating vasoregulatory signals. Disturbances in blood flow, such as in regions of disease-associated stenosis, arterial branch points, and sharp turns, can induce proatherogenic phenotypes in endothelial cells. The disruption of vascular homeostasis as a result of endothelial dysfunction may contribute to early and late stages of atherosclerosis, the underlying cause of coronary artery disease. In-depth knowledge of the mechanobiology of endothelial cells is essential to identifying mechanosensory complexes involved in the pathogenesis of atherosclerosis. In this review, we describe different blood flow patterns and summarize current knowledge on mechanosensory molecules regulating endothelial vasoregulatory functions, with clinical implications. Such information may help in the search for novel therapeutic approaches.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | | | - Owen L Woodman
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Simon Potocnik
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
61
|
McGowan SE, McCoy DM. Platelet-derived growth factor receptor-α and Ras-related C3 botulinum toxin substrate-1 regulate mechano-responsiveness of lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1174-L1187. [PMID: 28775097 DOI: 10.1152/ajplung.00185.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/23/2022] Open
Abstract
Platelet-derived growth factor (PDGF)-A, which only signals through PDGF-receptor-α (PDGFR-α), is required for secondary alveolar septal formation. Although PDGFR-α distinguishes mesenchymal progenitor cells during the saccular stage, PDGFR-α-expressing alveolar cells persist through adulthood. PDGF-A sustains proliferation, limits apoptosis, and maintains α-smooth muscle actin (α-SMA)-containing alveolar cells, which congregate at the alveolar entry ring at postnatal day (P)12. PDGFR-α-expressing, α-SMA-containing alveolar cells redistribute in the elongating septum, suggesting that they migrate to the alveolar entry rings, where mechanical tension is higher. We hypothesized that PDGFR-α and Ras-related C3 botulinum toxin substrate 1(Rac1) are required for mechanosensitive myofibroblast migration. Spreading of PDGFR-α-deficient lung fibroblasts was insensitive to increased rigidity, and their migration was not reduced by Rac1-guanine exchange factor (GEF)-inhibition. PDGFR-α-expressing fibroblasts migrated toward stiffer regions within two-dimensional substrates by increasing migrational persistence (durotaxis). Using a Förster resonance energy transfer (FRET) biosensor for Rac1-GTP, we observed that PDGFR-α was required for fibroblast Rac1 responsiveness to stiffness within a three-dimensional collagen substrate, which by itself increased Rac1-FRET. Rho-GTPase stabilized, whereas Rac1-GTPase increased the turnover of focal adhesions. Under conditions that increased Rac1-GTP, PDGFR-α signaled through both phosphoinositide-3-kinase (PIK) or Src to engage the Rac1 GEF dedicator of cytokinesis-1 (Dock180) and p21-activated-kinase interacting exchange factor-β (βPIX). In cooperation with collagen fibers, these signaling pathways may guide fibroblasts toward the more rigid alveolar entry ring during secondary septation. Because emphysema and interstitial fibrosis disrupt the parenchymal mechanical continuum, understanding how mechanical factors regulate fibroblast migration could elicit strategies for alveolar repair and regeneration.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Diann M McCoy
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
62
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
63
|
Athirasala A, Hirsch N, Buxboim A. Nuclear mechanotransduction: sensing the force from within. Curr Opin Cell Biol 2017. [PMID: 28641092 DOI: 10.1016/j.ceb.2017.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cell nucleus is a hallmark of eukaryotic evolution, where gene expression is regulated and the genome is replicated and repaired. Yet, in addition to complex molecular processes, the nucleus has also evolved to serve physical tasks that utilize its optical and mechanical properties. Nuclear mechanotransduction of externally applied forces and extracellular stiffness is facilitated by the physical connectivity of the extracellular environment, the cytoskeleton and the nucleoskeletal matrix of lamins and chromatin. Nuclear mechanosensor elements convert applied tension into biochemical cues that activate downstream signal transduction pathways. Mechanoregulatory networks stabilize a contractile cell state with feedback to matrix, cell adhesions and cytoskeletal elements. Recent advances have thus provided mechanistic insights into how forces are sensed from within, that is, in the nucleus where cell-fate decision-making is performed.
Collapse
Affiliation(s)
- Avathamsa Athirasala
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nivi Hirsch
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Amnon Buxboim
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
64
|
Maninova M, Caslavsky J, Vomastek T. The assembly and function of perinuclear actin cap in migrating cells. PROTOPLASMA 2017; 254:1207-1218. [PMID: 28101692 DOI: 10.1007/s00709-017-1077-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 05/24/2023]
Abstract
Stress fibers are actin bundles encompassing actin filaments, actin-crosslinking, and actin-associated proteins that represent the major contractile system in the cell. Different types of stress fibers assemble in adherent cells, and they are central to diverse cellular processes including establishment of the cell shape, morphogenesis, cell polarization, and migration. Stress fibers display specific cellular organization and localization, with ventral fibers present at the basal side, and dorsal fibers and transverse actin arcs rising at the cell front from the ventral to the dorsal side and toward the nucleus. Perinuclear actin cap fibers are a specific subtype of stress fibers that rise from the leading edge above the nucleus and terminate at the cell rear forming a dome-like structure. Perinuclear actin cap fibers are fixed at three points: both ends are anchored in focal adhesions, while the central part is physically attached to the nucleus and nuclear lamina through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we discuss recent work that provides new insights into the mechanism of assembly and the function of these actin stress fibers that directly link extracellular matrix and focal adhesions with the nuclear envelope.
Collapse
Affiliation(s)
- Miloslava Maninova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Josef Caslavsky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Vomastek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
65
|
The role of focal adhesion anchoring domains of CAS in mechanotransduction. Sci Rep 2017; 7:46233. [PMID: 28406229 PMCID: PMC5390273 DOI: 10.1038/srep46233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/14/2017] [Indexed: 11/08/2022] Open
Abstract
CAS is a docking protein, which was shown to act as a mechanosensor in focal adhesions. The unique assembly of structural domains in CAS is important for its function as a mechanosensor. The tension within focal adhesions is transmitted to a stretchable substrate domain of CAS by focal adhesion-targeting of SH3 and CCH domain of CAS, which anchor the CAS protein in focal adhesions. Mechanistic models of the stretching biosensor propose equal roles for both anchoring domains. Using deletion mutants and domain replacements, we have analyzed the relative importance of the focal adhesion anchoring domains on CAS localization and dynamics in focal adhesions as well as on CAS-mediated mechanotransduction. We confirmed the predicted prerequisite of the focal adhesion targeting for CAS-dependent mechanosensing and unraveled the critical importance of CAS SH3 domain in mechanosensing. We further show that CAS localizes to the force transduction layer of focal adhesions and that mechanical stress stabilizes CAS in focal adhesions.
Collapse
|
66
|
Dasgupta SK, Le A, Vijayan KV, Thiagarajan P. Dasatinib inhibits actin fiber reorganization and promotes endothelial cell permeability through RhoA-ROCK pathway. Cancer Med 2017; 6:809-818. [PMID: 28316141 PMCID: PMC5387130 DOI: 10.1002/cam4.1019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/29/2016] [Indexed: 11/24/2022] Open
Abstract
Treatment with dasatinib, a tyrosine kinase inhibitor, is associated with edema, pleural effusion, and pulmonary edema. We investigated the effect of dasatinib on the barrier function of human microvascular endothelial cells‐1 (HMEC‐1) in vitro and in vivo. The permeability of HMEC‐1 to fluorescein isothiocyante (FITC)‐dextran increased in Transwell chambers within 5 min following the addition of therapeutic concentrations of dasatinib. The change in permeability was associated with increased activation of RhoA GTPase and its effector Rho‐associated coiled‐coil kinase 1(ROCK1). RhoA inhibitor C3 transferase almost completely inhibited dasatinib‐induced increase in permeability. Under similar conditions, imatinib had no effect on permeability or activation of RhoA. Since integrin‐induced cell spreading suppresses RhoA activation, we examined the effect of dasatinib on cell spreading on fibronectin substrate. Dasatinib impaired endothelial cell spreading in a concentration‐dependent manner and induced disorganization of actin fibers. Tyrosine kinases play an essential role in transmitting signals from integrins to RhoA and we examined tyrosine phosphorylation of several cytoskeletal proteins. Dasatinib markedly inhibited tyrosine phosphorylation of p130 Crk‐associated substrate (p130cas), paxillin and vinculin. These results suggest that the inhibition of tyrosine phosphorylation of the focal adhesion plaque components by dasatinib may alter the assembly of actin fibers resulting in the activation of RhoA/ROCK pathway. Consistent with these findings, dasatinib‐induced increase in the permeability was blocked by ROCK inhibitor y27632. In vivo administration of y27632, significantly inhibited the dasatinib‐induced extravasation of Evans blue in mice and dasatinib‐induced increase in microvascular permeability was attenuated in ROCK1‐deficient mice. These findings suggest that ROCK inhibitors could serve as therapeutic modalities to ameliorate the dasatinib‐induced pulmonary changes.
Collapse
Affiliation(s)
- Swapan K Dasgupta
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Anhquyen Le
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Perumal Thiagarajan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
67
|
Bradbury PM, Turner K, Mitchell C, Griffin KR, Middlemiss S, Lau L, Dagg R, Taran E, Cooper-White J, Fabry B, O’Neill GM. The focal adhesion targeting (FAT) domain of p130 Crk associated substrate (p130Cas) confers mechanosensing function. J Cell Sci 2017; 130:1263-1273. [DOI: 10.1242/jcs.192930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
The Cas family of focal adhesion proteins contain a highly conserved C-terminal focal adhesion targeting (FAT) domain. To determine the role of the FAT domain we compared wildtype exogenous NEDD9 with a hybrid construct in which the NEDD9 FAT domain is exchanged for the p130Cas FAT domain. Fluorescence recovery after photobleaching (FRAP) revealed significantly slowed exchange of the fusion protein at focal adhesions and significantly slower 2D migration. No differences were detected in cell stiffness measured with Atomic Force Microscopy (AFM) and cell adhesion forces measured with a magnetic tweezer device. Thus the slowed migration was not due to changes in cell stiffness or adhesion strength. Analysis of cell migration on surfaces of increasing rigidity revealed a striking reduction of cell motility in cells expressing the p130Cas FAT domain. The p130Cas FAT domain induced rigidity-dependent tyrosine phosphorylation of the NEDD9 substrate domain. This in turn reduced post-translational cleavage of NEDD9 which we show inhibits NEDD9-induced migration. Collectively, our data therefore suggest that the p130Cas FAT domain uniquely confers mechanosensing function.
Collapse
Affiliation(s)
- Peta M. Bradbury
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, 2000, New South Wales, Australia
| | - Kylie Turner
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Camilla Mitchell
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Kaitlyn R. Griffin
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Shiloh Middlemiss
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Loretta Lau
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Rebecca Dagg
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Elena Taran
- Australian National Fabrication Facility- Queensland node, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Germany
| | - Geraldine M. O’Neill
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, 2000, New South Wales, Australia
| |
Collapse
|
68
|
Huang B, Ling Y, Lin J, Fang Y, Wu J. Mechanical regulation of calcium signaling of HL-60 on P-selectin under flow. Biomed Eng Online 2016; 15:153. [PMID: 28155729 PMCID: PMC5260098 DOI: 10.1186/s12938-016-0271-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Binding of P-selectin to P-selectin glycoprotein ligand-1 (PSGL-1) makes neutrophils roll on and adhere to inflammatory site. Intracellular calcium bursting of adhered neutrophils is a key event for subsequent arresting firmly at and migrating into the injured tissue. But, it remains unclear how the cytoplasmic calcium signaling of the cells were modulated by the fluid shear stress. Here, we focus on mechanical regulation of P-selectin-induced calcium signaling of neutrophil-like HL-60 cells under flow. Methods HL-60 cells were loaded with Fluo-4 AM for fluorescent detection of intracellular calcium ion, and then perfused over P-selectin-coated bottom of parallel-plate flow chamber. The intracellular calcium concentration of firmly adhered cell under flow was observed in real time by fluorescence microscopy. Results Force triggered, enhanced and quickened cytoplasmic calcium bursting of HL-60 on P-selectin. This force-dependent calcium signaling was induced by the immobilized P-selectin coated on substrates in absence of chemokine. Increasing of both shear stress and P-selectin concentration made the calcium signaling intensive, through quickening the cytosolic calcium release and upregulating both probability and peak level of calcium signaling. Conclusions Immobilized P-selectin-induced calcium signaling of HL-60 cells is P-selectin concentration- and mechanical force-dependent. The higher both the P-selectin concentration and the external force on cell, the more intensive the calcium signaling. It might provide a novel insight into the mechano-chemical regulation mechanism for intracellular signaling pathways induced by adhesion molecules.
Collapse
Affiliation(s)
- Bing Huang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Yingchen Ling
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiangguo Lin
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Ying Fang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | - Jianhua Wu
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
69
|
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events.
Collapse
Affiliation(s)
- Hans Hoppeler
- Emeritus Department of Anatomy, University of Bern, Baltzerstrasse 2, Bern 9 CH-3000, Switzerland
| |
Collapse
|
70
|
Palanisamy AP, Suryakumar G, Panneerselvam K, Willey CD, Kuppuswamy D. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium. J Cell Biochem 2016; 116:2793-803. [PMID: 25976166 DOI: 10.1002/jcb.25224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium.
Collapse
Affiliation(s)
- Arun P Palanisamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Geetha Suryakumar
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Kavin Panneerselvam
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Christopher D Willey
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| |
Collapse
|
71
|
Schreiber C, Segerer FJ, Wagner E, Roidl A, Rädler JO. Ring-Shaped Microlanes and Chemical Barriers as a Platform for Probing Single-Cell Migration. Sci Rep 2016; 6:26858. [PMID: 27242099 PMCID: PMC4886529 DOI: 10.1038/srep26858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023] Open
Abstract
Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening.
Collapse
Affiliation(s)
- Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Felix J Segerer
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Building D, 81377 Munich, Germany
| | - Andreas Roidl
- Department of Pharmacy, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Building D, 81377 Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| |
Collapse
|
72
|
Wallrath LL, Bohnekamp J, Magin TM. Cross talk between the cytoplasm and nucleus during development and disease. Curr Opin Genet Dev 2016; 37:129-136. [PMID: 27110666 DOI: 10.1016/j.gde.2016.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
Mechanotransduction is a process whereby mechanical stimuli outside the cell are sensed by components of the plasma membrane and transmitted as signals through the cytoplasm that terminate in the nucleus. The nucleus responds to these signals by altering gene expression. During mechanotransduction, complex networks of proteins are responsible for cross talk between the cytoplasm and the nucleus. These proteins include cell membrane receptors, cytoplasmic filaments, LINC complex members that bridge the nucleus and cytoplasm, and nuclear envelope proteins that connect to the chromatin. Mechanotransduction also plays a critical role in development. Furthermore, it is possible that disrupted mechanotransduction leads to changes in gene expression that underlie the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Lori L Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Jens Bohnekamp
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, D-04103 Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
73
|
Spatiotemporal distribution of extracellular matrix changes during mouse duodenojejunal flexure formation. Cell Tissue Res 2016; 365:367-79. [PMID: 27053245 DOI: 10.1007/s00441-016-2390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Although gut flexures characterize gut morphology, the mechanisms underlying flexure formation remain obscure. Previously, we analyzed the mouse duodenojejunal flexure (DJF) as a model for its formation and reported asymmetric morphologies between the inner and outer bending sides of the fetal mouse DJF, implying their contribution to DJF formation. We now present the extracellular matrix (ECM) as an important factor for gut morphogenesis. We investigate ECM distribution during mouse DJF formation by histological techniques. In the intercellular space of the gut wall, high Alcian-Blue positivity for proteoglycans shifted from the outer to the inner side of the gut wall during DJF formation. Immunopositivity for fibronectin, collagen I, or pan-tenascin was higher at the inner than at the outer side. Collagen IV and laminins localized to the epithelial basement membrane. Beneath the mesothelium at the pre-formation stage, collagen IV and laminin immunopositivity showed inverse results, corresponding to the different cellular characteristics at this site. At the post-formation stage, however, laminin positivity beneath the mesothelium was the reverse of that observed during the pre-formation stage. High immunopositivity for collagen IV and laminins at the inner gut wall mesenchyme of the post-formation DJF implied a different blood vessel distribution. We conclude that ECM distribution changes spatiotemporally during mouse DJF formation, indicating ECM association with the establishment of asymmetric morphologies during this process.
Collapse
|
74
|
Ha TS, Park HY, Seong SB, Ahn HY. Angiotensin II Modulates p130Cas of Podocytes by the Suppression of AMP-Activated Protein Kinase. J Korean Med Sci 2016; 31:535-41. [PMID: 27051236 PMCID: PMC4810335 DOI: 10.3346/jkms.2016.31.4.535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/07/2016] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (Ang II) induces the pathological process of vascular structures, including renal glomeruli by hemodynamic and nonhemodynamic direct effects. In kidneys, Ang II plays an important role in the development of proteinuria by the modification of podocyte molecules. We have previously found that Ang II suppressed podocyte AMP-activated protein kinase (AMPK) via Ang II type 1 receptor and MAPK signaling pathway. In the present study, we investigated the roles of AMPK on the changes of p130Cas of podocyte by Ang II. We cultured mouse podocytes and treated them with various concentrations of Ang II and AMPK-modulating agents and analyzed the changes of p130Cas by confocal imaging and western blotting. In immunofluorescence study, Ang II decreased the intensity of p130Cas and changed its localization from peripheral cytoplasm into peri-nuclear areas in a concentrated pattern in podocytes. Ang II also reduced the amount of p130Cas in time and dose-sensitive manners. AMPK activators, metformin and AICAR, restored the suppressed and mal-localized p130Cas significantly, whereas, compound C, an AMPK inhibitor, further aggravated the changes of p130Cas. Losartan, an Ang II type 1 receptor antagonist, recovered the abnormal changes of p130Cas suppressed by Ang II. These results suggest that Ang II induces the relocalization and suppression of podocyte p130Cas by the suppression of AMPK via Ang II type 1 receptor, which would contribute to Ang II-induced podocyte injury.
Collapse
Affiliation(s)
- Tae-Sun Ha
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hye-Young Park
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Su-Bin Seong
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hee-Yul Ahn
- Department of Pharmacology, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
75
|
Navarro AP, Collins MA, Folker ES. The nucleus is a conserved mechanosensation and mechanoresponse organelle. Cytoskeleton (Hoboken) 2016; 73:59-67. [PMID: 26849407 DOI: 10.1002/cm.21277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 11/05/2022]
Abstract
Cells in vivo exist in a dynamic environment where they experience variable mechanical influences. The precise mechanical environment influences cell-cell interactions, cell-extracellular matrix interactions, and in-turn, cell morphology and cell function. Therefore, the ability of each cell to constantly and rapidly alter their behavior in response to variations in their mechanical environment is essential for cell viability, development, and function. Mechanotransduction, the process by which mechanical force is translated into a biochemical signal to activate downstream cellular responses, is thus crucial to cell function during development and homeostasis. Although much research has focused on how protein complexes at the cell cortex respond to mechanical stress to initiate mechanotransduction, the nucleus has emerged as crucial to the ability of the cell to perceive and respond to changes in its mechanical environment. This additional method for mechanosensing allows for direct transmission of force through the cytoskeleton to the nucleus, which can increase the speed at which a cell changes its transcriptional profile. This review discusses recent work demonstrating the importance of the nucleus in mediating the cellular response to internal and external force, establishing the nucleus as an important mechanosensing organelle.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142
| | - Mary Ann Collins
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, 02467
| | - Eric S Folker
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, 02467
| |
Collapse
|
76
|
A truncated phosphorylated p130Cas substrate domain is sufficient to drive breast cancer growth and metastasis formation in vivo. Tumour Biol 2016; 37:10665-73. [PMID: 26867768 DOI: 10.1007/s13277-016-4902-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated p130Cas (Crk-associated substrate) levels are found in aggressive breast tumors and are associated with poor prognosis and resistance to standard therapeutics in patients. p130Cas signals majorly through its phosphorylated substrate domain (SD) that contains 15 tyrosine motifs (YxxP) which recruit effector molecules. Tyrosine phosphorylation of p130Cas is important for mediating migration, invasion, tumor promotion, and metastasis. We previously developed a Src*/SD fusion molecule approach, where the SD is constitutively phosphorylated. In a polyoma middle T-antigen (PyMT)/Src*/SD double-transgenic mouse model, Src*/SD accelerates PyMT-induced tumor growth and promotes a more aggressive phenotype. To test whether Src*/SD also drives metastasis and which of the YxxP motifs are involved in this process, full-length and truncated SD molecules fused to Src* were expressed in breast cancer cells. The functionality of the Src*/SD fragments was analyzed in vitro, and the active proteins were tested in vivo in an orthotopic mouse model. Breast cancer cells expressing the full-length SD and the functional smaller SD fragment (spanning SD motifs 6-10) were injected into the mammary fat pads of mice. The tumor progression was monitored by bioluminescence imaging and caliper measurements. Compared with control animals, the complete SD promoted primary tumor growth and an earlier onset of metastases. Importantly, both the complete and truncated SD significantly increased the occurrence of metastases to multiple organs. These studies provide strong evidence that the phosphorylated p130Cas SD motifs 6-10 (Y236, Y249, Y267, Y287, and Y306) are important for driving mammary carcinoma progression.
Collapse
|
77
|
Uehara K, Uehara A. Differentiated localizations of phosphorylated focal adhesion kinase in endothelial cells of rat splenic sinus. Cell Tissue Res 2016; 364:611-622. [PMID: 26846226 DOI: 10.1007/s00441-015-2350-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023]
Abstract
The splenic sinus endothelium adhering via adherens junctions and tight junctions regulates the passage of blood cells through the splenic cord. Focal adhesion kinase (FAK) regulates the focal adhesion complex in the basal part of endothelial cells and is an integrated component of cell-cell adhesion, depending on its phosphorylation status. The objectives of this study are to assess the localization of FAK phosphorylated at tyrosine residues and the related proteins of integrin β5, talin, paxillin, p130Cas, vinculin, RhoA, Rac1, Rac2, Cdc42 and VE-cadherin, in the sinus endothelial cells of rat spleen and to examine the roles of FAK in regulating endothelial adhesion and the passage of blood cells. Immunofluorescence microscopy of tissue cryosections revealed that FAK was localized in the entire circumference of sinus endothelial cells and FAK phosphorylated at Try397 residue (pFAKy397) and pFAKy576 were precisely localized in the adherens junctions of the endothelial cells, whereas pFAKy925 was localized in the basal part of the endothelial cells. Paxillin and vinculin were prominently localized in the basal part of the endothelial cells. Integrin β5, talin and p130Cas were colocalized with FAK in the entire circumference of sinus endothelial cells. RhoA, Rac2 and Cdc42 were localized in the entire circumference of sinus endothelial cells close to FAK, stress fibers and cortical actin filaments. Immunogold electron microscopy revealed that pFAKy397 and pFAKy576 were colocalized with VE-cadherin, RhoA, Rac2 and Cdc42 in the adherens junctions of the endothelial cells. Possible functional roles of FAK in splenic sinus endothelial cells are also discussed.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Akira Uehara
- Department of Physiology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
78
|
|
79
|
Mechanosensitivity of integrin adhesion complexes: role of the consensus adhesome. Exp Cell Res 2015; 343:7-13. [PMID: 26515553 DOI: 10.1016/j.yexcr.2015.10.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022]
Abstract
Cell and tissue stiffness have been known to contribute to both developmental and pathological signalling for some time, but the underlying mechanisms remain elusive. Integrins and their associated adhesion signalling complexes (IACs), which form a nexus between the cell cytoskeleton and the extracellular matrix, act as a key force sensing and transducing unit in cells. Accordingly, there has been much interest in obtaining a systems-level understanding of IAC composition. Proteomic approaches have revealed the complexity of IACs and identified a large number of components that are regulated by cytoskeletal force. Here we review the function of the consensus adhesome, an assembly of core IAC proteins that emerged from a meta-analysis of multiple proteomic datasets, in the context of mechanosensing. As IAC components have been linked to a variety of diseases involved with rigidity sensing, the field is now in a position to define the mechanosensing function of individual IAC proteins and elucidate their mechanisms of action.
Collapse
|
80
|
Hákonardóttir GK, López-Ceballos P, Herrera-Reyes AD, Das R, Coombs D, Tanentzapf G. In vivo quantitative analysis of Talin turnover in response to force. Mol Biol Cell 2015; 26:4149-62. [PMID: 26446844 PMCID: PMC4710244 DOI: 10.1091/mbc.e15-05-0304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Cell–ECM adhesion is regulated by mechanical force. Quantitative imaging and mathematical modeling are used to elucidate how the intracellular adhesion complex of integrin-based adhesions responds to force, revealing the molecular mechanisms that allow the adhesion complex to respond to force to stabilize cell–ECM adhesion over development. Cell adhesion to the extracellular matrix (ECM) allows cells to form and maintain three-dimensional tissue architecture. Cell–ECM adhesions are stabilized upon exposure to mechanical force. In this study, we used quantitative imaging and mathematical modeling to gain mechanistic insight into how integrin-based adhesions respond to increased and decreased mechanical forces. A critical means of regulating integrin-based adhesion is provided by modulating the turnover of integrin and its adhesion complex (integrin adhesion complex [IAC]). The turnover of the IAC component Talin, a known mechanosensor, was analyzed using fluorescence recovery after photobleaching. Experiments were carried out in live, intact flies in genetic backgrounds that increased or decreased the force applied on sites of adhesion. This analysis showed that when force is elevated, the rate of assembly of new adhesions increases such that cell–ECM adhesion is stabilized. Moreover, under conditions of decreased force, the overall rate of turnover, but not the proportion of adhesion complex components undergoing turnover, increases. Using point mutations, we identify the key functional domains of Talin that mediate its response to force. Finally, by fitting a mathematical model to the data, we uncover the mechanisms that mediate the stabilization of ECM-based adhesion during development.
Collapse
Affiliation(s)
- Guðlaug Katrín Hákonardóttir
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alejandra Donají Herrera-Reyes
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Raibatak Das
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
81
|
Colinas O, Moreno-Domínguez A, Zhu HL, Walsh EJ, Pérez-García MT, Walsh MP, Cole WC. α5-Integrin-mediated cellular signaling contributes to the myogenic response of cerebral resistance arteries. Biochem Pharmacol 2015; 97:281-91. [PMID: 26278977 DOI: 10.1016/j.bcp.2015.08.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The myogenic response of resistance arterioles and small arteries involving constriction in response to intraluminal pressure elevation and dilation on pressure reduction is fundamental to local blood flow regulation in the microcirculation. Integrins have garnered considerable attention in the context of initiating the myogenic response, but evidence indicative of mechanotransduction by integrin adhesions, for example established changes in tyrosine phosphorylation of key adhesion proteins, has not been obtained to substantiate this interpretation. Here, we evaluated the role of integrin adhesions and associated cellular signaling in the rat cerebral arterial myogenic response using function-blocking antibodies against α5β1-integrins, pharmacological inhibitors of focal adhesion kinase (FAK) and Src family kinase (SFK), an ultra-high-sensitivity western blotting technique, site-specific phosphoprotein antibodies to quantify adhesion and contractile filament protein phosphorylation, and differential centrifugation to determine G-actin levels in rat cerebral arteries at varied intraluminal pressures. Pressure-dependent increases in the levels of phosphorylation of FAK (FAK-Y397, Y576/Y577), SFK (SFK-Y416; Y527 phosphorylation was reduced), vinculin-Y1065, paxillin-Y118 and phosphoinositide-specific phospholipase C-γ1 (PLCγ1)-Y783 were detected. Treatment with α5-integrin function-blocking antibodies, FAK inhibitor FI-14 or SFK inhibitor SU6656 suppressed the changes in adhesion protein phosphorylation, and prevented pressure-dependent phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) at T855 and 20kDa myosin regulatory light chains (LC20) at S19, as well as actin polymerization that are necessary for myogenic constriction. We conclude that mechanotransduction by integrin adhesions and subsequent cellular signaling play a fundamental role in the cerebral arterial myogenic response.
Collapse
Affiliation(s)
- Olaia Colinas
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Alejandro Moreno-Domínguez
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Hai-Lei Zhu
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Emma J Walsh
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - M Teresa Pérez-García
- Department of Physiology, Instituto de Biología y Genética Molecular, University of Valladolid, Valladolid, Spain.
| | - Michael P Walsh
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - William C Cole
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| |
Collapse
|
82
|
Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EHJ, Koenderink GH. A guide to mechanobiology: Where biology and physics meet. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3043-52. [PMID: 25997671 DOI: 10.1016/j.bbamcr.2015.05.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 05/02/2015] [Indexed: 02/08/2023]
Abstract
Cells actively sense and process mechanical information that is provided by the extracellular environment to make decisions about growth, motility and differentiation. It is important to understand the underlying mechanisms given that deregulation of the mechanical properties of the extracellular matrix (ECM) is implicated in various diseases, such as cancer and fibrosis. Moreover, matrix mechanics can be exploited to program stem cell differentiation for organ-on-chip and regenerative medicine applications. Mechanobiology is an emerging multidisciplinary field that encompasses cell and developmental biology, bioengineering and biophysics. Here we provide an introductory overview of the key players important to cellular mechanobiology, taking a biophysical perspective and focusing on a comparison between flat versus three dimensional substrates. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Karin A Jansen
- Systems Biophysics Department, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Dominique M Donato
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Hayri E Balcioglu
- Faculty of Science, Leiden Academic Center for Drug Research, Toxicology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Erik H J Danen
- Faculty of Science, Leiden Academic Center for Drug Research, Toxicology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijsje H Koenderink
- Systems Biophysics Department, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
83
|
Abstract
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. In this review, Osmanagic-Myers et al. focus on the role of nuclear lamins in mechanosensing and also discuss how disease-linked lamin mutants may impair the response of cells to mechanical stimuli and influence the properties of the extracellular matrix. The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.
Collapse
|
84
|
Yano H, Choudhury ME, Islam A, Kobayashi K, Tanaka J. Cellular mechanotransduction of physical force and organ response to exercise-induced mechanical stimuli. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2015. [DOI: 10.7600/jpfsm.4.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| | - Kana Kobayashi
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine
| |
Collapse
|