51
|
Schino I, Cantore M, de Candia M, Altomare CD, Maria C, Barros J, Cachatra V, Calado P, Shimizu K, Freitas AA, Oliveira MC, Ferreira MJ, Lopes JNC, Colabufo NA, Rauter AP. Exploring Mannosylpurines as Copper Chelators and Cholinesterase Inhibitors with Potential for Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 16:ph16010054. [PMID: 36678552 PMCID: PMC9864808 DOI: 10.3390/ph16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's Disease (AD) is characterized by a progressive cholinergic neurotransmission imbalance, with a decrease of acetylcholinesterase (AChE) activity followed by a significant increase of butyrylcholinesterase (BChE) in the later AD stages. BChE activity is also crucial for the development of Aβ plaques, the main hallmarks of this pathology. Moreover, systemic copper dyshomeostasis alters neurotransmission leading to AD. In the search for structures targeting both events, a set of novel 6-benzamide purine nucleosides was synthesized, differing in glycone configuration and N7/N9 linkage to the purine. Their AChE/BChE inhibitory activity and metal ion chelating properties were evaluated. Selectivity for human BChE inhibition required N9-linked 6-deoxy-α-d-mannosylpurine structure, while all three tested β-d-derivatives appeared as non-selective inhibitors. The N9-linked l-nucleosides were cholinesterase inhibitors except the one embodying either the acetylated sugar or the N-benzyl-protected nucleobase. These findings highlight that sugar-enriched molecular entities can tune bioactivity and selectivity against cholinesterases. In addition, selective copper chelating properties over zinc, aluminum, and iron were found for the benzyl and acetyl-protected 6-deoxy-α-l-mannosyl N9-linked purine nucleosides. Computational studies highlight molecular conformations and the chelating molecular site. The first dual target compounds were disclosed with the perspective of generating drug candidates by improving water solubility.
Collapse
Affiliation(s)
- Ignazio Schino
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
- Biofordrug Srl, Via Dante 95, 70019 Triggiano, Italy
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Mariangela Cantore
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
- Biofordrug Srl, Via Dante 95, 70019 Triggiano, Italy
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Cosimo D. Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Catarina Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Largo da Torre, 2825-149 Caparica, Portugal
| | - João Barros
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vasco Cachatra
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patrícia Calado
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
| | - Karina Shimizu
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Adilson A. Freitas
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria C. Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria J. Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José N. C. Lopes
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nicola A. Colabufo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
- Correspondence: (N.A.C.); (A.P.R.); Tel.: +351-964-408-824 (A.P.R.)
| | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: (N.A.C.); (A.P.R.); Tel.: +351-964-408-824 (A.P.R.)
| |
Collapse
|
52
|
Reiland KM, Eckroat TJ. Selective butyrylcholinesterase inhibition by isatin dimers and 3-indolyl-3-hydroxy-2-oxindole dimers. Bioorg Med Chem Lett 2022; 77:129037. [DOI: 10.1016/j.bmcl.2022.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
|
53
|
Lu X, Qin N, Liu Y, Du C, Feng F, Liu W, Chen Y, Sun H. Design, synthesis, and biological evaluation of aromatic tertiary amine derivatives as selective butyrylcholinesterase inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 243:114729. [DOI: 10.1016/j.ejmech.2022.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022]
|
54
|
Miao S, He Q, Li C, Wu Y, Liu M, Chen Y, Qi S, Gong K. Aaptamine - a dual acetyl - and butyrylcholinesterase inhibitor as potential anti-Alzheimer's disease agent. PHARMACEUTICAL BIOLOGY 2022; 60:1502-1510. [PMID: 35968601 PMCID: PMC9380430 DOI: 10.1080/13880209.2022.2102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 05/31/2023]
Abstract
CONTEXT Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are promising therapeutic targets for AD. OBJECTIVE To evaluate the inhibitory effects of aaptamine on two cholinesterases and investigate the in vivo therapeutic effect on AD in a zebrafish model. MATERIALS AND METHODS Aaptamine was isolated from the sponge Aaptos suberitoides Brøndsted (Suberitidae). Enzyme inhibition, kinetic analysis, surface plasmon resonance (SPR) and molecular docking assays were used to determine its inhibitory effect on AChE and BuChE in vitro. Zebrafish were divided into six groups: control, model, 8 μM donepezil, 5 , 10 and 20 μM aaptamine. After three days of drug treatment, the behaviour assay was performed. RESULTS The IC50 values of aaptamine towards AChE and BuChE were 16.0 and 4.6 μM. And aaptamine directly inhibited the two cholinesterases in the mixed inhibition type, with Ki values of 6.96 ± 0.04 and 6.35 ± 0.02 μM, with Kd values of 87.6 and 10.7 μM. Besides, aaptamine interacts with the crucial anionic sites of AChE and BuChE. In vivo studies indicated that the dyskinesia recovery rates of 5 , 10 and 20 μM aaptamine group were 34.8, 58.8 and 60.0%, respectively, and that of donepezil was 63.7%. DISCUSSION AND CONCLUSIONS Aaptamine showed great potential to exert its anti-AD effects by directly inhibiting the activities of AChE and BuChE. Therefore, this study identified a novel medicinal application of aaptamine and provided a new structural scaffold for the development of anti-AD drugs.
Collapse
Affiliation(s)
- Shuang Miao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Qianqian He
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, PR China
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Yan Wu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Mengshan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Yongshou Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Shizhou Qi
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| | - Kaikai Gong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, PR China
| |
Collapse
|
55
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
56
|
Chaudhry F, Munir R, Ashraf M, Mehr-un-Nisa, Huma R, Malik N, Hussain S, Ali Munawar M, Ain Khan M. Exploring Facile Synthesis and Cholinesterase Inhibiting Potential of Heteroaryl Substituted Imidazole Derivatives for the Treatment of Alzheimer’s Disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
57
|
Design, Synthesis and Biological Evaluation of Biscarbamates as Potential Selective Butyrylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15101220. [PMID: 36297332 PMCID: PMC9609992 DOI: 10.3390/ph15101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
As butyrylcholinesterase (BChE) plays a role in the progression of symptoms and pathophysiology of Alzheimer's disease (AD), selective inhibition of BChE over acetylcholinesterase (AChE) can represent a promising pathway in treating AD. The carbamate group was chosen as a pharmacophore because the carbamates currently or previously in use for the treatment of AD displayed significant positive effects on cognitive symptoms. Eighteen biscarbamates with different substituents at the carbamoyl and hydroxyaminoethyl chain were synthesized, and their inhibitory potential toward both cholinesterases and inhibition selectivity were determined. The ability of carbamates to cross the blood-brain barrier (BBB) by passive transport, their cytotoxic profile and their ability to chelate biometals were also evaluated. All biscarbamates displayed a time-dependent inhibition with inhibition rate constants within 10-3-10-6 M-1 min-1 range for both cholinesterases, with generally higher preference to BChE. For two biscarbamates, it was determined that they should be able to pass the BBB by passive transport, while for five biscarbamates, this ability was slightly limited. Fourteen biscarbamates did not exhibit a cytotoxic effect toward liver, kidney and neuronal cells. In conclusion, considering their high BChE selectivity, non-toxicity, ability to chelate biometals and pass the BBB, compounds 2 and 16 were pointed out as the most promising compounds for the treatment of middle and late stages of AD.
Collapse
|
58
|
Sepehri S, Saeedi M, Larijani B, Mahdavi M. Recent developments in the design and synthesis of benzylpyridinium salts: Mimicking donepezil hydrochloride in the treatment of Alzheimer's disease. Front Chem 2022; 10:936240. [PMID: 36226120 PMCID: PMC9549744 DOI: 10.3389/fchem.2022.936240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Alzheimer's disease (AD) is an advanced and irreversible degenerative disease of the brain, recognized as the key reason for dementia among elderly people. The disease is related to the reduced level of acetylcholine (ACh) in the brain that interferes with memory, learning, emotional, and behavior responses. Deficits in cholinergic neurotransmission are responsible for the creation and progression of numerous neurochemical and neurological illnesses such as AD. Aim: Herein, focusing on the fact that benzylpyridinium salts mimic the structure of donepezil hydrochlorideas a FDA-approved drug in the treatment of AD, their synthetic approaches and inhibitory activity against cholinesterases (ChEs) were discussed. Also, molecular docking results and structure-activity relationship (SAR) as the most significant concept in drug design and development were considered to introduce potential lead compounds. Key scientific concepts: AChE plays a chief role in the end of nerve impulse transmission at the cholinergic synapses. In this respect, the inhibition of AChE has been recognized as a key factor in the treatment of AD, Parkinson's disease, senile dementia, myasthenia gravis, and ataxia. A few drugs such as donepezil hydrochloride are prescribed for the improvement of cognitive dysfunction and memory loss caused by AD. Donepezil hydrochloride is a piperidine-containing compound, identified as a well-known member of the second generation of AChE inhibitors. It was established to treat AD when it was assumed that the disease is associated with a central cholinergic loss in the early 1980s. In this review, synthesis and anti-ChE activity of a library of benzylpyridinium salts were reported and discussed based on SAR studies looking for the most potent substituents and moieties, which are responsible for inducing the desired activity even more potent than donepezil. It was found that linking heterocyclic moieties to the benzylpyridinium salts leads to the potent ChE inhibitors. In this respect, this review focused on the recent reports on benzylpyridinium salts and addressed the structural features and SARs to get an in-depth understanding of the potential of this biologically improved scaffold in the drug discovery of AD.
Collapse
Affiliation(s)
- Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Lins Alves LK, Cechinel Filho V, de Souza RLR, Furtado-Alle L. BChE inhibitors from marine organisms - A review. Chem Biol Interact 2022; 367:110136. [PMID: 36096160 DOI: 10.1016/j.cbi.2022.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Acetylcholine is a key neurotransmitter for brain and muscle function, that has its levels decreased in the brain of people with Alzheimer's Disease (AD). Cholinesterase inhibitors are medicines that decrease the breakdown of acetylcholine, through the inhibition of acetyl- and butyrylcholinesterase enzymes. Despite the fact that butyrylcholinesterase activity rises with the disease, while acetylcholinesterase activity declines, the cholinesterase inhibitors that are currently commercialized inhibit either acetylcholinesterase or both enzymes. The development of selective butyrylcholinesterase inhibitors is a promising strategy in the search for new drugs acting against AD. The marine environment is a rich source of molecules with therapeutic potential, which can provide compounds more easily than traditional methods, with reduced toxicity risks compared to synthetic molecules. This review comprises articles from 2003 to 2020, that assessed the butyrylcholinesterase inhibitory activities from marine organisms, considering their crude extracts and isolated compounds. Part of the articles reported a multi-target activity, inhibiting also other AD-related enzymes. Some of the marine compounds reported here have shown an excellent potential for butyrylcholinesterase inhibition compared to standard inhibitors. Further studies of some compounds reported here may lead to the development of a new treatment for AD.
Collapse
Affiliation(s)
- Luana Kamarowski Lins Alves
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil.
| | - Valdir Cechinel Filho
- Post-graduation Program of Pharmaceutical Sciences (PPGCF), Chemical-Pharmaceutical Research Center (NIQFAR), University of Itajaí Valley (UNIVALI), R. Uruguai, 458 - Centro, 88302-901, Itajaí, SC, Brazil
| | - Ricardo Lehtonen Rodrigues de Souza
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil
| | - Lupe Furtado-Alle
- Department of Genetics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 210 - Jardim das Américas, 81530-001, Curitiba, PR, Brazil
| |
Collapse
|
60
|
Camargo-Ayala L, Polo-Cuadrado E, Osorio E, Soto-Delgado J, Duarte Y, Prent-Peñaloza L, Gutiérrez M. Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
Du C, Wang L, Guan Q, Yang H, Chen T, Liu Y, Li Q, Lyu W, Lu X, Chen Y, Liu Y, Liu H, Feng F, Liu W, Liu Z, Li W, Chen Y, Sun H. N-Benzyl Benzamide Derivatives as Selective Sub-Nanomolar Butyrylcholinesterase Inhibitors for Possible Treatment in Advanced Alzheimer's Disease. J Med Chem 2022; 65:11365-11387. [PMID: 35969197 DOI: 10.1021/acs.jmedchem.2c00944] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein, we report a series of selective sub-nanomolar inhibitors against butyrylcholinesterase (BChE). These compounds, bearing a novel N-benzyl benzamide scaffold, inhibited BChE with IC50 from picomolar to nanomolar. The inhibitory activity was confirmed by the surface plasmon resonance assay, showing a sub-nanomolar KD value, which revealed that the compounds exert the inhibitory effect through directly binding to BChE. Several compounds showed neuroprotective effects verified by the oxidative damage model. Furthermore, the safety of S11-1014 and S11-1033 was demonstrated by the in vivo acute toxicity test. In the behavior study, 0.5 mg/kg S11-1014 or S11-1033 exhibited a marked therapeutic effect, which was almost equal to the treatment with 1 mg/kg rivastigmine, against the cognitive impairment induced by Aβ1-42. The pharmacokinetics studies characterized the metabolic stability of S11-1014. Thus, N-benzyl benzamide inhibitors are promising compounds with drug-like properties for improving cognitive dysfunction, providing a potential strategy for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hongyu Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qihang Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Weiping Lyu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hui Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Jiangsu Drug Development Engineering Research Center for Central Degenerative Disease, Jiangsu Food and Pharmaceuticals Science College, Huaian 223005, People's Republic of China.,Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Wei Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
62
|
Wang H, Dai JY, He YZ, Xia ZW, Chen XF, Hong ZY, Chai YF. Therapeutic effect and mechanism of Anemarrhenae Rhizoma on Alzheimer’s disease based on multi-platform metabolomics analyses. Front Pharmacol 2022; 13:940555. [PMID: 35991874 PMCID: PMC9385998 DOI: 10.3389/fphar.2022.940555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Anemarrhenae Rhizoma (AR) has multiple pharmacological activities to prevent and treat Alzheimer’s disease (AD). However, the effect and its molecular mechanism are not elucidated clear. This study aims to evaluate AR’s therapeutic effect and mechanism on AD model rats induced by D-galactose and AlCl3 with serum metabolomics. Behavior study, histopathological observations, and biochemical analyses were applied in the AD model assessment. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-QTOF/MS) were combined with multivariate statistical analysis to identify potential biomarkers of AD and evaluate the therapeutic effect of AR on AD from the perspective of metabolomics. A total of 49 biomarkers associated with the AD model were identified by metabolomics, and pathway analysis was performed to obtain the metabolic pathways closely related to the model. With the pre-treatment of AR, 32 metabolites in the serum of AD model rats were significantly affected by AR compared with the AD model group. The regulated metabolites affected by AR were involved in the pathway of arginine biosynthesis, arginine and proline metabolism, ether lipid metabolism, glutathione metabolism, primary bile acid biosynthesis, and steroid biosynthesis. These multi-platform metabolomics analyses were in accord with the results of behavior study, histopathological observations, and biochemical analyses. This study explored the therapeutic mechanism of AR based on multi-platform metabolomics analyses and provided a scientific basis for the application of AR in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jian-Ying Dai
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu-Zhen He
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhe-Wei Xia
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiao-Fei Chen
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhan-Ying Hong
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai, China
- *Correspondence: Zhan-Ying Hong,
| | - Yi-Feng Chai
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
63
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
64
|
Bora RE, Bilgicli HG, Üç EM, Alagöz MA, Zengin M, Gulcin İ. Synthesis, characterization, Evaluation of Metabolic Enzyme Inhibitors and in silico Studies of Thymol Based 2-Amino Thiol and Sulfonic Acid Compounds. Chem Biol Interact 2022; 366:110134. [DOI: 10.1016/j.cbi.2022.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/03/2022]
|
65
|
ALNasser MN, Mellor IR, Carter WG. A Preliminary Assessment of the Nutraceutical Potential of Acai Berry ( Euterpe sp.) as a Potential Natural Treatment for Alzheimer's Disease. Molecules 2022; 27:4891. [PMID: 35956841 PMCID: PMC9370152 DOI: 10.3390/molecules27154891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
66
|
Yang YD, Yang BB, Li L. A nonneglectable stereochemical factor in drug development: Atropisomerism. Chirality 2022; 34:1355-1370. [PMID: 35904531 DOI: 10.1002/chir.23497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Chirality is one of the key factors affecting the medicinal efficacy of compounds. In addition to central chirality, sterically hindered chiral axes commonly appear in drugs and the resulting chirality is known as atropisomerism. With developments in medicinal chemistry, atropisomerism has attracted increasing attention. This review discusses the classification, biological activity, pharmacokinetics, toxicity and side effects of atropisomers, and can serve as a reference in the research and development of potential chiral drugs.
Collapse
Affiliation(s)
- Ya-Dong Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
67
|
Sharma A, Nuthakki VK, Gairola S, Singh B, Bharate SB. A Coumarin-donepezil Hybrid as a Blood-brain Barrier Permeable Dual Cholinesterase Inhibitor: Isolation, Synthetic Modifications and Biological Evaluation of Natural Coumarins. ChemMedChem 2022; 17:e202200300. [PMID: 35892288 DOI: 10.1002/cmdc.202200300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Plants have immensely contributed to the drug discovery for neurodegenerative diseases. Herein, we undertook the phytochemical investigation of Nardostachys jatamansi (D.Don) DC. rhizomes followed by semisynthetic modifications to discover cholinesterase (ChE) and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) inhibitors. The 8-acetyl-7-hydroxycoumarin isolated from the bioactive extract moderately inhibits acetylcholinesterase (AChE) and BACE-1 with IC50 values of 22.1 and 17.7 μM, respectively. The semisynthetic trifluoromethyl substituted coumarin chalcone display a 5-fold improvement in BACE-1 inhibition (IC50 3.3 μM). Another semisynthetic derivative, a coumarin-donepezil hybrid, exhibits dual inhibition of both ChEs with IC50 values of 1.22 and 3.09 μM, respectively. Molecular modeling and enzyme kinetics revealed that the coumarin-donepezil hybrid is a non-competitive inhibitor of AChE. It crosses the blood-brain barrier and also inhibits Aβ self-aggregation. The results presented herein warrant a detailed investigation of the coumarin-donepezil hybrid in preclinical models of Alzheimer's disease.
Collapse
Affiliation(s)
- Ankita Sharma
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products & Medicinal Chemistry Division, Canal Road, 180001, Jammu, INDIA
| | - Vijay K Nuthakki
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products & Medicinal Chemistry Division, Canal Road, 180001, Jammu, INDIA
| | - Sumeet Gairola
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Plant Sciences & Agrotechnology Division, Canal Road, 180001, Jammu, INDIA
| | - Bikarma Singh
- CSIR-National Botanical Research Institute, Botanical Garden Division, Canal Road, Lucknow, INDIA
| | - Sandip Bibishan Bharate
- Indian Institute of Integrative Medicine CSIR, Natural Products & Medicinal Chemistry, Canal Road, 180001, Jammu, INDIA
| |
Collapse
|
68
|
Elumalai V, Trobec T, Grundner M, Labriere C, Frangež R, Sepčić K, Hansen JH, Svenson J. Development of potent cholinesterase inhibitors based on a marine pharmacophore. Org Biomol Chem 2022; 20:5589-5601. [PMID: 35796650 DOI: 10.1039/d2ob01064j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The management of neurological disorders such as dementia associated with Alzheimer's or Parkinson's disease includes the use of cholinesterase inhibitors. These compounds can slow down the progression of these diseases and can also be used in the treatment of glaucoma and myasthenia gravis. The majority of the cholinesterase inhibitors used in the clinic are derived from natural products and our current paper describes the use of a small marine pharmacophore to develop potent and selective cholinesterase inhibitors. Fourteen small inhibitors were designed based on recent discoveries about the inhibitory potential of a range of related marine secondary metabolites. The compounds were evaluated, in kinetic enzymatic assays, for their ability to inhibit three different cholinesterase enzymes and it was shown that compounds with a high inhibitory activity towards electric eel and human recombinant acetylcholinesterase (IC50 between 20-70 μM) could be prepared. It was also shown that this compound class was particularly active against horse serum butyrylcholinesterase, with IC50 values between 0.8-16 μM, which is an order of magnitude more potent than the clinically used positive control neostigmine. The compounds were further tested for off-target toxicity against both human umbilical vein endothelial cells and bovine and human erythrocytes and were shown to display a low mammalian cellular toxicity. Overall, the study illustrates how the brominated dipeptide marine pharmacophore can be used as a versatile natural scaffold for the design of potent, and selective cholinesterase inhibitors.
Collapse
Affiliation(s)
- Vijayaragavan Elumalai
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Christophe Labriere
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jørn H Hansen
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| |
Collapse
|
69
|
Sang Z, Bai P, Ban Y, Wang K, Wu A, Mi J, Hu J, Xu R, Zhu G, Wang J, Zhang J, Wang C, Tan Z, Tang L. Novel donepezil-chalcone-rivastigmine hybrids as potential multifunctional anti-Alzheimer's agents: Design, synthesis, in vitro biological evaluation, in vivo and in silico studies. Bioorg Chem 2022; 127:106007. [PMID: 35849893 DOI: 10.1016/j.bioorg.2022.106007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is a chronic, progressive brain neurodegenerative disorder. Up to now, there is no effective drug to halt or reverse the progress of AD. Given the complex pathogenesis of AD, the multi-target-directed ligands (MTDLs) strategy is considered as the promising therapy. Herein, a series of novel donepezil-chalone-rivastigmine hybrids was rationally designed and synthesized by fusing donepezil, chalone and rivastigmine. The in vitro bioactivity results displayed that compound 10c was a reversible huAChE (IC50 = 0.87 μM) and huBuChE (IC50 = 3.3 μM) inhibitor. It also presented significant anti-inflammation effects by suppressing the level of IL-6 and TNF-α production, and significantly inhibited self-mediated Aβ1-42 aggregation (60.6%) and huAChE-mediated induced Aβ1-40 aggregation (46.2%). In addition, 10c showed significant neuroprotective effect on Aβ1-42-induced PC12 cell injury and activated UPS pathway in HT22 cells to degrade tau and amyloid precursor protein (APP). Furthermore, compound 10c presented good stabilty in artificial gastrointestinal fluids and liver microsomes in vitro. The pharmacokinetic study showed that compound 10c was rapidly absorbed in rats and distributed in rat brain after intragastric administration. The PET-CT imaging demonstrated that [11C]10c could quickly enter the brain and washed out gradually in vivo. Further, compound 10c at a dose of 5 mg/kg improved scopolamine-induced memory impairment, deserving further investigations.
Collapse
Affiliation(s)
- Zhipei Sang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China; School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yujuan Ban
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Southwest Medical University, Luzhou 646000, China
| | - Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiaqi Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Rui Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Jianta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Jiquan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
70
|
Obaid RJ, Naeem N, Mughal EU, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Adv 2022; 12:19764-19855. [PMID: 35919585 PMCID: PMC9275557 DOI: 10.1039/d2ra03081k] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/15/2023] Open
Abstract
Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure-activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010-2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities.
Collapse
Affiliation(s)
- Rami J Obaid
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
71
|
Fucoxanthin’s Optimization from Undaria pinnatifida Using Conventional Heat Extraction, Bioactivity Assays and In Silico Studies. Antioxidants (Basel) 2022; 11:antiox11071296. [PMID: 35883788 PMCID: PMC9311727 DOI: 10.3390/antiox11071296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
Brown macroalgae are a potential source of natural pigments. Among them, Undaria pinnatifida is recognized for its high concentration of fucoxanthin (Fx), which is a pigment with a wide range of bioactivities. In this study, three independent parameters were optimized for conventional heat extraction (CHE) to maximize the recovery of Fx from Undaria pinnatifida. Optimal conditions (temperature = 45 °C, solvent = 70%, and time = 61 min) extracted 5.1 mg Fx/g dw. Later, the bioactivities of the Fx-rich extracts (antioxidant, antimicrobial, and neuroprotective) were assessed using in vitro and in silico approaches. In vitro assays indicated that Fx has a strong antioxidant capacity and even stronger antimicrobial activity against gram-positive bacteria. This data was supported in silico where Fx established a high binding affinity to DR, a Staphylococcus aureus protein, through aa ALA-8, LEU-21, and other alkane interactions. Finally, the in vitro enzymatic inhibition of AChE using Fx, was further supported using docking models that displayed Fx as having a high affinity for aa TYR72 and THR 75; therefore, the Fx extraction behavior explored in this work may reduce the costs associated with energy and solvent consumption. Moreover, this paper demonstrates the efficiency of CHE when recovering high amounts of Fx from Undaria pinnatifida. Furthermore, these findings can be applied in different industries.
Collapse
|
72
|
Eissa KI, Kamel MM, Mohamed LW, Galal MA, Kassab AE. Design, synthesis, and biological evaluation of thienopyrimidine and thienotriazine derivatives as multitarget anti-Alzheimer agents. Drug Dev Res 2022; 83:1394-1407. [PMID: 35749685 DOI: 10.1002/ddr.21968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 06/12/2022] [Indexed: 01/21/2023]
Abstract
A series of tetrahydrobenzothienopyrimidines and tetrahydrobenzothienotriazines incorporating a pharmacophore from donepezil molecule were designed and synthesized. The 12 newly synthesized compounds were screened for their inhibition activity against acetylcholinesterase enzyme (AChE). Compounds that exerted the most potent AChE inhibitory action were further evaluated for their BChE inhibitory activity. In addition, the inhibitory effects of all newly synthesized compounds on Aβ and reactive oxygen species were assessed. Compounds 4d, 10b, and 10c showed potent inhibitory activity on AChE comparable to donepezil. Compound 10b (IC50 = 0.124 ± 0.006 nM) showed the greatest AChE inhibitory action and the most potent BChE inhibitory action (IC50 = 0.379 ± 0.02 nM). These three compounds showed more inhibitory action on Aβ accumulation than donepezil. Moreover, they showed potent antioxidant activity. The binding pattern of compounds 4d and 10b into AChE active site rationalized their remarkable AChE inhibitory activity. Taken together, these results indicated that these derivatives could be promising multifunctional agents for Alzheimer's disease management.
Collapse
Affiliation(s)
- Kholoud I Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Kamel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamia W Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai A Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
73
|
Ali R, Atia-tul-Wahab, Wajid S, Aqeel Khan M, Yousuf S, Shaikh M, Hassan Laghari G, Atta-ur-Rahman, Iqbal Choudhary M. Isolation, Derivatization, In-Vitro, and In-Silico Studies of Potent Butyrylcholinesterase Inhibitors from Berberis parkeriana Schneid. Bioorg Chem 2022; 127:105944. [DOI: 10.1016/j.bioorg.2022.105944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
|
74
|
A highly effective and stable butyrylcholinesterase inhibitor with multi-faceted neuroprotection and cognition improvement. Eur J Med Chem 2022; 239:114510. [DOI: 10.1016/j.ejmech.2022.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/30/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
|
75
|
Fernández-Bolaños JG, López Ó. Butyrylcholinesterase inhibitors as potential anti-Alzheimer's agents: an updated patent review (2018-present). Expert Opin Ther Pat 2022; 32:913-932. [PMID: 35623095 DOI: 10.1080/13543776.2022.2083956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) constitutes one of the most complex and devastating diseases, with an extraordinarily high increase expected for the next few years. Despite the numerous efforts accomplished so far there is still no cure but just palliative treatments. AREAS COVERED The main topic covered herein has been the development of butyrylcholinesterase (BuChE) inhibitors with the aim of increasing the levels of the neurotransmitter acetylcholine (ACh). Two main groups of compounds have been considered: multitarget and non-multitarget ligands, depending if the structural design is focused or not on other key targets and pathogenic factors of the disease. Seventeen patents regarding multitarget-directed ligands (MTDLs), twelve for not multitarget derivatives, and three for miscellaneous uses have been covered in the period 2018‒2021. EXPERT OPINION BuChE is an attractive target in the treatment of AD for many reasons. It is the most prevalent cholinesterase within more advanced stages of the disease, so drugs inhibiting it would be suitable for the treatment of mid- to severe Alzheimer's patients. Moreover, BuChE has been proved to be connected with some other key hallmarks of the disease, like amyloidogenesis; hybridization of a BuChE-targeting pharmacophore with other scaffolds designed for other therapeutic targets is quite a promising design for potential anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain
| |
Collapse
|
76
|
Bortolami M, Pandolfi F, Tudino V, Messore A, Madia VN, De Vita D, Di Santo R, Costi R, Romeo I, Alcaro S, Colone M, Stringaro A, Espargaró A, Sabatè R, Scipione L. Design, Synthesis, and In Vitro, In Silico and In Cellulo Evaluation of New Pyrimidine and Pyridine Amide and Carbamate Derivatives as Multi-Functional Cholinesterase Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15060673. [PMID: 35745594 PMCID: PMC9227096 DOI: 10.3390/ph15060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer disease is an age-linked neurodegenerative disorder representing one of the greatest medical care challenges of our century. Several drugs are useful in ameliorating the symptoms, even if none could stop or reverse disease progression. The standard approach is represented by the cholinesterase inhibitors (ChEIs) that restore the levels of acetylcholine (ACh) by inhibiting the acetylcholinesterase (AChE). Still, their limited efficacy has prompted researchers to develop new ChEIs that could also reduce the oxidative stress by exhibiting antioxidant properties and by chelating the main metals involved in the disease. Recently, we developed some derivatives constituted by a 2-amino-pyrimidine or a 2-amino-pyridine moiety connected to various aromatic groups by a flexible amino-alkyl linker as new dual inhibitors of AChE and butyrylcholinesterase (BChE). Following our previous studies, in this work we explored the role of the flexible linker by replacing the amino group with an amide or a carbamic group. The most potent compounds showed higher selectivity against BChE in respect to AChE, proving also to possess a weak anti-aggregating activity toward Aβ42 and tau and to be able to chelate Cu2+ and Fe3+ ions. Molecular docking and molecular dynamic studies proposed possible binding modes with the enzymes. It is noteworthy that these compounds were predicted as BBB-permeable and showed low cytotoxicity on the human brain cell line.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, Via Castro Laurenziano 7, 00185 Rome, Italy; (M.B.); (F.P.)
| | - Fabiana Pandolfi
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, Via Castro Laurenziano 7, 00185 Rome, Italy; (M.B.); (F.P.)
| | - Valeria Tudino
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - Antonella Messore
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - Valentina Noemi Madia
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Roberto Di Santo
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
- Instituto Pasteur, Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberta Costi
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
- Instituto Pasteur, Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Isabella Romeo
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (S.A.); (L.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (A.S.)
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (A.S.)
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain; (A.E.); (R.S.)
- Institute of Nanoscience and Nanotechnology (INUB), 08028 Barcelona, Spain
| | - Raimon Sabatè
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain; (A.E.); (R.S.)
- Institute of Nanoscience and Nanotechnology (INUB), 08028 Barcelona, Spain
| | - Luigi Scipione
- Department of Chimica e Tecnologia del Farmaco, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (V.T.); (A.M.); (V.N.M.); (R.D.S.); (R.C.)
- Correspondence: (S.A.); (L.S.)
| |
Collapse
|
77
|
Işık A, Çevik UA, Celik I, Erçetin T, Koçak A, Özkay Y, Kaplancıklı ZA. Synthesis, characterization, molecular docking, dynamics simulations, and in silico absorption, distribution, metabolism, and excretion (ADME) studies of new thiazolylhydrazone derivatives as butyrylcholinesterase inhibitors. Z NATURFORSCH C 2022; 77:447-457. [DOI: 10.1515/znc-2021-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, two novel series of thiazolylhydrazone derivatives containing 4-ethylpiperazine (3a–3f) and 4-methoxyphenylpiperazine (3g–3l) side chains were synthesized and their structures were characterized by spectral (1H NMR, 13C NMR, and MS spectra) analyses. In vitro inhibitory activities of synthesized compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined by Ellman method. According to the results, all compounds showed a weak inhibitory effect on AChE, while promising results were obtained on BChE. Among the synthesized compounds, the activities of the derivatives carrying 4-ethylpiperazine (3a–3f) structure were found to be more effective than the compounds carrying 4-methoxyphenyl piperazine (3g–3l) derivatives. Especially, compound 3f bearing the nitro substituent was found to be the most promising compound on BChE in the series. The absorption, distribution, metabolism, and excretion (ADME) parameters of the synthesized compounds were predicted by using the SwissADME server. The potential binding mode and stability of compound 3f with BChE were investigated by the molecular docking and dynamics simulations. The results showed that 3f was strongly bound up with BChE with the optimal conformation; in addition, their binding free energy reached −167.936 ± 13.109 kJ/mol.
Collapse
Affiliation(s)
- Ayşen Işık
- Department of Biochemistry , Faculty of Science, Selçuk University , Konya , Turkey
| | - Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Anadolu University , Eskişehir 26470 , Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Doping and Narcotic Compounds Analysis Laboratory , Eskişehir 26470 , Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Erciyes University , Kayseri 38039 , Turkey
| | - Tuğba Erçetin
- Department of Pharmacognosy , Eastern Mediterranean University , Famagusta , Cyprus
| | - Ahmet Koçak
- Department of Chemistry , Faculty of Science, Selçuk University , Konya , Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Anadolu University , Eskişehir 26470 , Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Doping and Narcotic Compounds Analysis Laboratory , Eskişehir 26470 , Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Anadolu University , Eskişehir 26470 , Turkey
| |
Collapse
|
78
|
Moreira NCDS, Lima JEBDF, Marchiori MF, Carvalho I, Sakamoto-Hojo ET. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer's Disease and Future Perspectives. J Alzheimers Dis Rep 2022; 6:177-193. [PMID: 35591949 PMCID: PMC9108627 DOI: 10.3233/adr-210061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a slowly progressive neurodegenerative disease conceptualized as a continuous process, ranging from mild cognitive impairment (MCI), to the mild, moderate, and severe clinical stages of AD dementia. AD is considered a complex multifactorial disease. Currently, the use of cholinesterase inhibitors (ChEI), such as tacrine, donepezil, rivastigmine, and galantamine, has been the main treatment for AD patients. Interestingly, there is evidence that ChEI also promotes neuroprotective effects, bringing some benefits to AD patients. The mechanisms by which the ChEI act have been investigated in AD. ChEI can modulate the PI3K/AKT pathway, which is an important signaling cascade that is capable of causing a significant functional impact on neurons by activating cell survival pathways to promote neuroprotective effects. However, there is still a huge challenge in the field of neuroprotection, but in the context of unravelling the details of the PI3K/AKT pathway, a new scenario has emerged for the development of more efficient drugs that act on multiple protein targets. Thus, the mechanisms by which ChEI can promote neuroprotective effects and prospects for the development of new drug candidates for the treatment of AD are discussed in this review.
Collapse
Affiliation(s)
| | | | - Marcelo Fiori Marchiori
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
79
|
Sumrra SH, Zafar W, Imran M, Chohan ZH. A review on the biomedical efficacy of transition metal triazole compounds. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2059359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
80
|
Stojkovic D, Drakulic D, Dias MI, Zengin G, Barros L, Ivanov M, Gašic U, Rajcevic N, Stevanovic M, Ferreira ICFR, Sokovic M. Phlomis fruticosa L. exerts in vitro antineurodegenerative and antioxidant activities and induces prooxidant effect in glioblastoma cell line. EXCLI JOURNAL 2022; 21:387-399. [PMID: 35368464 PMCID: PMC8971322 DOI: 10.17179/excli2021-4487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Despite the significant advances in drug development we are witnessing the inability of health systems to combat both neurodegenerative diseases and cancers, especially glioblastoma. Hence, natural products are comprehensively studied in order to provide novel therapeutic options. This study aimed to explore anti-neurodegenerative and anti-glioblastoma potential of extract of Phlomis fruticosa L. using in vitro model systems. It was found that the methanol extract of P. fruticosa was able to efficiently reduce activities of enzymes linked to neurodegenerative disease including acetylcholinesterase, butyrylcholinesterase and tyrosinase. Furthermore, P. fruticosa extract has shown excellent antioxidant potential, as evidenced by six different methods. Analysis of cytotoxic effect of P. fruticosa extract on A172 glioblastoma cell line revealed that the concentration of the extract necessary for 50 % inhibition of A172 growth (IC50) was 710 μg/mL. The extract did not induce changes in proliferation and morphology of A172 glioblastoma cells. On the other side, production of ROS was increased in A172 cells treated with the extract. Observed cytotoxic effect of P. fruticosa extract might be based on increase in ROS generation upon treatment. Quantitative chemical analysis revealed the presence of twelve different polyphenols with the cis 3-O-caffeoylquinic acid being the most abundant. This study provided scientific evidence for further exploration of P. fruticosa as a promising natural anti-neurodegenerative therapeutic option.
Collapse
Affiliation(s)
- Dejan Stojkovic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Danijela Drakulic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, 42130, Konya, Turkey
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Uroš Gašic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Nemanja Rajcevic
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11158 Belgrade, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.,University of Belgrade, Faculty of Biology, Studentski trg 16, 11158 Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marina Sokovic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
81
|
Zhang Z, Cheng M, Guo J, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Design, synthesis and biological evaluation of novel pyrazolone derivatives as selective butyrylcholinesterase inhibitors with antioxidant activity against Alzheimer's disease. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
82
|
Identification of Novel Molecular Targets of Four Microcystin Variants by High-Throughput Virtual Screening. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Highly toxic microcystins (MCs) perform complex interactions with many proteins that induce cellular dysregulation, leading to the development of several diseases including cancer. There is significant diversity and chemical complexity among MC congeners, which makes it difficult to identify structure-dependent toxicity outcomes and their long-term effects. The aim of this study was to exploratory identify likely molecular targets of the main MC variants (MC-LA, MC-LR, MC-RR, and MC-LY) by conducting a computational binding affinity analysis using AutoDock Vina to evaluate the interaction of the toxins with 1000 proteins related to different biological functions. All four variants showed strong in silico interactions with proteins that regulate metabolism/immune system, CD38 (top scoring hit, −11.5 kcal/mol); inflammation, TLR4 (−11.4 kcal/mol) and TLR8 (−11.5 kcal/mol); neuronal conduction, BChE; renin–angiotensin signaling, (ACE); thyroid hormone homeostasis (TTR); and cancer-promoting processes, among other biochemical activities. The results show MCs have the potential to bind onto distinct molecular targets which could generate biochemical alterations through a number of signal transduction pathways. In short, this study broadens our knowledge about the mechanisms of action of different variants of microcystins and provides information for future direct experimentation.
Collapse
|
83
|
Scheiner M, Sink A, Hoffmann M, Vrigneau C, Endres E, Carles A, Sotriffer C, Maurice T, Decker M. Photoswitchable Pseudoirreversible Butyrylcholinesterase Inhibitors Allow Optical Control of Inhibition in Vitro and Enable Restoration of Cognition in an Alzheimer's Disease Mouse Model upon Irradiation. J Am Chem Soc 2022; 144:3279-3284. [PMID: 35138833 DOI: 10.1021/jacs.1c13492] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To develop tools to investigate the biological functions of butyrylcholinesterase (BChE) and the mechanisms by which BChE affects Alzheimer's disease (AD), we synthesized several selective, nanomolar active, pseudoirreversible photoswitchable BChE inhibitors. The compounds were able to specifically influence different kinetic parameters of the inhibition process by light. For one compound, a 10-fold difference in the IC50-values (44.6 nM cis, 424 nM trans) in vitro was translated to an "all or nothing" response with complete recovery in a murine cognition-deficit AD model at dosages as low as 0.3 mg/kg.
Collapse
Affiliation(s)
- Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Sink
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Cassandre Vrigneau
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Erik Endres
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Allison Carles
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Christoph Sotriffer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
84
|
Design, synthesis, biological evaluation and molecular modeling of N-isobutyl-N-((2-(p-tolyloxymethyl)thiazol-4yl)methyl)benzo[d][1,3] dioxole-5-carboxamides as selective butyrylcholinesterase inhibitors. Bioorg Med Chem Lett 2022; 61:128602. [DOI: 10.1016/j.bmcl.2022.128602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/29/2022] [Indexed: 11/30/2022]
|
85
|
Zeng Y, Nie L, Liu L, Niu C, Li Y, Bozorov K, Zhao J, Shen J, Aisa HA. Design, Synthesis, in vitro Evaluation of a New Pyrrolo[1,2‐
a
]thiazolo[5,4‐
d
]pyrimidinone Derivatives as Cholinesterase Inhibitors Against Alzheimer's Disease. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zeng
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Chao Niu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Yi Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Faculty of Chemistry Samarkand State University Samarkand Uzbekistan
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Jingshan Shen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
86
|
Baréa P, Barbosa VA, Yamazaki DADS, Gomes CMB, Novello CR, Costa WFD, Gauze GDF, Sarragiotto MH. Anticholinesterase activity of β-carboline-1,3,5-triazine hybrids. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
87
|
Fontes Barbosa M, Benatti Justino A, Machado Martins M, Roberta Anacleto Belaz K, Barbosa Ferreira F, Junio de Oliveira R, Danuello A, Salmen Espindola F, Pivatto M. Cholinesterase inhibitors assessment of aporphine alkaloids from Annona crassiflora and molecular docking studies. Bioorg Chem 2022; 120:105593. [DOI: 10.1016/j.bioorg.2021.105593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/23/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
|
88
|
Camargo-Ayala L, Prent-Peñaloza L, Polo-Cuadrado E, Brito I, Cisterna J, Osorio E, González W, Gutiérrez M. Synthesis, characterization, crystal and molecular structure and theoretical study of N-(naphthalen-1-yl)-2-(piperidin-1-yl) acetamide, a selective butyrylcholinesterase inhibitor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
89
|
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants (Basel) 2021; 11:87. [PMID: 35052591 PMCID: PMC8772758 DOI: 10.3390/antiox11010087] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer's disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Khushi Muhammad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| |
Collapse
|
90
|
Lopes JPB, Silva L, Lüdtke DS. An overview on the synthesis of carbohydrate-based molecules with biological activity related to neurodegenerative diseases. RSC Med Chem 2021; 12:2001-2015. [PMID: 35028560 PMCID: PMC8672812 DOI: 10.1039/d1md00217a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
In the context of the search for multitarget drugs with improved efficacy against neurodegenerative disorders, carbohydrate derivatives have emerged as promising candidates for Alzheimer's therapy. Herein we describe the synthesis and biological evaluation of several classes of sugar-based compounds, where most of them contain heterocyclic aromatic moieties that bear known biological properties and high affinity for the cholinesterase active site. This general idea led to the synthesis of compounds with high inhibitory potency against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), enzymatic selectivity and combined properties such as antioxidant and neuroprotection, in addition to the absence of toxicity.
Collapse
Affiliation(s)
- João Paulo B Lopes
- Instituto de Química, Universidade Federal do Rio Grande do Sul Av. Bento, Gonçalves 9500, Campus do Vale 91501-970 Porto Alegre RS Brazil
| | - Luana Silva
- Instituto de Química, Universidade Federal do Rio Grande do Sul Av. Bento, Gonçalves 9500, Campus do Vale 91501-970 Porto Alegre RS Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul Av. Bento, Gonçalves 9500, Campus do Vale 91501-970 Porto Alegre RS Brazil
| |
Collapse
|
91
|
Li Y, Sang S, Ren W, Pei Y, Bian Y, Chen Y, Sun H. Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: A review (2010-2020). Eur J Med Chem 2021; 226:113874. [PMID: 34619465 DOI: 10.1016/j.ejmech.2021.113874] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which is characterized by the primary risk factor, age. Several attempts have been made to treat AD, while most of them end in failure. However, with the deepening study of pathogenesis of AD, the expression of HDAC6 in the hippocampus, which plays a major role of the memory formation, is becoming worth of notice. Neurofibrillary tangles (NFTs), a remarkable lesion in AD, has been characterized in association with the abnormal accumulation of hyperphosphorylated Tau, which is mainly caused by the high expression of HDAC6. On the other hand, the hypoacetylated tubulin induced by HDAC6 is also fatal for the neuronal transport, which is the key impact of the formation of axons and dendrites. Overall, the significantly increased expression of HDAC6 in brain regions is deleterious to neuron survival in AD patients. Based on the above research, the inhibition of HDAC6 seems to be a potential therapeutic method for the treatment of AD. Up to now, various types of HDAC6 inhibitors have been discovered. This review mainly analyzes the HDAC6 inhibitors reported amid 2010-2020 in terms of their structure, selectivity and pharmacological impact towards AD. And we aim at facilitating the design and development of better HDAC6 inhibitors in the future.
Collapse
Affiliation(s)
- Yunheng Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijie Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
92
|
Chen SX, Xiang JY, Han JX, Yang-Feng, Li HZ, Chen H, Xu M. Essential Oils from Spices Inhibit Cholinesterase Activity and Improve Behavioral Disorder in AlCl 3 Induced Dementia. Chem Biodivers 2021; 19:e202100443. [PMID: 34855291 DOI: 10.1002/cbdv.202100443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/19/2021] [Indexed: 12/06/2022]
Abstract
The chemical compositions of essential oils (EOs) prepared from six spices including cinnamon, amomum tsao-ko, cardamom, amomum, black pepper and white pepper were analyzed by gas chromatography-mass spectrometry (GC/MS), which led to identify almost 200 volatile compounds. All EOs of spices showed cholinesterase inhibitory activity. Among them, pepper EO showed most potent acetylcholinesterase (AChE) inhibitory activity with IC50 values of 8.54 μg/mL (black pepper EO) and 5.02 μg/mL (white pepper EO). Molecular docking and in vitro validation suggested that 3-carene, α-pinene and β-pinene with IC50 value of 1.73, 2.66, and 14.75 μg/mL, respectively, might be active constituents of spices oil in inhibiting AChE. Furthermore, amomum tsao-ko EO and amomum EO can improve behavioral disorder in dementia zebrafish induced by aluminum trichloride (AlCl3 ).
Collapse
Affiliation(s)
- Shu-Xia Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, P. R. China
| | - Jia-Yao Xiang
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, P. R. China
| | - Jia-Xin Han
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, P. R. China
| | - Yang-Feng
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, P. R. China
| | - Hai-Zhou Li
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, P. R. China
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, P. R. China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, P. R. China
| |
Collapse
|
93
|
Li S, Li AJ, Travers J, Xu T, Sakamuru S, Klumpp-Thomas C, Huang R, Xia M. Identification of Compounds for Butyrylcholinesterase Inhibition. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1355-1364. [PMID: 34269114 PMCID: PMC8637366 DOI: 10.1177/24725552211030897] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022]
Abstract
Butyrylcholinesterase (BChE) is a nonspecific cholinesterase enzyme that hydrolyzes choline-based esters. BChE plays a critical role in maintaining normal cholinergic function like acetylcholinesterase (AChE) through hydrolyzing acetylcholine (ACh). Selective BChE inhibition has been regarded as a viable therapeutic approach in Alzheimer's disease. As of now, a limited number of selective BChE inhibitors are available. To identify BChE inhibitors rapidly and efficiently, we have screened 8998 compounds from several annotated libraries against an enzyme-based BChE inhibition assay in a quantitative high-throughput screening (qHTS) format. From the primary screening, we identified a group of 125 compounds that were further confirmed to inhibit BChE activity, including previously reported BChE inhibitors (e.g., bambuterol and rivastigmine) and potential novel BChE inhibitors (e.g., pancuronium bromide and NNC 756), representing diverse structural classes. These BChE inhibitors were also tested for their selectivity by comparing their IC50 values in BChE and AChE inhibition assays. The binding modes of these compounds were further studied using molecular docking analyses to identify the differences between the interactions of these BChE inhibitors within the active sites of AChE and BChE. Our qHTS approach allowed us to establish a robust and reliable process to screen large compound collections for potential BChE inhibitors.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Andrew J. Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jameson Travers
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Tuan Xu
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Srilatha Sakamuru
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Carleen Klumpp-Thomas
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ruili Huang
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
94
|
Attarroshan M, Firuzi O, Iraji A, Sharifi S, Tavakkoli M, Vesal M, Khoshneviszadeh M, Pirhadi S, Edraki N. Imino-2H-Chromene Based Derivatives as Potential Anti-Alzheimer's Agents: Design, Synthesis, Biological Evaluation and in Silico Study. Chem Biodivers 2021; 19:e202100599. [PMID: 34786830 DOI: 10.1002/cbdv.202100599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022]
Abstract
A new series of imino-2H-chromene derivatives were rationally designed and synthesized as novel multifunctional agents against Alzheimer's disease. A set of phenylimino-2H-chromenes as well as the newly synthesized iminochromene derivatives were evaluated as BACE1, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) inhibitors. The results indicated that among the iminochromene set, 10c bearing fluorobenzyl moiety was the most potent BACE1 inhibitor with an IC50 value 6.31 μM. In vitro anti-cholinergic activities demonstrated that compound 10a bearing benzyl pendant was the best inhibitor of AChE (% inhibition at 30 μM=24.4) and BuChE (IC50 =3.3 μM). Kinetic analysis of compound 10a against BuChE was also performed and showed a mixed-type inhibition pattern. The neuroprotective assessment revealed that compound 11b, a phenylimino-2H-chromene derivative with hydroxyethyl moiety, provided 32.3 % protection at 25 μM against Aβ-induced PC12 neuronal cell damage. In addition, docking and simulation studies of the most potent compounds against BACE1 and BuChE confirmed the experimental results.
Collapse
Affiliation(s)
- Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrzad Sharifi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmmod Vesal
- Department of Biochemistry, Islamic Azad University, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
95
|
Maafi N, Pidaný F, Maříková J, Korábečný J, Hulcová D, Kučera T, Schmidt M, Shammari LA, Špulák M, Carmen Catapano M, Mecava M, Prchal L, Kuneš J, Janoušek J, Kohelová E, Jenčo J, Nováková L, Cahlíková L. Derivatives of montanine-type alkaloids and their implication for the treatment of Alzheimer's disease: Synthesis, biological activity and in silico study. Bioorg Med Chem Lett 2021; 51:128374. [PMID: 34555506 DOI: 10.1016/j.bmcl.2021.128374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Alzheimeŕs disease (AD) is the most common neurodegenerative disorder, characterized by neuronal loss and cognitive impairment. Currently, very few drugs are available for AD treatment, and a search for new therapeutics is urgently needed. Thus, in the current study, twenty-eight new derivatives of montanine-type Amaryllidaceae alkaloids were synthesized and evaluated for their ability to inhibit human recombinant acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE). Three derivatives (1n, 1o, and 1p) with different substitution patterns demonstrated significant selective inhibitory potency for hAChE (IC50 < 5 µM), and one analog, 1v, showed selective hBuChE inhibition activity (IC50 = 1.73 ± 0.05 µM). The prediction of CNS availability, as disclosed by the BBB score, suggests that the active compounds in this survey should be able pass through the blood-brain barrier (BBB). Cytotoxicity screening and docking studies were carried out for the two most pronounced cholinesterase inhibitors, 1n and 1v.
Collapse
Affiliation(s)
- Negar Maafi
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Filip Pidaný
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jana Maříková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic
| | - Monika Schmidt
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Latifah Al Shammari
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Marcel Špulák
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Maria Carmen Catapano
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Marko Mecava
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lukáš Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Janoušek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Eliška Kohelová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jaroslav Jenčo
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
96
|
Zaib S, Munir R, Younas MT, Kausar N, Ibrar A, Aqsa S, Shahid N, Asif TT, Alsaab HO, Khan I. Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer's Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules 2021; 26:molecules26216573. [PMID: 34770983 PMCID: PMC8587653 DOI: 10.3390/molecules26216573] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Muhammad Tayyab Younas
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
| | - Naghmana Kausar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan;
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur 22620, Pakistan;
| | - Sehar Aqsa
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Noorma Shahid
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Tahira Tasneem Asif
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (S.Z.); (R.M.); (I.K.)
| |
Collapse
|
97
|
de Oliveira A, Moreira TFM, Pepinelli ALS, Costa LGMA, Leal LE, da Silva TBV, Gonçalves OH, Porto Ineu R, Dias MI, Barros L, Abreu RMV, Ferreira ICFR, Bracht L, Leimann FV. Bioactivity screening of pinhão ( Araucaria Angustifolia (Bertol.) Kuntze) seed extracts: the inhibition of cholinesterases and α-amylases, and cytotoxic and anti-inflammatory activities. Food Funct 2021; 12:9820-9828. [PMID: 34664586 DOI: 10.1039/d1fo01163d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objective of this work was to determine the potential bioactive properties of extracts from bio-residues of pinhão (Araucaria angustifolia (Bertol.) Kuntze) seeds, namely the α-amylase and cholinesterase inhibition, cytotoxicity, and anti-inflammatory properties. The pinhão extracts evaluated were obtained from cooking water (CW) and as an ethanolic extract from residual pinhão seed shells (PS). Catechin was the major compound found in both extracts. The PS extract presented higher antioxidant levels and the better inhibition of human salivary and porcine pancreatic α-amylases when compared to the CW extract. Also, based on in vivo evaluations, the PS extract did not differ significantly from acarbose when compared to a control group. The most potent inhibitor of cholinesterases was the CW extract. No cytotoxicity toward normal cells was detected, and neither extract showed anti-inflammatory activity. The PS extract presented cytotoxic activity toward non-small-cell lung, cervical, hepatocellular and breast carcinoma cell lines. Overall, the results demonstrated the potential bioactivity of extracts obtained from pinhão bio-residues.
Collapse
Affiliation(s)
- Anielle de Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil.
| | - Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil.
| | - Ana Luisa Silva Pepinelli
- Food Department (DALIM), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil
| | - Luis Gustavo Médice Arabel Costa
- Food Department (DALIM), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil
| | - Luana Eloísa Leal
- Post-graduation Programme of Pharmaceutical Sciences, State University of Maringá, CEP 87020-900, Maringá/PR, Brazil
| | - Tamires Barlati Vieira da Silva
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil.
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil. .,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Rafael Porto Ineu
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil.
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Rui M V Abreu
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Lívia Bracht
- Post-graduation Programme of Pharmaceutical Sciences, State University of Maringá, CEP 87020-900, Maringá/PR, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil. .,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| |
Collapse
|
98
|
Active Targeted Nanoemulsions for Repurposing of Tegaserod in Alzheimer's Disease Treatment. Pharmaceutics 2021; 13:pharmaceutics13101626. [PMID: 34683919 PMCID: PMC8540544 DOI: 10.3390/pharmaceutics13101626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose: The activation of 5-HT4 receptors with agonists has emerged as a valuable therapeutic strategy to treat Alzheimer’s disease (AD) by enhancing the nonamyloidogenic pathway. Here, the potential therapeutic effects of tegaserod, an effective agent for irritable bowel syndrome, were assessed for AD treatment. To envisage its efficient repurposing, tegaserod-loaded nanoemulsions were developed and functionalized by a blood–brain barrier shuttle peptide. Results: The butyrylcholinesterase inhibitory activity of tegaserod and its neuroprotective cellular effects were highlighted, confirming the interest of this pleiotropic drug for AD treatment. In regard to its drugability profile, and in order to limit its peripheral distribution after IV administration, its encapsulation into monodisperse lipid nanoemulsions (Tg-NEs) of about 50 nm, and with neutral zeta potential characteristics, was performed. The stability of the formulation in stock conditions at 4 °C and in blood biomimetic medium was established. The adsorption on Tg-NEs of peptide-22 was realized. The functionalized NEs were characterized by chromatographic methods (SEC and C18/HPLC) and isothermal titration calorimetry, attesting the efficiency of the adsorption. From in vitro assays, these nanocarriers appeared suitable for enabling tegaserod controlled release without hemolytic properties. Conclusion: The developed peptide-22 functionalized Tg-NEs appear as a valuable tool to allow exploration of the repurposed tegaserod in AD treatment in further preclinical studies.
Collapse
|
99
|
Althobaiti NA, Menaa F, Albalawi AE, Dalzell JJ, Warnock ND, Mccammick EM, Alsolais A, Alkhaibari AM, Green BD. Assessment and Validation of Globodera pallida as a Novel In Vivo Model for Studying Alzheimer's Disease. Cells 2021; 10:2481. [PMID: 34572130 PMCID: PMC8465914 DOI: 10.3390/cells10092481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Whole transgenic or non-transgenic organism model systems allow the screening of pharmacological compounds for protective actions in Alzheimer's disease (AD). AIM In this study, a plant parasitic nematode, Globodera pallida, which assimilates intact peptides from the external environment, was investigated as a new potential non-transgenic model system of AD. Methods: Fresh second-stage juveniles of G. pallida were used to measure their chemosensory, perform immunocytochemistry on their neurological structures, evaluate their survival rate, measure reactive oxygen species, and determine total oxidized glutathione to reduced glutathione ratio (GSSG/GSH) levels, before and after treatment with 100 µM of various amyloid beta (Aβ) peptides (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16). Wild-type N2 C. elegans (strain N2) was cultured on Nematode Growth Medium and directly used, as control, for chemosensory assays. RESULTS We demonstrated that: (i) G. pallida (unlike Caenorhabditis elegans) assimilates amyloid-β (Aβ) peptides which co-localise with its neurological structures; (ii) pre-treatment with various Aβ isoforms (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16) impairs G. pallida's chemotaxis to differing extents; (iii) Aβ peptides reduced survival, increased the production of ROS, and increased GSSG/GSH levels in this model; (iv) this unique model can distinguish differences between different treatment concentrations, durations, and modalities, displaying good sensitivity; (v) clinically approved neuroprotective agents were effective in protecting G. pallida from Aβ (1-42) exposure. Taken together, the data indicate that G. pallida is an interesting in vivo model with strong potential for discovery of novel bioactive compounds with anti-AD activity.
Collapse
Affiliation(s)
- Norah A. Althobaiti
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia
| | - Farid Menaa
- Departments of Internal Medicine and Advanced Technologies, Fluorotronics-California Innovations Corporation, San Diego, CA 92037, USA
| | - Aishah E. Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.E.A.); (A.M.A.)
| | - Johnathan J. Dalzell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| | - Neil D. Warnock
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| | - Erin M. Mccammick
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| | - Abdulellah Alsolais
- Nursing Department, Faculty of Applied Health Science, Shaqra University, Al Dawadmi 17452, Saudi Arabia;
| | - Abeer M. Alkhaibari
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.E.A.); (A.M.A.)
| | - Brian D. Green
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| |
Collapse
|
100
|
Trobec T, Sepčić K, Žužek MC, Kladnik J, Podjed N, Cardoso Páscoa C, Turel I, Frangež R. Fine Tuning of Cholinesterase and Glutathione-S-Transferase Activities by Organoruthenium(II) Complexes. Biomedicines 2021; 9:biomedicines9091243. [PMID: 34572429 PMCID: PMC8467340 DOI: 10.3390/biomedicines9091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022] Open
Abstract
Cholinesterases (ChEs) show increased activities in patients with Alzheimer’s disease, and remain one of the main therapeutic targets for treatment of this neurodegenerative disorder. A library of organoruthenium(II) complexes was prepared to investigate the influence of their structural elements on inhibition of ChEs, and on another pharmacologically important group of enzymes, glutathione S-transferases (GSTs). Two groups of organoruthenium(II) compounds were considered: (i) organoruthenium(II) complexes with p-cymene as an arene ligand, and (ii) organoruthenium(II) carbonyl complexes as CO-releasing molecules. Eight organoruthenium complexes were screened for inhibitory activities against ChEs and GSTs of human and animal origins. Some compounds inhibited all of these enzymes at low micromolar concentrations, while others selectively inhibited either ChEs or GSTs. This study demonstrates the importance of the different structural elements of organoruthenium complexes for their inhibitory activities against ChEs and GSTs, and also proposes some interesting compounds for further preclinical testing as ChE or GST inhibitory drugs.
Collapse
Affiliation(s)
- Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| | - Monika Cecilija Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
| | - Jerneja Kladnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
| | - Nina Podjed
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
| | - Catarina Cardoso Páscoa
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
- NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Iztok Turel
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| |
Collapse
|