51
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
52
|
Zhao L, Sun N, Tian L, Sun Y, Chen Y, Wang X, Zhao S, Su X, Zhao D, Cheng M. Combating fluconazole-resistant fungi with novel β-azole-phenylacetone derivatives. Eur J Med Chem 2019; 183:111689. [DOI: 10.1016/j.ejmech.2019.111689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 10/26/2022]
|
53
|
Elejalde NR, Butassi E, Zacchino S, Macías MA, Portilla J. Intermolecular interaction energies and molecular conformations in N-substituted 4-aryl-2-methylimidazoles with promising in vitro antifungal activity. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2019; 75:1197-1207. [DOI: 10.1107/s2052520619013271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022]
Abstract
A convenient one-pot synthesis of 4-aryl-2-methyl-N-phenacylimidazoles (4) through a microwave-assisted pseudo-tricomponent reaction of α-bromoacetophenones (1) with acetamidine hydrochloride (2) is reported. Ketones (4) were successfully used as substrates for the preparation of the respective N-(2-hydroxyethyl)imidazoles (5) with yields up to 87%. The synthesized compounds were characterized by NMR and high-resolution mass spectrometry analyses, and several structures were confirmed and studied by single-crystal X-ray diffraction. The analysis of the whole-of-molecule interactions shows that, despite the difference in the atom–atom contacts forming the crystals, dispersion energies make the largest contribution to the formation of the solids, giving an isotropic tendency in the topology of the energy framework diagrams for pairs of molecules. In addition, the in vitro antifungal activity of both families of compounds [ketones (4) and alcohols (5)] against Candida albicans and Cryptococcus neoformans was evaluated, where the 2,4-dichlorophenyl-substituted alcohol (5f), an isomer of the drug miconazole, showed the highest activity (IC50 = 7.8 µg ml−1 against C. neoformans).
Collapse
|
54
|
Design, synthesis, and structure-activity relationship studies of l-amino alcohol derivatives as broad-spectrum antifungal agents. Eur J Med Chem 2019; 177:374-385. [DOI: 10.1016/j.ejmech.2019.05.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022]
|
55
|
Mahmoudi Y, Badali H, Hashemi SM, Ansari M, Fakhim H, Fallah M, Shokrzadeh M, Emami S. New potent antifungal triazole alcohols containing N-benzylpiperazine carbodithioate moiety: Synthesis, in vitro evaluation and in silico study. Bioorg Chem 2019; 90:103060. [PMID: 31229796 DOI: 10.1016/j.bioorg.2019.103060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/26/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
A number of 1H-1,2,4-triazole alcohols containing N-(halobenzyl)piperazine carbodithioate moiety have been designed and synthesized as potent antifungal agents. In vitro bioassays against different Candida species including C. albicans, C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis revealed that the N-(4-chlorobenzyl) derivative (6b) with MIC values of 0.063-0.5 µg/mL had the best profile of activity, being 4-32 times more potent than fluconazole. Docking simulation studies confirmed the better fitting of compound 6b in the active site of lanosterol 14α-demethylase (CYP51) enzyme, the main target of azole antifungals. Particularly, the potential of compound 6b against fluconazole-resistant isolates along with its minimal toxicity against human erythrocytes and HepG2 cells make this prototype compound as a good lead for discovery of potent and safe antifungal agents.
Collapse
Affiliation(s)
- Yaser Mahmoudi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Department of Medical Mycology/Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Ansari
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Fakhim
- Department of Medical Parasitology & Mycology/Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
56
|
Emami S, Ghobadi E, Saednia S, Hashemi SM. Current advances of triazole alcohols derived from fluconazole: Design, in vitro and in silico studies. Eur J Med Chem 2019; 170:173-194. [DOI: 10.1016/j.ejmech.2019.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/13/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
|
57
|
Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur J Med Chem 2019; 168:357-372. [DOI: 10.1016/j.ejmech.2019.02.055] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 01/07/2023]
|
58
|
Keighobadi M, Emami S, Fakhar M, Shokri A, Mirzaei H, Hosseini Teshnizi S. Repurposing azole antifungals into antileishmanials: Novel 3-triazolylflavanones with promising in vitro antileishmanial activity against Leishmania major. Parasitol Int 2018; 69:103-109. [PMID: 30582997 DOI: 10.1016/j.parint.2018.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Previously, we have described a series of azole antifungals namely 3-(1,2,4-triazol-1-yl)flavanones (TFs) containing an N-(phenethyl)azole framework required for sterol 14α-demethylase (CYP51) inhibitory activity. Similar mechanism of action of azoles in fungi and protozoan parasites prompted us to investigate the potential effects of TFs against promastigote and amastigote forms of Leishmania major (L. major), as well as their toxicity against macrophages, apoptosis induction and in silico interactions with the target enzyme. All compounds showed more potent anti-parasitic activity against L. major in comparison with reference azole drug fluconazole and standard antileishmanial agent glucantime. Among the tested compounds, the 4-chloro derivative (TF-2) was found to be the most potent one, being about 13 times more potent than fluconazole against promastigotes. TF-2 decreased both mean infection rate of macrophages (MIR) and mean number of amastigotes per macrophages (MNAPM), significantly more than fluconazole (P < .001). Furthermore, the cytotoxicity assay against J774.A.1 macrophages revealed that this compound displays high selectivity against amastigotes over macrophages (SI = 30.21). The in silico study showed that TF-2 can properly accommodated in the active site of parasitic CYP51 and coordinated to the heme. The SAR analysis showed that the introduction of 4-chloro on 2-phenyl moiety results in the best profile of activity and selectivity. Accordingly, the compound TF-2 prototype can be considered as promising candidate for development of new antileishmanial agents.
Collapse
Affiliation(s)
- Masoud Keighobadi
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mahdi Fakhar
- Pediatric Infectious Diseases Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Azar Shokri
- Student Research Committee, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hassan Mirzaei
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Hosseini Teshnizi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
59
|
Martins RC, Dorneles GP, Teixeira VON, Antonello AM, Couto JL, Rodrigues Júnior LC, Monteiro MC, Peres A, Schrekker HS, Romão PRT. Imidazolium salts as innovative agents against Leishmania amazonensis. Int Immunopharmacol 2018; 63:101-109. [DOI: 10.1016/j.intimp.2018.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
|
60
|
Synthesis and Biological Activity of Sterol 14α-Demethylase and Sterol C24-Methyltransferase Inhibitors. Molecules 2018; 23:molecules23071753. [PMID: 30018257 PMCID: PMC6099924 DOI: 10.3390/molecules23071753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 11/17/2022] Open
Abstract
Sterol 14α-demethylase (SDM) is essential for sterol biosynthesis and is the primary molecular target for clinical and agricultural antifungals. SDM has been demonstrated to be a valid drug target for antiprotozoal therapies, and much research has been focused on using SDM inhibitors to treat neglected tropical diseases such as human African trypanosomiasis (HAT), Chagas disease, and leishmaniasis. Sterol C24-methyltransferase (24-SMT) introduces the C24-methyl group of ergosterol and is an enzyme found in pathogenic fungi and protozoa but is absent from animals. This difference in sterol metabolism has the potential to be exploited in the development of selective drugs that specifically target 24-SMT of invasive fungi or protozoa without adversely affecting the human or animal host. The synthesis and biological activity of SDM and 24-SMT inhibitors are reviewed herein.
Collapse
|
61
|
Shokri A, Abastabar M, Keighobadi M, Emami S, Fakhar M, Teshnizi SH, Makimura K, Rezaei-Matehkolaei A, Mirzaei H. Promising antileishmanial activity of novel imidazole antifungal drug luliconazole against Leishmania major: In vitro and in silico studies. J Glob Antimicrob Resist 2018; 14:260-265. [PMID: 29793051 DOI: 10.1016/j.jgar.2018.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Pentavalent antimonials have been used for the treatment of leishmaniasis for over 70 years, however they are limited by their toxicity. Unfortunately, the efficacy of first-line drugs for the treatment of leishmaniasis has decreased and resistance is noticeable. Luliconazole is a new azole with unique effects on fungi that has not yet been tested on Leishmania parasites. METHODS In this study, the cytotoxicity and antileishmanial activity of luliconazole were evaluated in vitro against promastigotes and intracellular amastigotes of Leishmania major. The docking simulation with the target enzyme, sterol 14α-demethylase (CYP51) was performed using AutoDock 4.2 program. RESULTS The IC50 (concentration of test compound required for 50% inhibition) against promastigotes revealed that luliconazole (IC50=0.19μM) has greater potency than ketoconazole (KET), meglumine antimoniate (MA) and amphotericin B (AmB) (IC50 values of 135, 538 and 2.52μM, respectively). Against the amastigote stage, luliconazole at a concentration of 0.07μM decreased the mean infection rate and the mean number of amastigotes per macrophage more effectively than MA (P<0.004) and KET (P<0.043), but there was no difference compared with AmB (P>0.05). A docking study of luliconazole with the cytochrome P450 enzyme sterol 14α-demethylase (CYP51) revealed that this azole drug can properly interact with the target enzyme in Leishmania mainly via coordination with heme and multiple hydrophobic interactions. CONCLUSION These results show the potent activity of luliconazole at extremely low concentrations against L. major. It may therefore be considered as a new candidate for treatment of leishmaniasis in the near future.
Collapse
Affiliation(s)
- Azar Shokri
- Molecular and Cell Biology Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center (IFRC), Department of Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Keighobadi
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Molecular and Cell Biology Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Saeed Hosseini Teshnizi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Koichi Makimura
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Ali Rezaei-Matehkolaei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Mirzaei
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
62
|
Elejalde N, Macías M, Castillo J, Sortino M, Svetaz L, Zacchino S, Portilla J. Synthesis and
in vitro
Antifungal Evaluation of Novel
N
‐Substituted 4‐Aryl‐2‐methylimidazoles. ChemistrySelect 2018. [DOI: 10.1002/slct.201801238] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nerith‐Rocio Elejalde
- Departamento de QuímicaUniversidad de los Andes Carrera 1 N° 18 A-12, Bogotá Colombia
| | - Mario Macías
- Departamento de QuímicaUniversidad de los Andes Carrera 1 N° 18 A-12, Bogotá Colombia
| | - Juan‐Carlos Castillo
- Departamento de QuímicaUniversidad de los Andes Carrera 1 N° 18 A-12, Bogotá Colombia
| | - Maximiliano Sortino
- Pharmacognosy AreaFaculty of Biochemical and Pharmaceutical Sciences.Universidad Nacional de Rosario Suipacha 531 2000-Rosario Argentina
| | - Laura Svetaz
- Pharmacognosy AreaFaculty of Biochemical and Pharmaceutical Sciences.Universidad Nacional de Rosario Suipacha 531 2000-Rosario Argentina
| | - Susana Zacchino
- Pharmacognosy AreaFaculty of Biochemical and Pharmaceutical Sciences.Universidad Nacional de Rosario Suipacha 531 2000-Rosario Argentina
| | - Jaime Portilla
- Departamento de QuímicaUniversidad de los Andes Carrera 1 N° 18 A-12, Bogotá Colombia
| |
Collapse
|
63
|
Borsari C, Quotadamo A, Ferrari S, Venturelli A, Cordeiro-da-Silva A, Santarem N, Costi MP. Scaffolds and Biological Targets Avenue to Fight Against Drug Resistance in Leishmaniasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
64
|
Thamban Chandrika N, Shrestha SK, Ngo HX, Tsodikov OV, Howard KC, Garneau-Tsodikova S. Alkylated Piperazines and Piperazine-Azole Hybrids as Antifungal Agents. J Med Chem 2017; 61:158-173. [PMID: 29256601 DOI: 10.1021/acs.jmedchem.7b01138] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extensive use of fluconazole (FLC) and other azole drugs has caused the emergence and rise of azole-resistant fungi. The fungistatic nature of FLC in combination with toxicity concerns have resulted in an increased demand for new azole antifungal agents. Herein, we report the synthesis and antifungal activity of novel alkylated piperazines and alkylated piperazine-azole hybrids, their time-kill studies, their hemolytic activity against murine erythrocytes, as well as their cytotoxicity against mammalian cells. Many of these molecules exhibited broad-spectrum activity against all tested fungal strains, with excellent minimum inhibitory concentration (MIC) values against non-albicans Candida and Aspergillus strains. The most promising compounds were found to be less hemolytic than the FDA-approved antifungal agent voriconazole (VOR). Finally, we demonstrate that the synthetic alkylated piperazine-azole hybrids do not function by fungal membrane disruption, but instead by disruption of the ergosterol biosynthetic pathway via inhibition of the 14α-demethylase enzyme present in fungal cells.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Sanjib K Shrestha
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Huy X Ngo
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Kaitlind C Howard
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
65
|
Lepesheva G, Christov P, Sulikowski GA, Kim K. A convergent, scalable and stereoselective synthesis of azole CYP51 inhibitors. Tetrahedron Lett 2017; 58:4248-4250. [PMID: 29371747 DOI: 10.1016/j.tetlet.2017.09.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study and development of azole-based CYP51 inhibitors is an active area of research across disciplines of biochemistry, pharmacology and infectious disease. Support of in vitro and in vivo studies require the development of robust asymmetric routes to single enantiomer products of this class of compounds. Herein, we describe a scalable and enantioselective synthesis to VNI and VFV, the two potent inhibitors of protozoan sterol 14α-demethylase (CYP51) that are currently under consideration for clinical trials for Chagas disease. A key transformation is the Jacobsen Hydrolytic Kinetic Resolution (HKR) reaction. The utility of the synthetic route is illustrated by the preparation of >25 g quantities of single enantiomers of VNI and VFV.
Collapse
Affiliation(s)
- Galina Lepesheva
- Departments of Chemistry and Biochemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 77842-3012, USA
| | - Plamen Christov
- Departments of Chemistry and Biochemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 77842-3012, USA
| | - Gary A Sulikowski
- Departments of Chemistry and Biochemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 77842-3012, USA
| | - Kwangho Kim
- Departments of Chemistry and Biochemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 77842-3012, USA
| |
Collapse
|