51
|
Porta EOJ, Kalesh K, Steel PG. Navigating drug repurposing for Chagas disease: advances, challenges, and opportunities. Front Pharmacol 2023; 14:1233253. [PMID: 37576826 PMCID: PMC10416112 DOI: 10.3389/fphar.2023.1233253] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Chagas disease is a vector-borne illness caused by the protozoan parasite Trypanosoma cruzi (T. cruzi). It poses a significant public health burden, particularly in the poorest regions of Latin America. Currently, there is no available vaccine, and chemotherapy has been the traditional treatment for Chagas disease. However, the treatment options are limited to just two outdated medicines, nifurtimox and benznidazole, which have serious side effects and low efficacy, especially during the chronic phase of the disease. Collectively, this has led the World Health Organization to classify it as a neglected disease. To address this problem, new drug regimens are urgently needed. Drug repurposing, which involves the use of existing drugs already approved for the treatment of other diseases, represents an increasingly important option. This approach offers potential cost reduction in new drug discovery processes and can address pharmaceutical bottlenecks in the development of drugs for Chagas disease. In this review, we discuss the state-of-the-art of drug repurposing approaches, including combination therapy with existing drugs, to overcome the formidable challenges associated with treating Chagas disease. Organized by original therapeutic area, we describe significant recent advances, as well as the challenges in this field. In particular, we identify candidates that exhibit potential for heightened efficacy and reduced toxicity profiles with the ultimate objective of accelerating the development of new, safe, and effective treatments for Chagas disease.
Collapse
Affiliation(s)
| | - Karunakaran Kalesh
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Darlington, United Kingdom
| | - Patrick G. Steel
- Department of Chemistry, Durham University, Durham, United Kingdom
| |
Collapse
|
52
|
Hsu CY, Yang WT, Lin JH, Lu CH, Hu KC, Lan TH, Chang CC. Sertindole, an Antipsychotic Drug, Curbs the STAT3/BCL-xL Axis to Elicit Human Bladder Cancer Cell Apoptosis In Vitro. Int J Mol Sci 2023; 24:11852. [PMID: 37511611 PMCID: PMC10380261 DOI: 10.3390/ijms241411852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Bladder cancer is the leading urinary tract malignancy. Epidemiological evidence has linked lower cancer incidence in schizophrenia patients to long-term medication, highlighting the anticancer potential of antipsychotics. Sertindole is an atypical antipsychotic agent with reported anticancer action on breast and gastric cancers. Yet, sertindole's effect on bladder cancer remains unaddressed. We herein present the first evidence of sertindole's antiproliferative effect and mechanisms of action on human bladder cancer cells. Sertindole was cytotoxic against bladder cancer cells while less cytotoxic to normal urothelial cells. Apoptosis was a primary cause of sertindole's cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk rescued cells from sertindole-induced killing. Mechanistically, sertindole inhibited the activation of signal transducer and activator of transcription 3 (STAT3), an oncogenic driver of bladder cancer, as sertindole lowered the levels of tyrosine 705-phosphorylated STAT3 along with that of STAT3's target gene BCL-xL. Notably, ectopic expression of the dominant-active STAT3 mutant impaired sertindole-induced apoptosis in addition to restoring BCL-xL expression. Moreover, bladder cancer cells overexpressing BCL-xL were refractory to sertindole's proapoptotic action, arguing that sertindole represses STAT3 to downregulate BCL-xL, culminating in the induction of apoptosis. Overall, the current study indicated sertindole exerts bladder cancer cytotoxicity by provoking apoptosis through targeted inhibition of the antiapoptotic STAT3/BCL-xL signaling axis. These findings implicate the potential to repurpose sertindole as a therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 435403, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Wei-Ting Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Ju-Hwa Lin
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Chien-Hsing Lu
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Kai-Cheng Hu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou 542019, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institute, Miaoli 350401, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Graduate Institute of Biomedical Sciences, Rong Hsing Translational Medicine Research Center, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
53
|
Słoka J, Madej M, Strzalka-Mrozik B. Molecular Mechanisms of the Antitumor Effects of Mesalazine and Its Preventive Potential in Colorectal Cancer. Molecules 2023; 28:5081. [PMID: 37446747 DOI: 10.3390/molecules28135081] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chemoprevention is one of the ways to fight colorectal cancer, which is a huge challenge in oncology. Numerous pieces of evidence indicate that chronic inflammation in the course of Crohn's disease or ulcerative colitis (UC) is a significant cancer risk factor. Epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), including mesalazine, has beneficial effects on colitis-associated colorectal cancer. Mesalazine is a first-line therapy for UC and is also widely used for maintaining remission in UC. Data showed that mesalazine has antiproliferative properties associated with cyclooxygenase (COX) inhibition but can also act through COX-independent pathways. This review summarizes knowledge about mesalazine's molecular mechanisms of action and chemopreventive effect by which it could interfere with colorectal cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Joanna Słoka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
54
|
Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E, Vicente-Romero J. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers (Basel) 2023; 15:cancers15112972. [PMID: 37296934 DOI: 10.3390/cancers15112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Quality pharmacological treatment can improve survival in many types of cancer. Drug repurposing offers advantages in comparison with traditional drug development procedures, reducing time and risk. This systematic review identified the most recent randomized controlled clinical trials that focus on drug repurposing in oncology. We found that only a few clinical trials were placebo-controlled or standard-of-care-alone-controlled. Metformin has been studied for potential use in various types of cancer, including prostate, lung, and pancreatic cancer. Other studies assessed the possible use of the antiparasitic agent mebendazole in colorectal cancer and of propranolol in multiple myeloma or, when combined with etodolac, in breast cancer. We were able to identify trials that study the potential use of known antineoplastics in other non-oncological conditions, such as imatinib for severe coronavirus disease in 2019 or a study protocol aiming to assess the possible repurposing of leuprolide for Alzheimer's disease. Major limitations of these clinical trials were the small sample size, the high clinical heterogeneity of the participants regarding the stage of the neoplastic disease, and the lack of accounting for multimorbidity and other baseline clinical characteristics. Drug repurposing possibilities in oncology must be carefully examined with well-designed trials, considering factors that could influence prognosis.
Collapse
Affiliation(s)
- Ignatios Ioakeim-Skoufa
- WHO Collaborating Centre for Drug Statistics Methodology, Department of Drug Statistics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, NO-0213 Oslo, Norway
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Natalia Tobajas-Ramos
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Enrica Menditto
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Mercedes Aza-Pascual-Salcedo
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Primary Care Pharmacy Service Zaragoza III, Aragon Health Service (SALUD), ES-50017 Zaragoza, Spain
| | - Antonio Gimeno-Miguel
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
| | - Valentina Orlando
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Francisca González-Rubio
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
| | - Ana Fanlo-Villacampa
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Carmen Lasala-Aza
- Pharmacy Service, Virgen de la Victoria University Hospital, ES-29010 Malaga, Spain
| | - Ewelina Ostasz
- Rehabilitation Centre Vikersund Bad AS, NO-3370 Vikersund, Norway
| | - Jorge Vicente-Romero
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| |
Collapse
|
55
|
Cabral VP, Rodrigues DS, Barbosa AD, Moreira LE, Sá LG, Silva CR, Neto JB, Silva J, Marinho ES, Santos HS, Cavalcanti BC, Moraes MO, Júnior HV. Antibacterial activity of paroxetine against Staphylococcus aureus and possible mechanisms of action. Future Microbiol 2023; 18:415-426. [PMID: 37213136 DOI: 10.2217/fmb-2022-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/09/2023] [Indexed: 05/23/2023] Open
Abstract
Aim: To evaluate the antibacterial activity of paroxetine alone and associated with oxacillin against isolates of methicillin-sensitive and -resistant Staphylococcus aureus. Materials & methods: The broth microdilution and checkerboard techniques were used, with investigation of possible mechanisms of action through flow cytometry, fluorescence microscopy and molecular docking, in addition to scanning electron microscopy for morphological analysis. Results: Paroxetine showed a MIC of 64 μg/ml and bactericidal activity, mostly additive interactions in combination with oxacillin, evidence of action on genetic material and membrane, morphological changes in microbial cells and influence on virulence factors. Conclusion: Paroxetine has antibacterial potential from the perspective of drug repositioning.
Collapse
Affiliation(s)
- Vitória Pf Cabral
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Daniel S Rodrigues
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Amanda D Barbosa
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Lara Ea Moreira
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Lívia Gav Sá
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
- Centro Universitário Christus (UNICHRISTUS), Fortaleza, CE, Brasil
| | - Cecília R Silva
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - João Ba Neto
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
- Centro Universitário Christus (UNICHRISTUS), Fortaleza, CE, Brasil
| | - Jacilene Silva
- Departamento de Química, Grupo de Química Teórica e Eletroquímica (GQTE), Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, CEP: 62.930-000, Brasil
| | - Emmanuel S Marinho
- Departamento de Química, Grupo de Química Teórica e Eletroquímica (GQTE), Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, CEP: 62.930-000, Brasil
| | - Hélcio S Santos
- Centro de Ciência e Tecnologia, Curso de Química, Universidade Estadual Vale do Acaraú, Sobral, CE, CEP: 62.040-370, Brasil
| | - Bruno C Cavalcanti
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Manoel O Moraes
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| | - Hélio Vn Júnior
- Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-372, Brasil
- Centro de Pesquisa e Desenvolvimento de Fármacos (NPDM), Universidade Federal do Ceará, Fortaleza, CE, CEP: 60.430-275, Brasil
| |
Collapse
|
56
|
Hu S, Chen J, Cao JX, Zhang SS, Gu SX, Chen FE. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities. Bioorg Chem 2023; 136:106549. [PMID: 37119785 DOI: 10.1016/j.bioorg.2023.106549] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.
Collapse
Affiliation(s)
- Sha Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiong Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xu Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Fen-Er Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
57
|
Gharibi Z, Shahbazi B, Gouklani H, Nassira H, Rezaei Z, Ahmadi K. Computational screening of FDA-approved drugs to identify potential TgDHFR, TgPRS, and TgCDPK1 proteins inhibitors against Toxoplasma gondii. Sci Rep 2023; 13:5396. [PMID: 37012275 PMCID: PMC10070243 DOI: 10.1038/s41598-023-32388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is one of the most successful parasites in the world, because about a third of the world's population is seropositive for toxoplasmosis. Treatment regimens for toxoplasmosis have remained unchanged for the past 20 years, and no new drugs have been introduced to the market recently. This study, performed molecular docking to identify interactions of FDA-approved drugs with essential residues in the active site of proteins of T. gondii Dihydrofolate Reductase (TgDHFR), Prolyl-tRNA Synthetase (TgPRS), and Calcium-Dependent Protein Kinase 1 (TgCDPK1). Each protein was docked with 2100 FDA-approved drugs using AutoDock Vina. Also, the Pharmit software was used to generate pharmacophore models based on the TgDHFR complexed with TRC-2533, TgPRS in complex with halofuginone, and TgCDPK1 in complex with a bumped kinase inhibitor, RM-1-132. Molecular dynamics (MD) simulation was also performed for 100 ns to verify the stability of interaction in drug-protein complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis evaluated the binding energy of selected complexes. Ezetimibe, Raloxifene, Sulfasalazine, Triamterene, and Zafirlukast drugs against the TgDHFR protein, Cromolyn, Cefexim, and Lactulose drugs against the TgPRS protein, and Pentaprazole, Betamethasone, and Bromocriptine drugs against TgCDPK1 protein showed the best results. These drugs had the lowest energy-based docking scores and also stable interactions based on MD analyses with TgDHFR, TgPRS, and TgCDPK1 drug targets that can be introduced as possible drugs for laboratory investigations to treat T. gondii parasite infection.
Collapse
Affiliation(s)
- Zahra Gharibi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hoda Nassira
- Polymer Division, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
58
|
Pandey SK, Anand U, Siddiqui WA, Tripathi R. Drug Development Strategies for Malaria: With the Hope for New Antimalarial Drug Discovery—An Update. Adv Med 2023; 2023:5060665. [PMID: 36960081 PMCID: PMC10030226 DOI: 10.1155/2023/5060665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Malaria continued to be a deadly situation for the people of tropical and subtropical countries. Although there has been a marked reduction in new cases as well as mortality and morbidity rates in the last two decades, the reporting of malaria caused 247 million cases and 619000 deaths worldwide in 2021, according to the WHO (2022). The development of drug resistance and declining efficacy against most of the antimalarial drugs/combination in current clinical practice is a big challenge for the scientific community, and in the absence of an effective vaccine, the problem becomes worse. Experts from various research organizations worldwide are continuously working hard to stop this disaster by employing several strategies for the development of new antimalarial drugs/combinations. The current review focuses on the history of antimalarial drug discovery and the advantages, loopholes, and opportunities associated with the common strategies being followed for antimalarial drug development.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- 1Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uttpal Anand
- 2Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Waseem A. Siddiqui
- 3Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Renu Tripathi
- 4Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
59
|
Adachi T, El-Hattab AW, Jain R, Nogales Crespo KA, Quirland Lazo CI, Scarpa M, Summar M, Wattanasirichaigoon D. Enhancing Equitable Access to Rare Disease Diagnosis and Treatment around the World: A Review of Evidence, Policies, and Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4732. [PMID: 36981643 PMCID: PMC10049067 DOI: 10.3390/ijerph20064732] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
This document provides a comprehensive summary of evidence on the current situation of rare diseases (RDs) globally and regionally, including conditions, practices, policies, and regulations, as well as the challenges and barriers faced by RD patients, their families, and caregivers. The document builds on a review of academic literature and policies and a process of validation and feedback by a group of seven experts from across the globe. Panelists were selected based on their academic merit, expertise, and knowledge regarding the RD environment. The document is divided into five main sections: (1) methodology and objective; (2) background and context; (3) overview of the current situation and key challenges related to RDs covering six dimensions: burden of disease, patient journey, social impact, disease management, RD-related policies, and research and development; (4) recommendations; and (5) conclusions. The recommendations are derived from the discussion undertaken by the experts on the findings of this review and provide a set of actionable solutions to the challenges and barriers to improving access to RD diagnosis and treatment around the world. The recommendations can support critical decision-making, guiding efforts by a broad range of RDs stakeholders, including governments, international organizations, manufacturers, researchers, and patient advocacy groups.
Collapse
Affiliation(s)
- Takeya Adachi
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Medical Regulatory Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- United Japanese-Researchers Around-the-World (UJA), Isehara 259-1143, Japan
| | - Ayman W. El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- MENA (Middle East and North Africa) Organization for Rare Diseases, Dubai 500767, United Arab Emirates
- Department of Pediatrics, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
| | - Ritu Jain
- Dystrophic Epidermolysis Bullosa Research Association (DEBRA), Singapore 059811, Singapore
- Asia Pacific Alliance of Rare Disease Organizations (APARDO), Singapore 188976, Singapore
- Language and Communication Centre, School of Humanities and Social Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Camila I. Quirland Lazo
- Health Technology Assessment Unit, Cancer Research Department, Arturo López Perez Foundation, Santiago 7500921, Chile
- School of Medicine, Universitat Autònoma de Barcelona, 080193 Barcelona, Spain
- Faculty of Pharmaceutical and Chemical Sciences, University of Chile, Santiago 8380000, Chile
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases (MetabERN), 33100 Udine, Italy
- Regional Coordinating Center for Rare Diseases Friuli Venezia Giulia, Udine University Hospital, 33100 Udine, Italy
- Brains for Brain Foundation, 35128 Padova, Italy
| | - Marshall Summar
- The Translational Science Training Program, National Institutes of Health (NIH), Maryland, MD 20814, USA
- Children’s National Medical Centre, Washington, DC 20010, USA
- National Organization for Rare Disorders (NORD), Quincy, MA 02169, USA
- Children’s National Rare Disease Institute, Washington, DC 20012, USA
- Department of Pediatrics, George Washington University, Washington, DC 20052, USA
| | - Duangrurdee Wattanasirichaigoon
- Thai Rare Disease Foundation (ThaiRDF), Bangkok 10230, Thailand
- Prader-Willi Syndrome Association (PWSA) of Thailand, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Rare Disease Working Committee, Thai National Health Security Office (NHSO), Bangkok 10210, Thailand
- Sub-Working Committee for Rare Disease Medicine, Thailand National List of Essential Medicines (NLEM), National Drug Policy Division, Food and Drug Administration, Nonthaburi 11000, Thailand
- Medical Genetics Network, Genetics Society of Thailand, Bangkok 10330, Thailand
- Thailand Medical Genetics and Genomics Association (TMGGA), Bangkok 10510, Thailand
- Asia Pacific Society of Human Genetics (APSHG), Singapore 229899, Singapore
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
60
|
Battini V, Rocca S, Guarnieri G, Bombelli A, Gringeri M, Mosini G, Pozzi M, Nobile M, Radice S, Clementi E, Schindler A, Carnovale C, Pizzorni N. On the potential of drug repurposing in dysphagia treatment: New insights from a real-world pharmacovigilance study and a systematic review. Front Pharmacol 2023; 14:1057301. [PMID: 36937893 PMCID: PMC10022593 DOI: 10.3389/fphar.2023.1057301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Polypharmacy is common in patients with dysphagia. Routinely used drugs may influence swallowing function either improving or worsening it. We aimed to explore the potential effects of three commonly used drug classes on dysphagia and aspiration pneumonia through a systematic review and a real-world data analysis to probe the possibility of drug repurposing for dysphagia treatment. Material and Methods: Five electronic databases were searched. Studies on adults at risk for dysphagia, treated with Dipeptidyl-Peptidase IV Inhibitors (DPP-4i), Adrenergic Beta-Antagonists (beta-blockers), or Angiotensin-Converting Enzyme Inhibitors (ACEi), and reporting outcomes on dysphagia or aspiration pneumonia were included. A nested case/non-case study was performed on adverse events recorded in the FDA Adverse Event Reporting System (FAERS) on patients >64 years. Cases (dysphagia or aspiration pneumonia) were compared between patients only treated with Levodopa and patients who were concomitantly treated with the drugs of interest. Results: Twenty studies were included in the review (17 on ACEi, 2 on beta-blockers, and 1 on DPP-4i). Contrasting findings on the effects of ACEi were found, with a protective effect mainly reported in Asian studies on neurological patients. Beta-blockers were associated with a reduced dysphagia rate. The study on DPP-4i suggested no effect on dysphagia and an increased risk of aspiration pneumonia. The FAERS analysis showed a reduction of the risk for dysphagia/aspiration pneumonia with ACEi, beta-blockers, and DPP-4i. Conclusion: Our study explores the potential drug repurposing of ACEi, beta-blockers and DPP-4i in neurological patients with dysphagia to improve swallowing function and reduce aspiration pneumonia risk. Future randomized controlled studies should confirm these results and clarify the underlying mechanisms of action.
Collapse
Affiliation(s)
- Vera Battini
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Sara Rocca
- Phoniatric Unit, Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Greta Guarnieri
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Anna Bombelli
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Michele Gringeri
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mosini
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini(LC), Italy
| | - Maria Nobile
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini(LC), Italy
| | - Sonia Radice
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini(LC), Italy
| | - Antonio Schindler
- Phoniatric Unit, Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Nicole Pizzorni
- Phoniatric Unit, Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
61
|
De Vita S, Chini MG, Bifulco G, Lauro G. Target identification by structure-based computational approaches: Recent advances and perspectives. Bioorg Med Chem Lett 2023; 83:129171. [PMID: 36739998 DOI: 10.1016/j.bmcl.2023.129171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The use of computational techniques in the early stages of drug discovery has recently experienced a boost, especially in the target identification step. Finding the biological partner(s) for new or existing synthetic and/or natural compounds by "wet" approaches may be challenging; therefore, preliminary in silico screening is even more recommended. After a brief overview of some of the most known target identification techniques, recent advances in structure-based computational approaches for target identification are reported in this digest, focusing on Inverse Virtual Screening and its recent applications. Moreover, future perspectives concerning the use of such methodologies, coupled or not with other approaches, are analyzed.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
| |
Collapse
|
62
|
Liu J, Lei X, Zhang Y, Pan Y. The prediction of molecular toxicity based on BiGRU and GraphSAGE. Comput Biol Med 2023; 153:106524. [PMID: 36623439 DOI: 10.1016/j.compbiomed.2022.106524] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
The prediction of molecules toxicity properties plays an crucial role in the realm of the drug discovery, since it can swiftly screen out the expected drug moleculars. The conventional method for predicting toxicity is to use some in vivo or in vitro biological experiments in the laboratory, which can easily pose a threat significant time and financial waste and even ethical issues. Therefore, using computational approaches to predict molecular toxicity has become a common strategy in modern drug discovery. In this article, we propose a novel model named MTBG, which primarily makes use of both SMILES (Simplified molecular input line entry system) strings and graph structures of molecules to extract drug molecular feature in the field of drug molecular toxicity prediction. To verify the performance of the MTBG model, we opt the Tox21 dataset and several widely used baseline models. Experimental results demonstrate that our model can perform better than these baseline models.
Collapse
Affiliation(s)
- Jianping Liu
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
63
|
Deplanque D, Fetro C, Ferry A, Lechat P, Beghyn T, Bernard C, Bernasconi A, Bienayme H, Cougoule C, Del Bano J, Demiot C, Lebrun-Vignes B. Repositionnement des médicaments : de la découverte d’un effet pharmacologique utile à la mise à disposition du traitement pour le patient. Therapie 2023; 78:1-9. [PMID: 36564262 DOI: 10.1016/j.therap.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Dominique Deplanque
- Université Lille, Inserm, CHU Lille, centre d'investigation clinique (CIC) 1403, 59000 Lille, France.
| | | | | | - Philippe Lechat
- Université Paris-cité, service de pharmacologie et toxicologie, hôpital européen Georges-Pompidou, 75015 Paris, France; Agence générale des équipements et des produits de santé (AGEPS), Assistance publique-Hôpitaux de Paris, 75005 Paris, France
| | - Terence Beghyn
- APTEEUS SAS, campus Institut Pasteur, 59000 Lille, France
| | - Claude Bernard
- Agence générale des équipements et des produits de santé (AGEPS), Assistance publique-Hôpitaux de Paris, 75005 Paris, France
| | | | | | - Céline Cougoule
- Institut de pharmacologie et de biologie structurale (IPBS), université de Toulouse, CNRS, université Toulouse III - Paul-Sabatier (UPS), 31400 Toulouse, France
| | - Joanie Del Bano
- Aix-Marseille université, AP-HM, Inserm, DHUNE, Inst Neurosci Syst, service de pharmacologie clinique et pharmacovigilance, Thelonius Mind, 13000 Marseille, France
| | - Claire Demiot
- UR 20218-NeurIT, faculties of medicine and pharmacy, university of Limoges, 87025 Limoges, France
| | - Bénédicte Lebrun-Vignes
- Service de pharmacologie et centre régional de pharmacovigilance, hôpital Pitié-Salpêtrière, groupe hospitalier, AP-HP, Sorbonne université, 75013 Paris, France
| |
Collapse
|
64
|
Deplanque D, Fetro C, Ferry A, Lechat P, Beghyn T, Bernard C, Bernasconi A, Bienayme H, Cougoule C, Del Bano J, Demiot C, Lebrun-Vignes B. Drug repurposing: From the discovery of a useful pharmacological effect to making the treatment available to the patient. Therapie 2023; 78:10-18. [PMID: 36528417 DOI: 10.1016/j.therap.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022]
Abstract
The repurposing of a medicine already on the market to a new indication could be an opportunity to respond rapidly to a therapeutic need not yet covered, particularly in the context of rare and neglected diseases, or health emergencies. However, at each stage, difficulties may arise that will prevent the repurposed drug from being provided to patients. Beyond fortuity or a systematic strategy to detect a useful pharmacological effect, the implementation of the preclinical and clinical stages is sometimes complicated by the difficulty of accessing the molecule and its pharmaceutical data. Furthermore, relevant clinical results will not always be sufficient to ensure that a marketing authorisation is obtained or that patients receive satisfactory care. In addition to describing these various obstacles, the round table provided an opportunity to put forward recommendations for overcoming them, in particular the creation of a public-private partnership structure with sufficient funding to be able to offer individualised support for projects up to and including the marketing application.
Collapse
Affiliation(s)
- Dominique Deplanque
- Université Lille, Inserm, CHU Lille, centre d'investigation clinique (CIC) 1403, 59000 Lille, France.
| | | | | | - Philippe Lechat
- Université Paris-cité, service de pharmacologie et toxicologie, hôpital européen Georges-Pompidou, 75015 Paris, France; Agence générale des équipements et des produits de santé (AGEPS), Assistance publique-Hôpitaux de Paris, 75005 Paris, France
| | - Terence Beghyn
- APTEEUS SAS, campus Institut Pasteur, 59000 Lille, France
| | - Claude Bernard
- Agence générale des équipements et des produits de santé (AGEPS), Assistance publique-Hôpitaux de Paris, 75005 Paris, France
| | | | | | - Céline Cougoule
- Institut de pharmacologie et de biologie structurale (IPBS), université de Toulouse, CNRS, université Toulouse III - Paul-Sabatier (UPS), 31400 Toulouse, France
| | - Joanie Del Bano
- Aix-Marseille université, AP-HM, Inserm, DHUNE, Inst Neurosci Syst, service de pharmacologie clinique et pharmacovigilance, Thelonius Mind, 13000 Marseille, France
| | - Claire Demiot
- UR 20218-NeurIT, faculties of medicine and pharmacy, university of Limoges, 87025 Limoges, France
| | - Bénédicte Lebrun-Vignes
- Service de pharmacologie et centre régional de pharmacovigilance, hôpital Pitié-Salpêtrière, groupe hospitalier, AP-HP, Sorbonne université, 75013 Paris, France
| |
Collapse
|
65
|
Pyridyl Methylsulfinyl Benzimidazole Derivatives as Promising Agents against Giardia lamblia and Trichomonas vaginalis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248902. [PMID: 36558035 PMCID: PMC9781444 DOI: 10.3390/molecules27248902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Protozoan parasites, such as Giardia lamblia and Trichomonas vaginalis, cause the most prevalent infections in humans in developing countries and provoke significant morbidity and mortality in endemic countries. Despite its side-effects, metronidazole is still the drug of choice as a giardiacidal and trichomonacidal tissue-active agent. However, the emergence of metronidazole resistance and its evolved strategies of parasites to evade innate host defenses have hindered the identification and development of new therapeutic strategies against these parasites. Here, we tested five synthesized benzimidazole derivatives as possible drugs for treating giardiasis and trichomoniasis, probing the bifunctional enzyme glucose 6-phosphate dehydrogenase::6-phosphogluconolactone from G. lamblia (GlG6PD::6PGL) and T. vaginalis (TvG6PD::6PGL) as a drug target. The investigated benzimidazole derivatives were H-B2M1, H-B2M2, H2N-BZM6, O2N-BZM7, and O2N-BZM9. The recombinant enzymes were used in inhibition assays, and in silico computational predictions and spectroscopic studies were applied to follow the structural alteration of the enzymes and identify the possible mechanism of inhibition. We identified two potent benzimidazole compounds (O2N-BZM7 and O2N-BZM9), which are capable of inhibiting both protozoan G6PD::6PGL enzymes and in vitro assays with these parasites, showing that these compounds also affect their viability. These results demonstrate that other therapeutic targets of the compounds are the enzymes GlG6PD::6PGL and TvG6PD::6PGL, which contribute to their antiparasitic effect and their possible use in antigiardial and trichomonacidal therapies.
Collapse
|
66
|
Feng Z, Zhu S, Li W, Yao M, Song H, Wang RB. Current approaches and strategies to identify Hedgehog signaling pathway inhibitors for cancer therapy. Eur J Med Chem 2022; 244:114867. [DOI: 10.1016/j.ejmech.2022.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
|
67
|
Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol Cancer 2022; 21:177. [PMID: 36071472 PMCID: PMC9454207 DOI: 10.1186/s12943-022-01645-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.
Collapse
Affiliation(s)
- Ruixue Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
68
|
Gao Z, Ding P, Xu R. KG-Predict: A knowledge graph computational framework for drug repurposing. J Biomed Inform 2022; 132:104133. [PMID: 35840060 PMCID: PMC9595135 DOI: 10.1016/j.jbi.2022.104133] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/18/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
Abstract
The emergence of large-scale phenotypic, genetic, and other multi-model biochemical data has offered unprecedented opportunities for drug discovery including drug repurposing. Various knowledge graph-based methods have been developed to integrate and analyze complex and heterogeneous data sources to find new therapeutic applications for existing drugs. However, existing methods have limitations in modeling and capturing context-sensitive inter-relationships among tens of thousands of biomedical entities. In this paper, we developed KG-Predict: a knowledge graph computational framework for drug repurposing. We first integrated multiple types of entities and relations from various genotypic and phenotypic databases to construct a knowledge graph termed GP-KG. GP-KG was composed of 1,246,726 associations between 61,146 entities. KG-Predict then aggregated the heterogeneous topological and semantic information from GP-KG to learn low-dimensional representations of entities and relations, and further utilized these representations to infer new drug-disease interactions. In cross-validation experiments, KG-Predict achieved high performances [AUROC (the area under receiver operating characteristic) = 0.981, AUPR (the area under precision-recall) = 0.409 and MRR (the mean reciprocal rank) = 0.261], outperforming other state-of-art graph embedding methods. We applied KG-Predict in identifying novel repositioned candidate drugs for Alzheimer's disease (AD) and showed that KG-Predict prioritized both FDA-approved and active clinical trial anti-AD drugs among the top (AUROC = 0.868 and AUPR = 0.364).
Collapse
Affiliation(s)
- Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA.
| | - Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA.
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA.
| |
Collapse
|
69
|
Thuru X, Magnez R, El-Bouazzati H, Vergoten G, Quesnel B, Bailly C. Drug Repurposing to Enhance Antitumor Response to PD-1/PD-L1 Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:3368. [PMID: 35884428 PMCID: PMC9322126 DOI: 10.3390/cancers14143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have considerably improved the treatment of some cancers, but novel drugs, new combinations, and treatment modalities are needed to reinvigorate immunosurveillance in immune-refractory tumors. An option to elicit antitumor immunity against cancer consists of using approved and marketed drugs known for their capacity to modulate the expression and functioning of the PD-1/PD-L1 checkpoint. Here, we have reviewed several types of drugs known to alter the checkpoint, either directly via the blockade of PD-L1 or indirectly via an action on upstream effectors (such as STAT3) to suppress PD-L1 transcription or to induce its proteasomal degradation. Specifically, the repositioning of the approved drugs liothyronine, azelnidipine (and related dihydropyridine calcium channel blockers), niclosamide, albendazole/flubendazole, and a few other modulators of the PD-1/PD-L1 checkpoint (repaglinide, pimozide, fenofibrate, lonazolac, propranolol) is presented. Their capacity to bind to PD-L1 or to repress its expression and function offer novel perspectives for combination with PD-1 targeted biotherapeutics. These known and affordable drugs could be useful to improve the therapy of cancer.
Collapse
Affiliation(s)
- Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Hassiba El-Bouazzati
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Inserm, INFINITE—U1286, 3 Rue du Professeur Laguesse, BP-83, F-59006 Lille, France;
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | | |
Collapse
|
70
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|