51
|
Kim MJ, Park SC, Rizal B, Guanes G, Baek SK, Park JH, Betz AR, Choi SO. Fabrication of Circular Obelisk-Type Multilayer Microneedles Using Micro-Milling and Spray Deposition. Front Bioeng Biotechnol 2018; 6:54. [PMID: 29868571 PMCID: PMC5958193 DOI: 10.3389/fbioe.2018.00054] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/19/2018] [Indexed: 11/29/2022] Open
Abstract
In this study we present the fabrication of multilayer microneedles with circular obelisk and beveled-circular obelisk geometries, which have potential applications in implantable drug delivery devices. Micro-milling was adopted as an environmental-friendly and cost-effective way to fabricate primary metal microneedle masters. Polylactic acid (PLA) microneedles with sharp tips were then obtained by micromolding followed by oxygen plasma etching and used for preparing polydimethylsiloxane (PDMS) microneedle molds. A spray deposition process was employed for microneedle fabrication to facilitate the formation of multilayer microneedles while helping in maintenance of drug stability. Multilayer microneedles were successfully formed by sequential spraying of poly(lactic-co-glycolic acid) (PLGA) and polyvinylpyrrolidone (PVP) solutions into the mold. The fabricated PLGA-PVP multilayer microneedles penetrated the pig cadaver skin without breakage and released dyes in the skin at different rates, which reveals the potential for implantable microneedles enabling controlled release. Mechanical testing demonstrated that the obelisk-shaped microneedles were mechanically stronger than a pyramid-shaped microneedle and suggested that strong adhesion between PLGA and PVP layers was achieved as well. Structural stability and functionality of a model drug, horseradish peroxidase (HRP), upon spray deposition was examined using circular dichroism (CD) spectroscopy and enzyme activity assay. HRP retained its secondary structure and activity in PVP, whereas HRP in PLGA showed structural changes and reduced activity. Combination of micro-milling and spray deposition would be an attractive way of fabricating drug-containing polymer microneedles with various geometries while reducing prototyping time and process-induced drug instability.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Anatomy and Physiology, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, United States
| | - Seok Chan Park
- Department of Anatomy and Physiology, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, United States
| | - Binod Rizal
- Department of Anatomy and Physiology, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, United States
| | - Giselle Guanes
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine Co., Ltd, Seongnam, South Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Amy R Betz
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| | - Seong-O Choi
- Department of Anatomy and Physiology, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
52
|
Haji Mansor M, Najberg M, Contini A, Alvarez-Lorenzo C, Garcion E, Jérôme C, Boury F. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur J Pharm Biopharm 2018; 125:38-50. [DOI: 10.1016/j.ejpb.2017.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 12/28/2022]
|
53
|
Mandal A, Pal D, Agrahari V, Trinh HM, Joseph M, Mitra AK. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Adv Drug Deliv Rev 2018; 126:67-95. [PMID: 29339145 DOI: 10.1016/j.addr.2018.01.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The impact of proteins and peptides on the treatment of various conditions including ocular diseases over the past few decades has been advanced by substantial breakthroughs in structural biochemistry, genetic engineering, formulation and delivery approaches. Formulation and delivery of proteins and peptides, such as monoclonal antibodies, aptamers, recombinant proteins and peptides to ocular tissues poses significant challenges owing to their large size, poor permeation and susceptibility to degradation. A wide range of advanced drug delivery systems including polymeric controlled release systems, cell-based delivery and nanowafers are being exploited to overcome the challenges of frequent administration to ocular tissues. The next generation systems integrated with new delivery technologies are anticipated to generate improved efficacy and safety through the expansion of the therapeutic target space. This review will highlight recent advances in formulation and delivery strategies of protein and peptide based biopharmaceuticals. We will also describe the current state of proteins and peptides based ocular therapy and future therapeutic opportunities.
Collapse
|
54
|
Microspheres as intraocular therapeutic tools in chronic diseases of the optic nerve and retina. Adv Drug Deliv Rev 2018; 126:127-144. [PMID: 29339146 DOI: 10.1016/j.addr.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
Abstract
Pathologies affecting the optic nerve and the retina are one of the major causes of blindness. These diseases include age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma, among others. Also, there are genetic disorders that affect the retina causing visual impairment. The prevalence of neurodegenerative diseases of the posterior segment is increased as most of them are related with the elderly. Even with the access to different treatments, there are some challenges in managing patients suffering retinal diseases. One of them is the need for frequent interventions. Also, an unpredictable response to therapy has suggested that different pathways may be playing a role in the development of these diseases. The management of these pathologies requires the development of controlled drug delivery systems able to slow the progression of the disease without the need of frequent invasive interventions, typically related with endophthalmitis, retinal detachment, ocular hypertension, cataract, inflammation, and floaters, among other. Biodegradable microspheres are able to encapsulate low molecular weight substances and large molecules such as biotechnological products. Over the last years, a large variety of active substances has been encapsulated in microspheres with the intention of providing neuroprotection of the optic nerve and the retina. The purpose of the present review is to describe the use of microspheres in chronic neurodegenerative diseases affecting the retina and the optic nerve. The advantage of microencapsulation of low molecular weight drugs as well as therapeutic peptides and proteins to be used as neuroprotective strategy is discussed. Also, a new use of the microspheres in the development of animal models of neurodegeneration of the posterior segment is described.
Collapse
|
55
|
McAvoy K, Jones D, Thakur RRS. Synthesis and Characterisation of Photocrosslinked poly(ethylene glycol) diacrylate Implants for Sustained Ocular Drug Delivery. Pharm Res 2018; 35:36. [PMID: 29368249 PMCID: PMC5784000 DOI: 10.1007/s11095-017-2298-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/01/2017] [Indexed: 01/20/2023]
Abstract
Purpose To investigate the sustained ocular delivery of small and large drug molecules from photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) implants with varying pore forming agents. Methods Triamcinolone acetonide and ovalbumin loaded photocrosslinked PEGDA implants, with or without pore-forming agents, were fabricated and characterised for chemical, mechanical, swelling, network parameters, as well as drug release and biocompatibility. HPLC-based analytical methods were employed for analysis of two molecules; ELISA was used to demonstrate bioactivity of ovalbumin. Results Regardless of PEGDA molecular weight or pore former composition all implants loaded with triamcinolone acetonide released significantly faster than those loaded with ovalbumin. Higher molecular weight PEGDA systems (700 Da) resulted in faster drug release of triamcinolone acetonide than their 250 Da counterpart. All ovalbumin released over the 56-day time period was found to be bioactive. Increasing PEGDA molecular weight resulted in increased system swelling, decreased crosslink density (Ve), increased polymer-water interaction parameter (χ), increased average molecular weight between crosslinks (Mc) and increased mesh size (ε). SEM studies showed the porosity of implants increased with increasing PEGDA molecular weight. Biocompatibility showed both PEGDA molecular weight implants were non-toxic when exposed to retinal epithelial cells over a 7-day period. Conclusion Photocrosslinked PEGDA implant based systems are capable of controlled drug release of both small and large drug molecules through adaptations in the polymer system network. We are currently continuing evaluation of these systems as potential sustained drug delivery devices.
Collapse
Affiliation(s)
- Kathryn McAvoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - David Jones
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK. .,School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
56
|
Tang R, Wang X, Zhang H, Liang X, Feng X, Zhu X, Lu X, Wu F, Liu Z. Promoting early neovascularization of SIS-repaired abdominal wall by controlled release of bioactive VEGF. RSC Adv 2018; 8:4548-4560. [PMID: 35539528 PMCID: PMC9077786 DOI: 10.1039/c7ra11954b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/06/2018] [Indexed: 11/21/2022] Open
Abstract
Insufficient early neovascularization post-operation is thought to be the main reason of surgical recurrence of porcine small intestinal submucosa (SIS)-repaired abdominal wall defects.
Collapse
Affiliation(s)
- Rui Tang
- Department of Hernia and Abdominal Wall Surgery
- Shanghai East Hospital
- TongJi University
- Shanghai 200120
- PR China
| | - Xin Wang
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- PR China
| | - Hanying Zhang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Xi Liang
- Department of Thoracic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- PR China
| | - Xueyi Feng
- Department of General Surgery
- Lu'an People's Hospital
- Lu'an Affiliated Hospital of Anhui Medical University
- Lu'an
- PR China
| | - Xiaoqiang Zhu
- Department of Hernia and Abdominal Wall Surgery
- Shanghai East Hospital
- TongJi University
- Shanghai 200120
- PR China
| | - Xinwu Lu
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- PR China
| | - Fei Wu
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery
- Shanghai East Hospital
- TongJi University
- Shanghai 200120
- PR China
| |
Collapse
|
57
|
Angkawinitwong U, Awwad S, Khaw PT, Brocchini S, Williams GR. Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomater 2017; 64:126-136. [PMID: 29030303 DOI: 10.1016/j.actbio.2017.10.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
Abstract
Medicines based on vascular endothelial growth factor (VEGF) neutralising antibodies such as bevacizumab have revolutionized the treatment of age related macular degeneration (AMD), a common blinding disease, and have great potential in preventing scarring after surgery or accelerating the healing of corneal injuries. However, at present frequent invasive injections are required to deliver these antibodies. Such administration is uncomfortable for patients and expensive for health service providers. Much effort is thus focused on developing dosage forms that can be administered less frequently. Here we use electrospinning to prepare a solid form of bevacizumab designed for prolonged release while maintaining antibody stability. Electrospun fibers were prepared with bevacizumab encapsulated in the core, surrounded by a poly-ε-caprolactone sheath. The fibers were generated using aqueous bevacizumab solutions buffered at two different pH values: 6.2 (the pH of the commercial product; Fbeva) and 8.3 (the isoelectric point of bevacizumab; FbevaP). The fibers had smooth and cylindrical morphologies, with diameters of ca. 500nm. Both sets of bevacizumab loaded fibers gave sustained release profiles in an in vitro model of the subconjunctival space of the eye. Fbeva displayed first order kinetics with t1/2 of 11.4±4.4 days, while FbevaP comprises a zero-order reservoir type release system with t1/2 of 52.9±14.8 days. Both SDS-PAGE and surface plasmon resonance demonstrate that the bevacizumab in FbevaP did not undergo degradation during fiber fabrication or release. In contrast, the antibody released from Fbeva had degraded, and failed to bind to VEGF. Our results demonstrate that pH control is crucial to maintain antibody stability during the fabrication of core/shell fibers and ensure release of functional protein. STATEMENT OF SIGNIFICANCE Bevacizumab is a potent protein drug which is highly effective in the treatment of degenerative conditions in the eye. To be effective, frequent injections into the eye are required, which is deeply unpleasant for patients and expensive for healthcare providers. Alternative methods of administration are thus highly sought after. In our work, we use the electrospinning technique to prepare fiber-based formulations loaded with bevacizumab. By careful control of the experimental parameters we are able to stabilize the protein during processing and ensure a constant rate of release over more than two months in vitro. These fibers could thus be used to reduce the frequency of dosing required, reducing cost and improving patient outcomes.
Collapse
Affiliation(s)
- Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sahar Awwad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; NIHR Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 9EL, UK; UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peng T Khaw
- NIHR Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 9EL, UK; UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; NIHR Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 9EL, UK; UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
58
|
Andrés-Guerrero V, Bravo-Osuna I, Pastoriza P, Molina-Martinez IT, Herrero-Vanrell R. Novel technologies for the delivery of ocular therapeutics in glaucoma. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
59
|
Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy. Eur J Pharm Biopharm 2017; 119:271-282. [DOI: 10.1016/j.ejpb.2017.06.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/09/2017] [Accepted: 06/28/2017] [Indexed: 01/30/2023]
|
60
|
Nanoprecipitated catestatin released from pharmacologically active microcarriers (PAMs) exerts pro-survival effects on MSC. Int J Pharm 2017; 523:506-514. [PMID: 27887883 DOI: 10.1016/j.ijpharm.2016.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022]
Abstract
Catestatin (CST), a fragment of Chromogranin-A, exerts angiogenic, arteriogenic, vasculogenic and cardioprotective effects. CST is a very promising agent for revascularization purposes, in "NOOPTION" patients. However, peptides have a very short half-life after administration and must be conveniently protected. Fibronectin-coated pharmacologically active microcarriers (FN-PAM), are biodegradable and biocompatible polymeric microspheres that can convey mesenchymal stem cell (MSCs) and therapeutic proteins delivered in a prolonged manner. In this study, we first evaluated whether a small peptide such as CST could be nanoprecipitated and incorporated within FN-PAMs. Subsequently, whether CST may be released in a prolonged manner by functionalized FN-PAMs (FN-PAM-CST). Finally, we assessed the effect of CST released by FN-PAM-CST on the survival of MSCs under stress conditions of hypoxia-reoxygenation. An experimental design, modifying three key parameters (ionic strength, mixing and centrifugation time) of protein nanoprecipitation, was used to define the optimum condition for CST. An optimal nanoprecipitation yield of 76% was obtained allowing encapsulation of solid CST within FN-PAM-CST, which released CST in a prolonged manner. In vitro, MSCs adhered to FN-PAMs, and the controlled release of CST from FN-PAM-CST greatly limited hypoxic MSC-death and enhanced MSC-survival in post-hypoxic environment. These results suggest that FN-PAM-CST are promising tools for cell-therapy.
Collapse
|
61
|
Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliv Rev 2017; 114:161-174. [PMID: 28532690 DOI: 10.1016/j.addr.2017.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Immunotherapy has been widely explored for applications to both augment and suppress intrinsic host immunity. Clinical achievements have seen a number of immunotherapeutic drugs displace established strategies like chemotherapy in treating immune-associated diseases. However, single drug approaches modulating an individual arm of the immune system are often incompletely effective. Imperfect mechanistic understanding and heterogeneity within disease pathology have seen monotherapies inadequately equipped to mediate complete disease remission. Recent success in applications of combinatorial immunotherapy has suggested that targeting multiple biological pathways simultaneously may be critical in treating complex immune pathologies. Drug delivery approaches through engineered biomaterials offer the potential to augment desired immune responses while mitigating toxic side-effects by localizing immunotherapy. This review discusses recent advances in immunotherapy and highlights newly explored combinatorial drug delivery approaches. Furthermore, prospective future directions for immunomodulatory drug delivery to exploit are provided.
Collapse
|
62
|
Schuster T, Mühlstein A, Yaghootfam C, Maksimenko O, Shipulo E, Gelperina S, Kreuter J, Gieselmann V, Matzner U. Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A. J Control Release 2017; 253:1-10. [DOI: 10.1016/j.jconrel.2017.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
|
63
|
Sevimli S, Knight FC, Gilchuk P, Joyce S, Wilson JT. Fatty Acid-Mimetic Micelles for Dual Delivery of Antigens and Imidazoquinoline Adjuvants. ACS Biomater Sci Eng 2017; 3:179-194. [PMID: 29046894 PMCID: PMC5642296 DOI: 10.1021/acsbiomaterials.6b00408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vaccine design has undergone a shift towards the use of purified protein subunit vaccines, which offer increased safety and greater control over antigen specificity, but at the expense of immunogenicity. Here we report the development of a new polymer-based vaccine delivery platform engineered to enhance immunity through the co-delivery of protein antigens and the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ). Owing to the preferential solubility of IMQ in fatty acids, a series of block copolymer micelles with a fatty acid-mimetic core comprising lauryl methacrylate (LMA) and methacrylic acid (MAA), and a poly(ethylene glycol) methyl ether methacrylate (PEGMA) corona decorated with pyridyl disulfide ethyl methacrylate (PDSM) moieties for antigen conjugation were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Carriers composed of 50 mole% LMA (LMA50) demonstrated the highest IMQ loading (2.2 w/w%) and significantly enhanced the immunostimulatory capacity of IMQ to induce dendritic cell maturation and proinflammatory cytokine production. Conjugation of a model antigen, ovalbumin (OVA), to the corona of IMQ-loaded LMA50 micelles enhanced in vitro antigen uptake and cross-presentation on MHC class I (MHC-I). A single intranasal (IN) immunization of mice with carriers co-loaded with IMQ and OVA elicited significantly higher pulmonary and systemic CD8+ T cell responses and increased serum IgG titer relative to a soluble formulation of antigen and adjuvant. Collectively, these data demonstrate that rationally designed fatty acid-mimetic micelles enhance intracellular antigen and IMQ delivery and have potential as synthetic vectors for enhancing the immunogenicity of subunit vaccines.
Collapse
Affiliation(s)
- Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
| | - Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| |
Collapse
|
64
|
Mesquita PC, dos Santos-Silva E, Streck L, Damasceno IZ, Maia AMS, Fernandes-Pedrosa MF, da Silva-Júnior AA. Cationic functionalized biocompatible polylactide nanoparticles for slow release of proteins. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
65
|
Kim MJ, Park SC, Choi SO. Dual-nozzle spray deposition process for improving the stability of proteins in polymer microneedles. RSC Adv 2017. [DOI: 10.1039/c7ra10928h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simultaneous deposition of protein and polymer solutions via the dual-nozzle spray deposition process forms mechanically stable microneedles and shows improved protein's structural stability during microneedle fabrication.
Collapse
Affiliation(s)
- Min Jung Kim
- Nanotechnology Innovation Center of Kansas State (NICKS)
- Department of Anatomy and Physiology
- College of Veterinary Medicine
- Kansas State University
- Manhattan
| | - Seok Chan Park
- Nanotechnology Innovation Center of Kansas State (NICKS)
- Department of Anatomy and Physiology
- College of Veterinary Medicine
- Kansas State University
- Manhattan
| | - Seong-O Choi
- Nanotechnology Innovation Center of Kansas State (NICKS)
- Department of Anatomy and Physiology
- College of Veterinary Medicine
- Kansas State University
- Manhattan
| |
Collapse
|
66
|
Moreno M, Tabitha T, Nirmal J, Radhakrishnan K, Yee C, Lim S, Venkatraman S, Agrawal R. Study of stability and biophysical characterization of ranibizumab and aflibercept. Eur J Pharm Biopharm 2016; 108:156-167. [DOI: 10.1016/j.ejpb.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 11/30/2022]
|
67
|
Pharmaceutical Applications of Electrospraying. J Pharm Sci 2016; 105:2601-2620. [DOI: 10.1016/j.xphs.2016.04.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 02/01/2023]
|
68
|
Development and evaluation of viscosity-enhanced nanocarrier (VEN) for oral insulin delivery. Int J Pharm 2016; 511:462-472. [DOI: 10.1016/j.ijpharm.2016.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/12/2016] [Accepted: 07/09/2016] [Indexed: 01/15/2023]
|
69
|
Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother 2016; 12:806-28. [PMID: 26513024 PMCID: PMC4964737 DOI: 10.1080/21645515.2015.1102804] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022] Open
Abstract
Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Department of Recombinant Protein Production, Research & Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
70
|
Bock N, Dargaville TR, Kirby GTS, Hutmacher DW, Woodruff MA. Growth Factor-Loaded Microparticles for Tissue Engineering: The Discrepancies of In Vitro Characterization Assays. Tissue Eng Part C Methods 2016; 22:142-154. [PMID: 26654547 PMCID: PMC4744875 DOI: 10.1089/ten.tec.2015.0222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022] Open
Abstract
Efficient and effective growth factor (GF) delivery is an ongoing challenge for tissue regeneration therapies. The accurate quantification of complex molecules such as GFs, encapsulated in polymeric delivery devices, is equally critical and just as complex as achieving efficient delivery of active GFs. In this study, GFs relevant to bone tissue formation, vascular endothelial growth factor (VEGF) and bone morphogenetic protein 7 (BMP-7), were encapsulated, using the technique of electrospraying, into poly(lactic-co-glycolic acid) microparticles that contained poly(ethylene glycol) and trehalose to assist GF bioactivity. Typical quantification procedures, such as extraction and release assays using saline buffer, generated a significant degree of GF interactions, which impaired accurate assessment by enzyme-linked immunosorbent assay (ELISA). When both dry BMP-7 and VEGF were processed with chloroform, as is the case during the electrospraying process, reduced concentrations of the GFs were detected by ELISA; however, the biological effect on myoblast cells (C2C12) or endothelial cells (HUVECs) was unaffected. When electrosprayed particles containing BMP-7 were cultured with preosteoblasts (MC3T3-E1), significant cell differentiation into osteoblasts was observed up to 3 weeks in culture, as assessed by measuring alkaline phosphatase. In conclusion, this study showed how electrosprayed microparticles ensured efficient delivery of fully active GFs relevant to bone tissue engineering. Critically, it also highlights major discrepancies in quantifying GFs in polymeric microparticle systems when comparing ELISA with cell-based assays.
Collapse
Affiliation(s)
- Nathalie Bock
- Nanotechnology and Molecular Science Discipline, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Tim R. Dargaville
- Nanotechnology and Molecular Science Discipline, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Giles T. S. Kirby
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Dietmar W. Hutmacher
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Maria A. Woodruff
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| |
Collapse
|
71
|
Mimi N, Belkacemi H, Sadoun T, Sapin A, Maincent P. How the composition and manufacturing parameters affect insulin release from polymeric nanoparticles. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
72
|
Payyappilly SS, Panja S, Mandal P, Dhara S, Chattopadhyay S. Organic solvent-free low temperature method of preparation for self assembled amphiphilic poly(ϵ-caprolactone)–poly(ethylene glycol) block copolymer based nanocarriers for protein delivery. Colloids Surf B Biointerfaces 2015; 135:510-517. [DOI: 10.1016/j.colsurfb.2015.07.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/06/2023]
|
73
|
Elliott Donaghue I, Shoichet MS. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite. Acta Biomater 2015; 25:35-42. [PMID: 26257128 DOI: 10.1016/j.actbio.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 12/23/2022]
Abstract
Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. STATEMENT OF SIGNIFICANCE Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG). Specifically, we demonstrate the differentiation of neural stem and progenitor cells to oligodendrocytes, similar to what is observed with the addition of fresh PDGFAA. A differentiated oligodendrocyte population is a key strategy in central nervous system regeneration. This work is the first demonstration of controlled PDGF-AA release, and also brings new insights to the broader field of protein encapsulation.
Collapse
Affiliation(s)
- Irja Elliott Donaghue
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Department of Chemistry, University of Toronto, Canada.
| |
Collapse
|
74
|
Soudry-Kochavi L, Naraykin N, Nassar T, Benita S. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J Control Release 2015; 217:202-10. [PMID: 26381898 DOI: 10.1016/j.jconrel.2015.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 11/25/2022]
Abstract
Oral delivery is the most convenient and favorable route for chronic administration of peptides and proteins to patients. However, many obstacles are faced when developing such a delivery route. Nanoparticles (NPs) are among the leading innovative solutions for delivery of these drugs. Exenatide is a peptidic drug administered subcutaneously (SC) twice a day chronically as an add-on therapy for the worldwide pandemic disease, diabetes. Many attempts to develop oral nanocarriers for this drug have been unsuccessful due to the inability to retain this hydrophilic macromolecule under sink conditions or to find a suitable cross-linker which does not harm the chemical integrity of the peptide. In this study, we report about an original oral delivery solution based on a mixture of albumin and dextran NPs cross-linked using sodium trimetaphosphate (STMP). Moreover, we suggest a second defense line of gastro-resistant microparticles (MPs) composed of an appropriate ratio of Eudragit® L100-55 (Eudragit L) and hydroxypropylmethylcellulose (HPMC), for additional protection to these NPs presumably allowing them to be absorbed in the intestine intact. Our results demonstrate that such a system indeed improves the relative oral bioavailability of exenatide to a level of about 77% compared to subcutaneous injection due to the presence of dextran in the coating wall of the NPs which apparently promotes the lymphatic uptake in the enterocytes. This technology may be a milestone on the way to deliver other peptides and proteins orally.
Collapse
Affiliation(s)
- Liat Soudry-Kochavi
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, 9112102, Israel
| | - Natalya Naraykin
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, 9112102, Israel
| | - Taher Nassar
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, 9112102, Israel
| | - Simon Benita
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, 9112102, Israel.
| |
Collapse
|
75
|
Pagels RF, Prud'homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release 2015; 219:519-535. [PMID: 26359125 DOI: 10.1016/j.jconrel.2015.09.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023]
Abstract
Biologically derived therapeutics, or biologics, are the most rapidly growing segment of the pharmaceutical marketplace. However, there are still unmet needs in improving the delivery of biologics. Injectable polymeric nanoparticles and microparticles capable of releasing proteins and peptides over time periods as long as weeks or months have been a major focus in the effort to decrease the frequency of administration. These particle systems fit broadly into two categories: those composed of hydrophilic and those composed of hydrophobic polymeric scaffolds. Here we review the factors that contribute to the slow and controlled release from each class of particle, as well as the effects of synthesis parameters and product design on the loading, encapsulation efficiency, biologic integrity, and release profile. Generally, hydrophilic scaffolds are ideal for large proteins while hydrophobic scaffolds are more appropriate for smaller biologics without secondary structure. Here we also introduce a Flash NanoPrecipitation method that has been adopted for encapsulating biologics in nanoparticles (40-200nm) at high loadings (50-75wt.%) and high encapsulation efficiencies. The hydrophilic gel interior and hydrophobic shell provide an opportunity to combine the best of both classes of injectable polymeric depots.
Collapse
Affiliation(s)
- Robert F Pagels
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
76
|
Swed A, Cordonnier T, Dénarnaud A, Boyer C, Guicheux J, Weiss P, Boury F. Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
77
|
Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration. Int J Mol Sci 2015; 16:20492-510. [PMID: 26343649 PMCID: PMC4613215 DOI: 10.3390/ijms160920492] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 11/16/2022] Open
Abstract
Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1–34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3–4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. Both in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds.
Collapse
|
78
|
Izadifar M, Kelly ME, Haddadi A, Chen X. Optimization of nanoparticles for cardiovascular tissue engineering. NANOTECHNOLOGY 2015; 26:235301. [PMID: 25987360 DOI: 10.1088/0957-4484/26/23/235301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nano-particulate delivery systems have increasingly been playing important roles in cardiovascular tissue engineering. Properties of nanoparticles (e.g. size, polydispersity, loading capacity, zeta potential, morphology) are essential to system functions. Notably, these characteristics are regulated by fabrication variables, but in a complicated manner. This raises a great need to optimize fabrication process variables to ensure the desired nanoparticle characteristics. This paper presents a comprehensive experimental study on this matter, along with a novel method, the so-called Geno-Neural approach, to analyze, predict and optimize fabrication variables for desired nanoparticle characteristics. Specifically, ovalbumin was used as a protein model of growth factors used in cardiovascular tissue regeneration, and six fabrication variables were examined with regard to their influence on the characteristics of nanoparticles made from high molecular weight poly(lactide-co-glycolide). The six-factor five-level central composite rotatable design was applied to the conduction of experiments, and based on the experimental results, a geno-neural model was developed to determine the optimum fabrication conditions. For desired particle sizes of 150, 200, 250 and 300 nm, respectively, the optimum conditions to achieve the low polydispersity index, higher negative zeta potential and higher loading capacity were identified based on the developed geno-neural model and then evaluated experimentally. The experimental results revealed that the polymer and the external aqueous phase concentrations and their interactions with other fabrication variables were the most significant variables to affect the size, polydispersity index, zeta potential, loading capacity and initial burst release of the nanoparticles, while the electron microscopy images of the nanoparticles showed their spherical geometries with no sign of large pores or cracks on their surfaces. The release study revealed that the onset of the third phase of release can be affected by the polymer concentration. Circular dichroism spectroscopy indicated that ovalbumin structural integrity is preserved during the encapsulation process. Findings from this study would greatly contribute to the design of high molecular weight poly(lactide-co-glycolide) nanoparticles for prolonged release patterns in cardiovascular engineering.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada. Saskatchewan Cerebrovascular Centre, Royal University Hospital, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
79
|
Zhai P, Chen XB, Schreyer DJ. PLGA/alginate composite microspheres for hydrophilic protein delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:251-9. [PMID: 26249587 DOI: 10.1016/j.msec.2015.06.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/11/2015] [Accepted: 06/09/2015] [Indexed: 11/16/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate.
Collapse
Affiliation(s)
- Peng Zhai
- Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5, Canada; Division of Biomedical Engineering, University of Saskatchewan, S7N5A9, Canada
| | - X B Chen
- Department of Mechanical Engineering, University of Saskatchewan, S7N5A9, Canada; Division of Biomedical Engineering, University of Saskatchewan, S7N5A9, Canada
| | - David J Schreyer
- Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5, Canada; Division of Biomedical Engineering, University of Saskatchewan, S7N5A9, Canada.
| |
Collapse
|
80
|
Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 2015; 206:161-76. [DOI: 10.1016/j.jconrel.2015.03.020] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/12/2023]
|
81
|
Wang J, Zhang S, Xing T, Kundu B, Li M, Kundu SC, Lu S. Ion-induced fabrication of silk fibroin nanoparticles from Chinese oak tasar Antheraea pernyi. Int J Biol Macromol 2015; 79:316-25. [PMID: 25936281 DOI: 10.1016/j.ijbiomac.2015.04.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/12/2015] [Accepted: 04/23/2015] [Indexed: 11/19/2022]
Abstract
Silk protein fibroin in nanoparticles form is a promising material for drug delivery due to its pleiotropic properties, including biocompatibility, biodegradability, ease in fabrication into smaller diameters, high bioavailability, and therapeutic retention at target sites. In the present study, silk nanoparticles are fabricated from regenerated fibroin solution of the Chinese temperate oak tasar Antheraea pernyi by novel ion-induced self-assembly in a very short time under mild conditions. The resultant fibroin nanoparticles range in size from 100 to 500 nm. The molecular conformation of regenerated fibroin changes from α-helical to a β-sheet structure as a rapid function of the ionic strength and the hydrophobic and electrostatic interactions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules such as doxorubicin hydrochloride, an amphiphilic anticancer therapeutic. In vitro release of doxorubicin from nanoparticles is pH sensitive, with approx. 65% doxorubicin remaining in the fibroin nanoparticles after 11 days. The activity of fibroin nanoparticles on hepatomas indicates the efficacy of the fibroin nanoparticles to maintain the bioactivity of the loaded doxorubicin and impart a dose-dependent cell growth inhibition. The results suggest that Chinese temperate oak tasar silk fibroin nanoparticles can be used as a sustained drug delivery vehicle.
Collapse
Affiliation(s)
- Juan Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Shanshan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Tieling Xing
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Banani Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
82
|
Andreani T, Miziara L, Lorenzón EN, de Souza ALR, Kiill CP, Fangueiro JF, Garcia ML, Gremião PD, Silva AM, Souto EB. Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: Interactions with mucin and biomembrane models. Eur J Pharm Biopharm 2015; 93:118-26. [PMID: 25843239 DOI: 10.1016/j.ejpb.2015.03.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/26/2023]
Abstract
The present paper focuses on the development and characterization of silica nanoparticles (SiNP) coated with hydrophilic polymers as mucoadhesive carriers for oral administration of insulin. SiNP were prepared by sol-gel technology under mild conditions and coated with different hydrophilic polymers, namely, chitosan, sodium alginate or poly(ethylene glycol) (PEG) with low and high molecular weight (PEG 6000 and PEG 20000) to increase the residence time at intestinal mucosa. The mean size and size distribution, association efficiency, insulin structure and insulin thermal denaturation have been determined. The mean nanoparticle diameter ranged from 289 nm to 625 nm with a PI between 0.251 and 0.580. The insulin association efficiency in SiNP was recorded above 70%. After coating, the association efficiency of insulin increased up to 90%, showing the high affinity of the protein to the hydrophilic polymer chains. Circular dichroism (CD) indicated that no conformation changes of insulin structure occurred after loading the peptide into SiNP. Nano-differential scanning calorimetry (nDSC) showed that SiNP shifted the insulin endothermic peak to higher temperatures. The influence of coating on the interaction of nanoparticles with dipalmitoylphosphatidylcholine (DPPC) biomembrane models was also evaluated by nDSC. The increase of ΔH values suggested a strong association of non-coated SiNP and those PEGylated nanoparticles coated with DPPC polar heads by forming hydrogen bonds and/or by electrostatic interaction. The mucoadhesive properties of nanoparticles were examined by studying the interaction with mucin in aqueous solution. SiNP coated with alginate or chitosan showed high contact with mucin. On the other hand, non-coated SiNP and PEGylated SiNP showed lower interaction with mucin, indicating that these nanoparticles can interdiffuse across mucus network. The results of the present work provide valuable data in assessing the in vitro performance of insulin-loaded SiNP coated with mucoadhesive polymers.
Collapse
Affiliation(s)
- Tatiana Andreani
- Department of Biology and Environment, University of Tras-os Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Leonardo Miziara
- Department of Pharmaceutical Sciences, UNESP-Universidade Estadual Paulista, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Esteban N Lorenzón
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP, Araraquara, São Paulo, Brazil
| | - Ana Luiza R de Souza
- Department of Pharmaceutical Sciences, UNESP-Universidade Estadual Paulista, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Charlene P Kiill
- Department of Pharmaceutical Sciences, UNESP-Universidade Estadual Paulista, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Joana F Fangueiro
- Research Centre for Biomedicine (CEBIMED), Fernando Pessoa University (UFP), Praça 9 de Abril, 349, P-4249-004 Porto, Portugal
| | - Maria L Garcia
- Department of Physical Chemistry, Faculty of Pharmacy, Barcelona University, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Palmira D Gremião
- Department of Pharmaceutical Sciences, UNESP-Universidade Estadual Paulista, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Amélia M Silva
- Department of Biology and Environment, University of Tras-os Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology & Institute for Biomedical Imaging and Life Sciences (CNC-IBILI), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
83
|
Jeon O, Wolfson DW, Alsberg E. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2216-23. [PMID: 25708428 PMCID: PMC4408272 DOI: 10.1002/adma.201405337] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/27/2015] [Indexed: 05/26/2023]
Abstract
The spontaneous formation of coacervate microdroplet-laden photo-crosslinked hydrogels derived from the simple mixing of oxidized, methacrylated alginate (OMA) and methacrylated gelatin (GelMA) enables simultaneous creation of drug-laden microdroplets and encapsulation of stem cells in photopolymerized coacervate hydrogels under physiological conditions. This can be utilized as a novel platform for in situ formation of localized, sustained bioactive molecule delivery to encapsulate stem cells for therapeutic applications.
Collapse
Affiliation(s)
- Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106, USA
| | - David W. Wolfson
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106, USA. Department of Orthopaedic Surgery, Case Western Reserve University Cleveland, OH 44106, USA
| |
Collapse
|
84
|
Al-Kurdi ZI, Chowdhry BZ, Leharne SA, Al Omari MMH, Badwan AA. Low molecular weight chitosan-insulin polyelectrolyte complex: characterization and stability studies. Mar Drugs 2015; 13:1765-84. [PMID: 25830681 PMCID: PMC4413186 DOI: 10.3390/md13041765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 11/24/2022] Open
Abstract
The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.
Collapse
Affiliation(s)
- Zakieh I Al-Kurdi
- The Jordanian Pharmaceutical Manufacturing Company (PLC), Suwagh Subsidiary for Drug Delivery Systems, P.O. Box 94, Naor 11710, Jordan.
- Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME44TB, UK.
| | - Babur Z Chowdhry
- Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME44TB, UK.
| | - Stephen A Leharne
- Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME44TB, UK.
| | - Mahmoud M H Al Omari
- The Jordanian Pharmaceutical Manufacturing Company (PLC), Suwagh Subsidiary for Drug Delivery Systems, P.O. Box 94, Naor 11710, Jordan.
| | - Adnan A Badwan
- The Jordanian Pharmaceutical Manufacturing Company (PLC), Suwagh Subsidiary for Drug Delivery Systems, P.O. Box 94, Naor 11710, Jordan.
| |
Collapse
|
85
|
Varshochian R, Riazi-Esfahani M, Jeddi-Tehrani M, Mahmoudi AR, Aghazadeh S, Mahbod M, Movassat M, Atyabi F, Sabzevari A, Dinarvand R. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J Biomed Mater Res A 2015; 103:3148-56. [PMID: 25773970 DOI: 10.1002/jbm.a.35446] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/24/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
Bevacizumab, an anti-VEGF antibody, has demonstrated trustworthy effects in treatment of retinal and choroidal neovascularization that both are crucial sight threatening conditions. However, the weak point is the short half-life of the drug in vitreous which necessitates frequent intravitreal injections. Accordingly employing controlled-release drug delivery systems such as polymeric nanoparticles (NPs) has been suggested. In this study albuminated-PLGA-NPs containing bevacizumab were prepared and studied intended for reducing the number of injections. NPs were formulated by double-emulsion method and a single dose of NPs was intravitreally injected to rabbits. The drug concentrations in vitreous and aqueous humor were assayed in different time intervals using ELISA and intraocular pharmacokinetic parameters were calculated. Moreover, coumarin-6 loaded albuminated-PLGA-NPs were employed to evaluate the distribution and persistence of the NPs in the posterior segment. Results revealed that the bevacizumab vitreous concentration maintained above 500 ng mL(-1) for about 8 weeks and 3.3 times elevation was observed in the drug vitreous MRT compared with the control. According to coumarin-6 NP tests, fluorescence emissions in posterior tissues were observed for 56 days which confirmed the nanoparticles persistence in ocular tissues during the test span. Therefore our prepared formulation may offer improvements in treatment of eye posterior segment neovascularization.
Collapse
Affiliation(s)
- Reyhaneh Varshochian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ahmad-Reza Mahmoudi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sara Aghazadeh
- Stem Cells Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Movassat
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Araz Sabzevari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
86
|
Xiong N, Dong XY, Zheng J, Liu FF, Sun Y. Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5650-5662. [PMID: 25700145 DOI: 10.1021/acsami.5b00915] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aggregation of amyloid β-protein (Aβ) into amyloid oligomers and fibrils is pathologically linked to Alzheimer's disease (AD). Hence, the inhibition of Aβ aggregation is essential for the prevention and treatment of AD, but the development of potent agents capable of inhibiting Aβ fibrillogenesis has posed significant challenges. Herein, we designed Ac-LVFFARK-NH2 (LK7) by incorporating two positively charged residues, R and K, into the central hydrophobic fragment of Aβ17-21 (LVFFA) and examined its inhibitory effect on Aβ42 aggregation and cytotoxicity by extensive physical, biophysical, and biological analyses. LK7 was observed to inhibit Aβ42 fibrillogenesis in a dose-dependent manner, but its strong self-assembly characteristic also resulted in high cytotoxicity. In order to prevent the cytotoxicity that resulted from the self-assembly of LK7, the peptide was then conjugated to the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to fabricate a nanosized inhibitor, LK7@PLGA-NPs. It was found that LK7@PLGA-NPs had little cytotoxicity because the self-assembly of the LK7 conjugated on the NPs was completely inhibited. Moreover, the NPs-based inhibitor showed remarkable inhibitory capability against Aβ42 aggregation and significantly alleviated its cytotoxicity at a low LK7@PLGA-NPs concentration of 20 μg/mL. At the same peptide concentration, free LK7 showed little inhibitory effect. It is considered that several synergetic effects contributed to the strong inhibitory ability of LK7@PLGA-NPs, including the enhanced interactions between Aβ42 and LK7@PLGA-NPs brought on by inhibiting LK7 self-assembly, restricting conformational changes of Aβ42, and thus redirecting Aβ42 aggregation into unstructured, off-pathway aggregates. The working mechanisms of the inhibitory effects of LK7 and LK7@PLGA-NPs on Aβ42 aggregation were proposed based on experimental observations. This work provides new insights into the design and development of potent NPs-based inhibitors against Aβ aggregation and cytotoxicity.
Collapse
Affiliation(s)
- Neng Xiong
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Zheng
- ‡Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Fu-Feng Liu
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
87
|
Stanković M, Hiemstra C, de Waard H, Zuidema J, Steendam R, Frijlink HW, Hinrichs WL. Protein release from water-swellable poly(d,l-lactide-PEG)-b-poly(ϵ-caprolactone) implants. Int J Pharm 2015; 480:73-83. [DOI: 10.1016/j.ijpharm.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/26/2014] [Accepted: 01/04/2015] [Indexed: 10/24/2022]
|
88
|
Tran MK, Swed A, Calvignac B, Dang KN, Hassani LN, Cordonnier T, Boury F. Preparation of polymeric particles in CO2 medium using non-toxic solvents: discussions on the mechanism of particle formation. J Mater Chem B 2015; 3:1573-1582. [DOI: 10.1039/c4tb01319k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of a novel and effective process for protein encapsulation into PLGA microparticles by the emulsification–extraction method in CO2 medium using non-toxic solvents.
Collapse
Affiliation(s)
- My-Kien Tran
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Amin Swed
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Brice Calvignac
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Kim-Ngan Dang
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Leila N. Hassani
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Thomas Cordonnier
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Frank Boury
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| |
Collapse
|
89
|
Abstract
When formulated as liquid dosage forms, therapeutic proteins and peptides often show instability during handling as a result of chemical degradation. Solid formulations are frequently required to maintain protein stability during storage, transport and upon administration. Herein we highlight current strategies used to formulate pharmaceutical proteins in the solid form. An overview of the physical instabilities which can arise with proteins is first described. The key solidification techniques of crystallization, freeze-drying and particle forming technologies are then discussed. Examples of current commercial products that are formulated in the solid state are provided and include neutral protamine Hagedorn – insulin crystal suspensions, freeze-dried monoclonal antibodies and leuproride polylactide-co-glycolide microparticles. Finally, future perspectives in solid-state protein formulation are described.
Collapse
|
90
|
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv 2014; 23:2371-2390. [PMID: 25544604 DOI: 10.3109/10717544.2014.991001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CONTEXT Existing medication systems for the treatment of diabetes mellitus (DM) are inconvenient and troublesome for effective and safe delivery of drugs to the specific site. Therefore, investigations are desired to deliver antidiabetics using novel delivery approaches followed by their commercialization. OBJECTIVE The present review aims to provide a compilation on the latest development in the field of novel drug delivery systems (NDDSs) for antidiabetics with special emphasis on particulate, vesicular and miscellaneous systems. METHODS Review of literature (restricted to English language only) was done using electronic databases like Pubmed® and Scirus, i.e. published during 2005-2013. The CIMS/MIMS India Medical Drug Information eBook was used regarding available marketed formulation of antidiabetic drugs. Keywords used were "nanoparticle", "microparticle", "liposomes", "niosomes", "transdermal systems", "insulin", "antidiabetic drugs" and "novel drug delivery systems". Single inclusion was made for one article. If in vivo study was not done then article was seldom included in the manuscript. RESULTS The curiosity to develop NDDSs of antidiabetic drugs with special attention to the nanoparticulate system followed by microparticulate and lipid-based system is found to emerge gradually to overcome the problems associated with the conventional dosage forms and to win the confidence of end users towards the higher acceptability. CONCLUSION In the current scientific panorama when the area of novel drug delivery system has been recognized for its palpable benefits, unique potential of providing physical stability, sustained and site-specific drug delivery for a scheduled period of time can open new vistas for precise, safe and quality treatment of DM.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Nidhi Mishra
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Ashish Kumar Agrawal
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Sanyog Jain
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Narayan Prasad Yadav
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| |
Collapse
|
91
|
Arthanari S, Mani G, Peng MM, Jang HT. Chitosan-HPMC-blended microspheres as a vaccine carrier for the delivery of tetanus toxoid. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:517-23. [PMID: 25472756 DOI: 10.3109/21691401.2014.966193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this research was to develop a suitable and alternate adjuvant for the tetanus toxoid (TT) vaccine that induces long term immunity after a single-dose immunization. In our study, the preformulation studies were carried out by using different ratios (7/3, 8/2, and 9/1) of chitosan-hydroxypropyl methylcellulose (HPMC)-blended empty microspheres. Moreover, TT was stabilized with heparin (at heparin concentrations of 1%, 2%, 3%, and 4% w/v) and encapsulated in ideal chitosan - HPMC (CHBMS) microspheres, by the water-in-oil-in-water (W/O/W) multiple emulsion method. The vaccine entrapment and the in vitro release efficiency of the CHBMS was evaluated for a period of 90 days. The release of antigens from the microspheres was determined by ELISA. Antigen integrity was investigated by SDS-PAGE. From the optimization studies, it was found that a chitosan/HPMC ratio of 8/2 produced a good yield, with microspheres that were spherical, regular and uniformly-sized. In the CHBMS, a heparin concentration of 3% w/v resulted in well-sustained antigen delivery for a period of 90 days. It was found that the characteristics of initial release could be observed in 2 days, followed by a constant release, and an almost 100% complete release in 90 days. From the in vitro release characteristics, the ideal batch of CHBMS (3% w/v heparin) was evaluated for in vivo studies by the antibody induction method. The antibody levels were measured for different combinations for the period of 9 months, and finally, with a second booster dose after 1 year. In conclusion, it was observed that CHBMS (combination-1) resulted in the antibody level of 4.5 IU/mL of guinea pig serum, and the level was 3.5 IU/mL for the Central Research Institute's alum-adsorbed tetanus toxoid (CRITT) (combination 2), after 1 year, with a second booster dose. This novel approach of using CHBMS may have potential advantages for single-step immunization with vaccines.
Collapse
Affiliation(s)
- Saravanakumar Arthanari
- a Department of Chemical Engineering , Hanseo University , Seosan, Chungcheongnam-do , South Korea
| | - Ganesh Mani
- a Department of Chemical Engineering , Hanseo University , Seosan, Chungcheongnam-do , South Korea
| | - Mei Mei Peng
- a Department of Chemical Engineering , Hanseo University , Seosan, Chungcheongnam-do , South Korea
| | - Hyun Tae Jang
- a Department of Chemical Engineering , Hanseo University , Seosan, Chungcheongnam-do , South Korea
| |
Collapse
|
92
|
Ibraheem D, Elaissari A, Fessi H. Administration strategies for proteins and peptides. Int J Pharm 2014; 477:578-89. [PMID: 25445533 DOI: 10.1016/j.ijpharm.2014.10.059] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 02/01/2023]
Abstract
Proteins are a vital constituent of the body as they perform many of its major physiological and biological processes. Recently, proteins and peptides have attracted much attention as potential treatments for various dangerous and traditionally incurable diseases such as cancer, AIDS, dwarfism and autoimmune disorders. Furthermore, proteins could be used for diagnostics. At present, most therapeutic proteins are administered via parenteral routes that have many drawbacks, for example, they are painful, expensive and may cause toxicity. Finding more effective, easier and safer alternative routes for administering proteins and peptides is the key to therapeutic and commercial success. In this context, much research has been focused on non-invasive routes such as nasal, pulmonary, oral, ocular, and rectal for administering proteins and peptides. Unfortunately, the widespread use of proteins and peptides as drugs is still faced by many obstacles such as low bioavailability, short half-life in the blood stream, in vivo instability and numerous other problems. In order to overcome these hurdled and improve protein/peptide drug efficacy, various strategies have been developed such as permeability enhancement, enzyme inhibition, protein structure modification and protection by encapsulation. This review provides a detailed description of all the previous points in order to highlight the importance and potential of proteins and peptides as drugs.
Collapse
Affiliation(s)
- D Ibraheem
- University of Lyon, F-69622, Lyon, France, University Lyon-1, Villeurbanne, CNRS, UMR-5007, LAGEP- CPE, 43 bd 11 Novembre 1918, F-69622 Villeurbanne, France
| | - A Elaissari
- University of Lyon, F-69622, Lyon, France, University Lyon-1, Villeurbanne, CNRS, UMR-5007, LAGEP- CPE, 43 bd 11 Novembre 1918, F-69622 Villeurbanne, France
| | - H Fessi
- University of Lyon, F-69622, Lyon, France, University Lyon-1, Villeurbanne, CNRS, UMR-5007, LAGEP- CPE, 43 bd 11 Novembre 1918, F-69622 Villeurbanne, France.
| |
Collapse
|
93
|
Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres. Int J Pharm 2014; 470:41-50. [DOI: 10.1016/j.ijpharm.2014.04.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/22/2022]
|
94
|
A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice. J Control Release 2014; 185:51-61. [DOI: 10.1016/j.jconrel.2014.04.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 12/29/2022]
|
95
|
Arthanari S, Renukadevi P, Saravanakumar V. Evaluation of lactose stabilized tetanus toxoid encapsulated into alginate, HPMC composite microspheres. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
96
|
Battig MR, Huang Y, Chen N, Wang Y. Aptamer-functionalized superporous hydrogels for sequestration and release of growth factors regulated via molecular recognition. Biomaterials 2014; 35:8040-8. [PMID: 24954732 DOI: 10.1016/j.biomaterials.2014.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
While the discovery of highly potent biologics has led to the development of promising therapies for various human diseases, biologics can cause severe toxicity if delivered inappropriately. Thus, great efforts have been made to synthesize polymeric systems for safe and efficient delivery of biologics. However, the application of polymeric delivery systems is often limited by problems such as harsh reaction conditions, low drug sequestration efficiency, and difficult drug release regulation. This study was aimed at developing a superporous material system with a hydrogel and an aptamer to overcome these challenges. The results have shown that the superporous hydrogel is capable of instantaneously and fully sequestering a large amount of growth factors, owing to the presence of superporous architectures and aptamers. Moreover, the sequestering and loading procedure does not involve any harsh conditions. The release kinetics of growth factors can be molecularly modulated by either changing the binding affinity of the aptamer or by using a triggering effector. Therefore, this study presents a promising superporous material for the delivery of highly potent biologics such as growth factors for clinical applications.
Collapse
Affiliation(s)
- Mark R Battig
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802-6804, USA
| | - Yike Huang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802-6804, USA
| | - Niancao Chen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802-6804, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802-6804, USA.
| |
Collapse
|
97
|
Chen X, Lv G, Zhang J, Tang S, Yan Y, Wu Z, Su J, Wei J. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery. Int J Nanomedicine 2014; 9:1957-65. [PMID: 24855351 PMCID: PMC4019614 DOI: 10.2147/ijn.s57048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery.
Collapse
Affiliation(s)
- Xingtao Chen
- College of Physical Science and Technology, Sichuan University, Chengdu, Shanghai, People's Republic of China
| | - Guoyu Lv
- College of Physical Science and Technology, Sichuan University, Chengdu, Shanghai, People's Republic of China
| | - Jue Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yonggang Yan
- College of Physical Science and Technology, Sichuan University, Chengdu, Shanghai, People's Republic of China
| | - Zhaoying Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiacan Su
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
98
|
Perinelli DR, Bonacucina G, Cespi M, Naylor A, Whitaker M, Palmieri GF, Giorgioni G, Casettari L. Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. Int J Pharm 2014; 468:250-7. [PMID: 24746690 DOI: 10.1016/j.ijpharm.2014.04.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/01/2022]
Abstract
A series of biodegradable P(L)LA-PEG1.5 kDa-P(L)LA copolymers have been synthesized and compared as processing aid versus Poloxamer 407 (PEO-PPO-PEO), in the formulation of protein encapsulated microparticles, using supercritical carbon dioxide (scCO2). Bovine serum albumin (BSA) loaded microcarriers were prepared applying the particles from the gas saturated solutions (PGSS) technique using scCO2 and thus, avoiding the standard practice of organic solvent encapsulation. Four triblock copolymers were synthesized and characterized, particularly in terms of thermal properties and behaviour when exposed to scCO2. The effects of the inclusion of these copolymers in the formulation of poly(α-hydroxy acids) based microparticles - e.g. poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(D,L-lactide) (PLA) - were analysed in terms of yield, particle size, morphology and drug release. The use of P(L)LA-PEG1.5 kDa-P(L)LA triblock copolymers were found to increase the yield of the PGSS-based process and to decrease the size of the microparticles produced, in comparison with the formulation containing the Poloxamer 407. Moreover the microparticles formulated with the triblock copolymers possessing the higher hydrophobic character were able to maintain a controlled drug release profile.
Collapse
Affiliation(s)
- D R Perinelli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, Camerino, MC 62032, Italy
| | - G Bonacucina
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, Camerino, MC 62032, Italy
| | - M Cespi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, Camerino, MC 62032, Italy
| | - A Naylor
- Critical Pharmaceuticals Limited BioCity, Pennyfoot Street, Nottingham NG1 1GF, United Kingdom
| | - M Whitaker
- Critical Pharmaceuticals Limited BioCity, Pennyfoot Street, Nottingham NG1 1GF, United Kingdom
| | - G F Palmieri
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, Camerino, MC 62032, Italy
| | - G Giorgioni
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, Camerino, MC 62032, Italy
| | - L Casettari
- Department of Biomolecular Sciences, University of Urbino, Piazza Rinascimento 6, Urbino, PU 61029, Italy.
| |
Collapse
|
99
|
Casadei MA, Cesa S, Pacelli S, Paolicelli P, Tita B, Vitali F. Dextran-based hydrogel microspheres obtained in w/o emulsion: preparation, characterisation andin vivostudies. J Microencapsul 2014; 31:440-7. [DOI: 10.3109/02652048.2013.871360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
100
|
Encapsulation of immunoglobulin G by solid-in-oil-in-water: Effect of process parameters on microsphere properties. Eur J Pharm Biopharm 2014; 86:393-403. [DOI: 10.1016/j.ejpb.2013.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/07/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022]
|