51
|
Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv Drug Deliv Rev 2020; 153:87-108. [PMID: 32497707 DOI: 10.1016/j.addr.2020.05.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles offer new opportunities for the treatment of skin diseases. The barrier function of the skin poses a significant challenge for nanoparticles to permeate into the tissue, although the barrier is partially compromised in case of injury or inflammation, as in the case of skin cancer. This may facilitate the penetration of nanoparticles. Extensive research has gone into developing nanoparticles for topical delivery; however, relatively little progress has been made in translating them to the clinic for treating skin cancers. We summarize the types of skin cancers and practices in current clinical management. The review provides a comprehensive outlook of the various nanoparticle technologies tested for topical therapy of skin cancers and summarizes the obstacles that impede its progress from the bench-to-bedside. The review also aims to provide an understanding of the pathways that govern nanoparticle penetration into the skin and a critical analysis of the approaches used to study nanoparticle interactions within the tissue.
Collapse
Affiliation(s)
- Vinu Krishnan
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
52
|
Dolz-Pérez I, Sallam MA, Masiá E, Morelló-Bolumar D, Pérez Del Caz MD, Graff P, Abdelmonsif D, Hedtrich S, Nebot VJ, Vicent MJ. Polypeptide-corticosteroid conjugates as a topical treatment approach to psoriasis. J Control Release 2019; 318:210-222. [PMID: 31843640 DOI: 10.1016/j.jconrel.2019.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Topical treatment of mild-to-moderate psoriasis with corticosteroids suffers from challenges that include reduced drug bioavailability at the desired site of action. The retention of therapeutics within the epidermis can safely treat skin inflammation, scaling, and erythema associated with psoriasis while avoiding possible side effects associated with systemic treatments. We successfully synthesized and characterized a pH-responsive biodegradable poly-L-glutamic acid (PGA)-fluocinolone acetonide (FLUO) conjugate that allows the controlled release of the FLUO to reduce skin inflammation. Additionally, the application of a hyaluronic acid (HA)-poly-L-glutamate cross polymer (HA-CP) vehicle boosted skin permeation. During in vitro and ex vivo analyses, we discovered that PGA-FLUO inhibited pro-inflammatory cytokine release, suggesting that polypeptidic conjugation fails to affect the anti-inflammatory activity of FLUO. Additionally, ex vivo human skin permeation studies using confocal microscopy revealed the presence of PGA-FLUO within the epidermis, but a minimal presence in the dermis, thereby reducing the likelihood of FLUO entering the systemic circulation. Finally, we demonstrated that PGA-FLUO applied within HA-CP effectively reduced psoriasis-associated phenotypes in an in vivo mouse model of human psoriasis while also lowering levels of pro-inflammatory cytokines in tissue and serum. Overall, our experimental results demonstrate that PGA-FLUO within an HA-CP penetration enhancer represents an effective topical treatment for psoriasis.
Collapse
Affiliation(s)
- Irene Dolz-Pérez
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, El Sultan Hussein St Azarita, Egypt; John A. Paulson school of engineering and applied sciences and Wyss institute for biologically inspired engineering, Harvard University, 52 Oxford St, Cambridge, MA 02138, USA
| | - Esther Masiá
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain; Screening Platform, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Daniel Morelló-Bolumar
- Polypeptide Therapeutic Solutions S.L. C/ Benjamin Franklin 19 (Paterna), Valencia 46980, Spain
| | - M Dolores Pérez Del Caz
- Servicio de cirugía plástica, Hospital Universitario y Politécnico La Fe, Av. de Fernando Abril Martorell 106, Valencia 46026, Spain
| | - Patrick Graff
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Königin-Luise Str. 2+4, Berlin 14195, Germany
| | - Doaa Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, El Sultan Hussein St Azarita, Egypt
| | - Sarah Hedtrich
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Königin-Luise Str. 2+4, Berlin 14195, Germany; Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada
| | - Vicent J Nebot
- Polypeptide Therapeutic Solutions S.L. C/ Benjamin Franklin 19 (Paterna), Valencia 46980, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain; Screening Platform, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| |
Collapse
|
53
|
Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23:20. [PMID: 31832232 PMCID: PMC6869321 DOI: 10.1186/s40824-019-0166-x] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
In modern-day medicine, nanotechnology and nanoparticles are some of the indispensable tools in disease monitoring and therapy. The term “nanomaterials” describes materials with nanoscale dimensions (< 100 nm) and are broadly classified into natural and synthetic nanomaterials. However, “engineered” nanomaterials have received significant attention due to their versatility. Although enormous strides have been made in research and development in the field of nanotechnology, it is often confusing for beginners to make an informed choice regarding the nanocarrier system and its potential applications. Hence, in this review, we have endeavored to briefly explain the most commonly used nanomaterials, their core properties and how surface functionalization would facilitate competent delivery of drugs or therapeutic molecules. Similarly, the suitability of carbon-based nanomaterials like CNT and QD has been discussed for targeted drug delivery and siRNA therapy. One of the biggest challenges in the formulation of drug delivery systems is fulfilling targeted/specific drug delivery, controlling drug release and preventing opsonization. Thus, a different mechanism of drug targeting, the role of suitable drug-laden nanocarrier fabrication and methods to augment drug solubility and bioavailability are discussed. Additionally, different routes of nanocarrier administration are discussed to provide greater understanding of the biological and other barriers and their impact on drug transport. The overall aim of this article is to facilitate straightforward perception of nanocarrier design, routes of various nanoparticle administration and the challenges associated with each drug delivery method.
Collapse
|
54
|
Nikolic I, Mitsou E, Pantelic I, Randjelovic D, Markovic B, Papadimitriou V, Xenakis A, Lunter DJ, Zugic A, Savic S. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes' role overcome penetration enhancement effect? Eur J Pharm Sci 2019; 142:105135. [PMID: 31682974 DOI: 10.1016/j.ejps.2019.105135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
The objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers. Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml. Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions' interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.
Collapse
Affiliation(s)
- Ines Nikolic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11221, Serbia
| | - Evgenia Mitsou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Ivana Pantelic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11221, Serbia
| | - Danijela Randjelovic
- Institute of Chemistry, Technology and Metallurgy, Department of Microelectronic Technologies, University of Belgrade, Belgrade 11000, Serbia
| | - Bojan Markovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade 11221, Serbia
| | | | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Dominique Jasmin Lunter
- Institute of Pharmaceutical Technology, Eberhard-Karls University, Tübingen D-72076, Germany
| | - Ana Zugic
- Institute for Medicinal Plant Research "Dr Josif Pančić", Belgrade 11000, Serbia
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11221, Serbia.
| |
Collapse
|
55
|
Benbow T, Campbell J. Microemulsions as transdermal drug delivery systems for nonsteroidal anti-inflammatory drugs (NSAIDs): a literature review. Drug Dev Ind Pharm 2019; 45:1849-1855. [DOI: 10.1080/03639045.2019.1680996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tarique Benbow
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
56
|
Alkrad JA, AlKhatib HS, Musa RJ. Formulation, in vitro and in vivo evaluation of ferrous sulfate loaded microemulsions. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
57
|
Esposito E. Bioactive Molecules from Vegetable Sources for the Treatment of Cutaneous Pathologies and Disorders Part 1. Curr Pharm Des 2019; 25:2207. [DOI: 10.2174/138161282520190823124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Elisabetta Esposito
- Dipartimento di Scienze Chimiche e Farmaceutiche (SCF) via Fossato di Mortara 19 44100 Ferrara, Italy
| |
Collapse
|
58
|
Chen Y, Feng X, Meng S. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv 2019; 16:847-867. [DOI: 10.1080/17425247.2019.1645119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Shengnan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
59
|
Sheshala R, Anuar NK, Abu Samah NH, Wong TW. In Vitro Drug Dissolution/Permeation Testing of Nanocarriers for Skin Application: a Comprehensive Review. AAPS PharmSciTech 2019; 20:164. [PMID: 30993407 DOI: 10.1208/s12249-019-1362-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/07/2019] [Indexed: 12/29/2022] Open
Abstract
This review highlights in vitro drug dissolution/permeation methods available for topical and transdermal nanocarriers that have been designed to modulate the propensity of drug release, drug penetration into skin, and permeation into systemic circulation. Presently, a few of USFDA-approved in vitro dissolution/permeation methods are available for skin product testing with no specific application to nanocarriers. Researchers are largely utilizing the in-house dissolution/permeation testing methods of nanocarriers. These drug release and permeation methods are pending to be standardized. Their biorelevance with reference to in vivo plasma concentration-time profiles requires further exploration to enable translation of in vitro data for in vivo or clinical performance prediction.
Collapse
|
60
|
Lipid gene nanocarriers for the treatment of skin diseases: Current state-of-the-art. Eur J Pharm Biopharm 2019; 137:95-111. [DOI: 10.1016/j.ejpb.2019.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
|
61
|
Albinali KE, Zagho MM, Deng Y, Elzatahry AA. A perspective on magnetic core-shell carriers for responsive and targeted drug delivery systems. Int J Nanomedicine 2019; 14:1707-1723. [PMID: 30880975 PMCID: PMC6408922 DOI: 10.2147/ijn.s193981] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Magnetic core-shell nanocarriers have been attracting growing interest owing to their physicochemical and structural properties. The main principles of magnetic nanoparticles (MNPs) are localized treatment and stability under the effect of external magnetic fields. Furthermore, these MNPs can be coated or functionalized to gain a responsive property to a specific trigger, such as pH, heat, or even enzymes. Current investigations have been focused on the employment of this concept in cancer therapies. The evaluation of magnetic core-shell materials includes their magnetization properties, toxicity, and efficacy in drug uptake and release. This review discusses some categories of magnetic core-shell drug carriers based on Fe2O3 and Fe3O4 as the core, and different shells such as poly(lactic-co-glycolic acid), poly(vinylpyrrolidone), chitosan, silica, calcium silicate, metal, and lipids. In addition, the review addresses their recent potential applications for cancer treatment.
Collapse
Affiliation(s)
- Kholoud E Albinali
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar,
| | - Moustafa M Zagho
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar,
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, People's Republic of China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar,
| |
Collapse
|
62
|
Barbosa AI, Costa Lima SA, Reis S. Development of methotrexate loaded fucoidan/chitosan nanoparticles with anti-inflammatory potential and enhanced skin permeation. Int J Biol Macromol 2019; 124:1115-1122. [DOI: 10.1016/j.ijbiomac.2018.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/20/2022]
|
63
|
Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations. MEDICINES 2018; 6:medicines6010007. [PMID: 30597953 PMCID: PMC6473859 DOI: 10.3390/medicines6010007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
Hydrogels are three-dimensional networks of hydrophilic polymers able to absorb and retain a considerable amount of water or biological fluid while maintaining their structure. Among these, thermo-sensitive hydrogels, characterized by a temperature-dependent sol–gel transition, have been massively used as drug delivery systems for the controlled release of various bioactives. Poloxamer 407 (P407) is an ABA-type triblock copolymer with a center block of hydrophobic polypropylene oxide (PPO) between two hydrophilic polyethyleneoxide (PEO) lateral chains. Due to its unique thermo-reversible gelation properties, P407 has been widely investigated as a temperature-responsive material. The gelation phenomenon of P407 aqueous solutions is reversible and characterized by a sol–gel transition temperature. The nanoencapsulation of drugs within biocompatible delivery systems dispersed in P407 hydrogels is a strategy used to increase the local residence time of various bioactives at the injection site. In this mini-review, the state of the art of the most important mixed systems made up of colloidal carriers localized within a P407 hydrogel will be provided in order to illustrate the possibility of obtaining a controlled release of the entrapped drugs and an increase in their therapeutic efficacy as a function of the biomaterial used.
Collapse
|
64
|
Potential of nanoparticulate carriers for improved drug delivery via skin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-00418-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
65
|
Qurt MS, Esentürk İ, Birteksöz Tan S, Erdal MS, Araman A, Güngör S. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
66
|
Jiang T, Wang T, Li T, Ma Y, Shen S, He B, Mo R. Enhanced Transdermal Drug Delivery by Transfersome-Embedded Oligopeptide Hydrogel for Topical Chemotherapy of Melanoma. ACS NANO 2018; 12:9693-9701. [PMID: 30183253 DOI: 10.1021/acsnano.8b03800] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Topical administration of anticancer drugs provides a potential chemotherapeutic modality with high patient compliance for cutaneous melanoma. However, the drug delivery efficiency is highly limited by physiological barriers from the skin to the tumor, which cannot acquire desired therapeutic efficacy. Herein, we propose a paintable oligopeptide hydrogel containing paclitaxel (PTX)-encapsulated cell-penetrating-peptide (CPP)-modified transfersomes (PTX-CTs) to enhance transdermal PTX delivery for topical melanoma treatment. After being plastered on the skin above the melanoma tumor, the PTX-CTs-embedded hydrogel (PTX-CTs/Gel) as a patch provided prolonged retention capacity of the PTX-CTs on the skin. The PTX-CTs with superior deformability could efficiently squeeze through the channels in the stratum coreum, and the surfactant components improved the fluidity of the lipid molecules in the stratum corneum to further enhance the skin permeation. Moreover, the CPP modification rendered the PTX-CT-enhanced penetration in the skin and tumor stroma as well as efficient transportation in the tumor cells. The PTX-CTs were shown to effectively slow the tumor growth in combination with the systemic chemotherapy using Taxol, the commercial PTX formulation on the xenograft B10F16 melanoma mouse model.
Collapse
Affiliation(s)
- Tianyue Jiang
- School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 211816 , China
| | - Tong Wang
- School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 211816 , China
| | - Teng Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , China
| | - Yudi Ma
- School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 211816 , China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , China
| | - Bingfang He
- School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 211816 , China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
67
|
Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. Int J Pharm 2018; 550:333-346. [PMID: 30179702 DOI: 10.1016/j.ijpharm.2018.08.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 02/04/2023]
Abstract
The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI < 0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/mL) and FRAP (1.19 ± 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
Collapse
|
68
|
A practical framework for implementing Quality by Design to the development of topical drug products: Nanosystem-based dosage forms. Int J Pharm 2018; 548:385-399. [PMID: 29953928 DOI: 10.1016/j.ijpharm.2018.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/16/2023]
Abstract
Skin has been increasingly recognized as an important drug administration route with topical formulations, offering a targeted approach for the treatment of several dermatological disorders. The effectiveness of this route is hampered by its natural barrier, the stratum corneum (SC), and hence, different strategies have been investigated to improve percutaneous drug transport. The design of nanodelivery systems, aiming at solving skin delivery issues, have been largely explored, due to their potential to revolutionize dermal therapies, improving therapeutic effectiveness and reducing side effects. Apart from nanosystem benefits, the fulfilment of the reproducibility requirements and quality standards still limit their industrial production. The optimization of nanosystem formulation and manufacturing process is complex, usually involving a large number of variables. Therefore, a science- and risk-oriented approach, such as Quality by Design (QbD) will provide a comprehensive and noteworthy knowledge, yielding high quality drug products without extensive regulatory burden. This review aims to set up the basis for QbD development approach, encompassing preliminary and systematic risk assessments, with critical process parameters (CPPs) and critical material attributes (CMAs) identification, of different nanosystems potentially used in dermal therapies.
Collapse
|
69
|
Delivery of oat-derived phytoceramides into the stratum corneum of the skin using nanocarriers: Formulation, characterization and in vitro and ex-vivo penetration studies. Eur J Pharm Biopharm 2018; 127:260-269. [DOI: 10.1016/j.ejpb.2018.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/02/2023]
|
70
|
Zanela da Silva Marques T, Santos-Oliveira R, Betzler de Oliveira de Siqueira L, Cardoso VDS, de Freitas ZMF, Barros RDCDSA, Villa ALV, Monteiro MSDSDB, Dos Santos EP, Ricci-Junior E. Development and characterization of a nanoemulsion containing propranolol for topical delivery. Int J Nanomedicine 2018; 13:2827-2837. [PMID: 29785109 PMCID: PMC5957063 DOI: 10.2147/ijn.s164404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Propranolol (PPN) is a therapeutic option for the treatment of infantile hemangiomas. This study aimed at the development of nanoemulsion (NE) containing 1% PPN, characterization of the system, and safety studies based on ex vivo permeation, cytotoxicity, and biodistribution in vivo. METHODS The formulation was developed and characterized in relation to the droplet size, polydispersity index (PDI), pH, zeta potential, and electronic microscopy. Ex vivo permeation studies were used to evaluate the cutaneous retention of PPN in the epidermis and dermis. Cytotoxicity studies were performed in fibroblasts, macrophages, and keratinocytes. In vivo biodistribution assay of the formulations was performed by means of labeling with technetium-99m. RESULTS NE1 exhibited droplet size of 26 nm, PDI <0.4, pH compatible with the skin, and zeta potential of -20 mV, which possibly contributes to the stability. Electron microscopy showed that the NE presented droplets of nanometric size and spherical shape. NE1 provided excellent stability for PPN. In the ex vivo cutaneous permeation assay, the NE provided satisfactory PPN retention particularly in the dermis, which is the site of drug action. In addition, NE1 promoted cutaneous permeation of the PPN in small amount. In vivo biodistribution showed that the radiolabeled formulation remained in the skin and a small amount reached the bloodstream. NE1 presented low cytotoxicity to fibroblasts, macrophages, and keratinocytes in the concentrations evaluated in the cytotoxicity assay. CONCLUSION We concluded that the formulation is safe for skin administration; however, cutaneous irritation studies should be performed to confirm the safety of the formulation before clinical studies in patients with infantile hemangiomas.
Collapse
Affiliation(s)
| | | | | | - Verônica da Silva Cardoso
- Unit of Biocatalysis, Bioproducts and Bioenergy (Bioinivar), Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
71
|
Marto J, Ruivo E, Lucas SD, Gonçalves LM, Simões S, Gouveia LF, Felix R, Moreira R, Ribeiro HM, Almeida AJ. Starch nanocapsules containing a novel neutrophil elastase inhibitor with improved pharmaceutical performance. Eur J Pharm Biopharm 2018; 127:1-11. [PMID: 29409864 DOI: 10.1016/j.ejpb.2018.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/07/2018] [Accepted: 01/17/2018] [Indexed: 12/22/2022]
Abstract
Psoriasis and atopic dermatitis patients show an excessive amount of elastase in peripheral blood neutrophils due to an imbalance between this proteolytic enzyme and its endogenous inhibitors, the search for new human neutrophil elastase (HNE) inhibitors are required. The HNE is an attractive therapeutic target and inhibitors with new molecular architectures have been extensively investigated. In this context a promising novel synthetic human neutrophil elastase inhibitor (ER143) was associated to a starch-based nanoparticulate system (StNC) with improved pharmaceutical performance, using a quality by design approach to support product development and optimization. The resulting formulation was characterized in terms of and in vitro release, permeation and retention studies in newborn pig skin, using Franz diffusion cells revealing the StNC have the ability to control the drug release rate and contribute to a high skin retention and/or permeation profiles. The anti-inflammatory activity accessed in vivo using the croton oil-induced ear inflammation model in mice showed that erythema and edema were attenuated in 98% following local application. These observations suggest the association of ER143 to the StNC promotes a deeper skin penetration and retention, also confirming StNC as a potential topical delivery system.
Collapse
Affiliation(s)
- J Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - E Ruivo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - S D Lucas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - L M Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - L F Gouveia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - R Felix
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - R Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| | - H M Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - A J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
72
|
In vivo and in vitro study of transdermal application of diclofenac sodium using nonionic microemulsions as colloidal drug delivery systems. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
73
|
Jose A, Labala S, Ninave KM, Gade SK, Venuganti VVK. Effective Skin Cancer Treatment by Topical Co-delivery of Curcumin and STAT3 siRNA Using Cationic Liposomes. AAPS PharmSciTech 2018. [PMID: 28639178 DOI: 10.1208/s12249-017-0833-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to evaluate the effectiveness of iontophoretic co-delivery of curcumin and anti-STAT3 siRNA using cationic liposomes against skin cancer. Curcumin was encapsulated in DOTAP-based cationic liposomes and then complexed with STAT3 siRNA. This nanocomplex was characterized for the average particle size, zeta-potential, and encapsulation efficiency. The cell viability studies in B16F10 mouse melanoma cells have shown that the co-delivery of curcumin and STAT3 siRNA significantly (p < 0.05) inhibited the cancer cell growth compared with either liposomal curcumin or STAT3 siRNA alone. The curcumin-loaded liposomes were able to penetrate up to a depth of 160 μm inside the skin after iontophoretic (0.47 mA/cm2) application. The in vivo efficacy studies were performed in the mouse model of melanoma skin cancer. Co-administration of the curcumin and STAT3 siRNA using liposomes significantly (p < 0.05) inhibited the tumor progression as measured by tumor volume and tumor weight compared with either liposomal curcumin or STAT3 siRNA alone. Furthermore, the iontophoretic administration of curcumin-loaded liposome-siRNA complex showed similar effectiveness in inhibiting tumor progression and STAT3 protein suppression compared with intratumoral administration. Taken together, cationic liposomes can be utilized for topical iontophoretic co-delivery of small molecule and siRNA for effective treatment of skin diseases.
Collapse
|
74
|
Arslan Azizoglu G, Tuncay Tanriverdi S, Aydin Kose F, Ballar Kirmizibayrak P, Ozer O. Dual-Prevention for UV-Induced Skin Damage: Incorporation of Melatonin-Loaded Elastic Niosomes into Octyl Methoxycinnamate Pickering Emulsions. AAPS PharmSciTech 2017; 18:2987-2998. [PMID: 28493002 DOI: 10.1208/s12249-017-0786-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/17/2017] [Indexed: 01/20/2023] Open
Abstract
Incorporation of antioxidants into sunscreens is a logical approach, yet co-delivery of them with UV filters is a challenge. Here, we purposed a combination therapy, in which the chemical UV filter, octyl methoxycinnamate, was accumulated on upper skin while the antioxidant, melatonin, can penetrate deeper layers to show its effects. Melatonin-loaded elastic niosomes and octyl methoxycinnamate Pickering emulsion were prepared separately. Lyophilized elastic niosomes were dispersed into the Pickering emulsion to prepare the proposed combination formulation. The characterization studies of the formulations revealed that elastic niosomes can be prepared with tunable nanometer sizes, whereas Pickering emulsions can encapsulate the UV filter in micrometer-sized droplets. Melatonin-loaded elastic niosomes prepared with Tween80/Span80 mixture were 146 nm with a PI of 0.438, and 58.42% entrapment efficiency was achieved. The mean diameter size of the combination formulation was 27.8 μm. Ex vivo permeation studies revealed that 7.40% of octyl methoxycinnamate and 58% of melatonin were permeated through the rat skin while 27.6% octyl methoxycinnamate and 37% of melatonin accumulated in the skin after 24 h. Cell culture studies with real-time cell analyzer showed that the proposed formulation consist of melatonin-loaded elastic niosomes and octyl methoxycinnamate Pickering emulsion had no negative effect on the cell proliferation and viability. According to α,α-diphenyl-β-picrylhydrazyl free radical scavenging method, the proposed formulation showed as high antioxidant activity as melatonin itself. It is concluded that the proposed formulation would be a promising dual therapy for UV-induced skin damage with co-delivery strategy.
Collapse
|
75
|
Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12:7291-7309. [PMID: 29042776 PMCID: PMC5634382 DOI: 10.2147/ijn.s146315] [Citation(s) in RCA: 719] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanotechnology has recently gained increased attention for its capability to effectively diagnose and treat various tumors. Nanocarriers have been used to circumvent the problems associated with conventional antitumor drug delivery systems, including their nonspecificity, severe side effects, burst release and damaging the normal cells. Nanocarriers improve the bioavailability and therapeutic efficiency of antitumor drugs, while providing preferential accumulation at the target site. A number of nanocarriers have been developed; however, only a few of them are clinically approved for the delivery of antitumor drugs for their intended actions at the targeted sites. The present review is divided into three main parts: first part presents introduction of various nanocarriers and their relevance in the delivery of anticancer drugs, second part encompasses targeting mechanisms and surface functionalization on nanocarriers and third part covers the description of selected tumors, including breast, lungs, colorectal and pancreatic tumors, and applications of relative nanocarriers in these tumors. This review increases the understanding of tumor treatment with the promising use of nanotechnology.
Collapse
Affiliation(s)
- Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad
| | - Waqar Aman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat
| | - Izhar Ullah
- Department of Health and Medical Sciences, University of Poonch, Rawalakot, Azad Kashmir
| | | | | | - Shumaila Shafique
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
76
|
Wan T, Pan J, Long Y, Yu K, Wang Y, Pan W, Ruan W, Qin M, Wu C, Xu Y. Dual roles of TPGS based microemulsion for tacrolimus: Enhancing the percutaneous delivery and anti-psoriatic efficacy. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
77
|
Curcumin Protects Skin against UVB-Induced Cytotoxicity via the Keap1-Nrf2 Pathway: The Use of a Microemulsion Delivery System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5205471. [PMID: 28757910 PMCID: PMC5516744 DOI: 10.1155/2017/5205471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/19/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023]
Abstract
Curcumin was found to be beneficial in treating several skin pathologies and diseases, providing antioxidant protection due to its reducing properties and its electrophilic properties (the ability to activate the Nrf2 pathway and induce phase II cytoprotective enzymes). Nevertheless, clinical applications of curcumin are being hampered by its insufficient solubility, chemical instability, and poor absorption, leading to low efficacy in preventing skin pathologies. These limitations can be overcome by using a nanotechnology-based delivery system. Here, we elucidated the possibility of using curcumin encapsulated in a microemulsion preserving its unique chemical structure. We also examined whether curcumin microemulsion would reduce UVB-induced toxicity in skin. A significant curcumin concentration was found in the human skin dermis following topical application of a curcumin microemulsion. Moreover, curcumin microemulsion enhanced the reduction of UV-induced cytotoxicity in epidermal cells, paving the way for other incorporated electrophiles in encapsulated form protecting skin against stress-related diseases.
Collapse
|
78
|
Mathur M, Devi VK. Potential of novel drug delivery systems in the management of topical candidiasis. J Drug Target 2017; 25:685-703. [DOI: 10.1080/1061186x.2017.1331352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahima Mathur
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, India
| | - V. Kusum Devi
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, India
| |
Collapse
|
79
|
Heydari S, Ghanbarzadeh S, Anoush B, Ranjkesh M, Javadzadeh Y, Kouhsoltani M, Hamishehkar H. Nanoethosomal formulation of gammaoryzanol for skin-aging protection and wrinkle improvement: a histopathological study. Drug Dev Ind Pharm 2017; 43:1154-1162. [PMID: 28277843 DOI: 10.1080/03639045.2017.1300169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Free radical scavengers and antioxidants, with the main focus on enhanced targeting to the skin layers, can provide protection against skin ageing. OBJECTIVE The aim of the present study was to prepare nanoethosomal formulation of gammaoryzanol (GO), a water insoluble antioxidant, for its dermal delivery to prevent skin aging. METHODS Nanoethosomal formulation was prepared by a modified ethanol injection method and characterized by using laser light scattering, scanning electronic microscope (SEM) and X-ray diffraction (XRD) techniques. The effects of formulation parameters on nanoparticle size, encapsulation efficiency percent (EE%) and loading capacity percent (LC%) were investigated. Antioxidant activity of GO-loaded formulation was investigated in vitro using normal African green monkey kidney fibroblast cells (Vero). The effect of control and GO-loaded nanoethosomal formulation on superoxide dismutase (SOD) and malondialdehyde (MDA) content of rat skin was also probed. Furthermore, the effect of GO-loaded nanoethosomes on skin wrinkle improvement was studied by dermoscopic and histological examination on healthy humans and UV-irradiated rats, respectively. RESULTS The optimized nanoethosomal formulation showed promising characteristics including narrow size distribution 0.17 ± 0.02, mean diameter of 98.9 ± 0.05 nm, EE% of 97.12 ± 3.62%, LC% of 13.87 ± 1.36% and zeta potential value of -15.1 ± 0.9 mV. The XRD results confirmed uniform drug dispersion in the nanoethosomes structure. In vitro and in vivo antioxidant studies confirmed the superior antioxidant effect of GO-loaded nanoethosomal formulation compared with control groups (blank nanoethosomes and GO suspension). CONCLUSIONS Nanoethosomes was a promising carrier for dermal delivery of GO and consequently had superior anti-aging effect.
Collapse
Affiliation(s)
- Saman Heydari
- a Institute for Stem Cell and Regenerative Medicine and Students' Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Saeed Ghanbarzadeh
- b Zanjan Pharmaceutical Nanotechnology Research Center and Department of Pharmaceutics, Faculty of Pharmacy , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Behzad Anoush
- c Dermatology & Dermopharmacy Research Team and Department of Dermatology, Sina Hospital , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammadreza Ranjkesh
- c Dermatology & Dermopharmacy Research Team and Department of Dermatology, Sina Hospital , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Yousef Javadzadeh
- d Biotechnology Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Maryam Kouhsoltani
- e Department of Oral & Maxillofacial Pathology, Faculty of Dentistry , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hamed Hamishehkar
- f Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
80
|
Noor NM, Khan AA, Hasham R, Talib A, Sarmidi MR, Aziz R, Aziz AA. Empty nano and micro-structured lipid carriers of virgin coconut oil for skin moisturisation. IET Nanobiotechnol 2017; 10:195-9. [PMID: 27463789 DOI: 10.1049/iet-nbt.2015.0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Virgin coconut oil (VCO) is the finest grade of coconut oil, rich in phenolic content, antioxidant activity and contains medium chain triglycerides (MCTs). In this work formulation, characterisation and penetration of VCO-solid lipid particles (VCO-SLP) have been studied. VCO-SLP were prepared using ultrasonication of molten stearic acid and VCO in an aqueous solution. The electron microscopy imaging revealed that VCO-SLP were solid and spherical in shape. Ultrasonication was performed at several power intensities which resulted in particle sizes of VCO-SLP ranged from 0.608 ± 0.002 µm to 44.265 ± 1.870 µm. The particle size was directly proportional to the applied power intensity of ultrasonication. The zeta potential values of the particles were from -43.2 ± 0.28 mV to -47.5 ± 0.42 mV showing good stability. The cumulative permeation for the smallest sized VCO-SLP (0.608 µm) was 3.83 ± 0.01 µg/cm(2) whereas for larger carriers it was reduced (3.59 ± 0.02 µg/cm(2)). It is concluded that SLP have the potential to be exploited as a micro/nano scale cosmeceutical carrying vehicle for improved dermal delivery of VCO.
Collapse
Affiliation(s)
- Norhayati Mohamed Noor
- Institute of Bioproduct Development (N22), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Abid Ali Khan
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shehzad, 44000 Islamabad, Pakistan
| | - Rosnani Hasham
- Institute of Bioproduct Development (N22), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Ayesha Talib
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shehzad, 44000 Islamabad, Pakistan
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development (N22), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Ramlan Aziz
- Institute of Bioproduct Development (N22), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Azila Abd Aziz
- Institute of Bioproduct Development, Universiti Teknologi Malaysia International Campus, Jalan Semarak, 54100 Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| |
Collapse
|
81
|
Chen Y, Wu Y, Gao J, Zhang Z, Wang L, Chen X, Mi J, Yao Y, Guan D, Chen B, Dai J. Transdermal Vascular Endothelial Growth Factor Delivery with Surface Engineered Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5173-5180. [PMID: 28112909 DOI: 10.1021/acsami.6b15914] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Skin injuries caused by burns or radiation remain a serious concern in terms of clinical therapy. Because of the damage to the epidermis or dermis, angiogenesis is needed to repair the skin. Vascular endothelial growth factor (VEGF) is one of the most effective factors for promoting angiogenesis and preventing injury progression, but the delivery of VEGF to lesion sites is limited by the skin barrier. Recently, gold nanoparticle (AuNP)-mediated drug delivery into or through the epidermis and dermis has attracted much attention. However, the efficacy of the AuNP-mediated transdermal drug delivery remains unknown. In this study, gold nanoparticles were conjugated with VEGF and generated a surface by carrying negative charges, showing an ideal transdermal delivery efficacy for VEGF in wound repair. Our findings may provide new avenues for the treatment of cutaneous injuries.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yonghui Wu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
| | - Jining Gao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
| | - Zihao Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
| | - Linjie Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
| | - Xi Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
| | - Junwei Mi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yuanjiang Yao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
| | - Dongwei Guan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
| | - Bing Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing 100101, China
| | - Jianwu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Third Military Medical University , Chongqing 400038, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
82
|
Nawaz A, Wong TW. Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydr Polym 2017; 157:906-919. [DOI: 10.1016/j.carbpol.2016.09.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
83
|
Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev 2017; 110-111:112-126. [PMID: 27370248 PMCID: PMC5199637 DOI: 10.1016/j.addr.2016.06.015] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Peptide-drug conjugates (PDCs) represent an important class of therapeutic agents that combine one or more drug molecules with a short peptide through a biodegradable linker. This prodrug strategy uniquely and specifically exploits the biological activities and self-assembling potential of small-molecule peptides to improve the treatment efficacy of medicinal compounds. We review here the recent progress in the design and synthesis of peptide-drug conjugates in the context of targeted drug delivery and cancer chemotherapy. We analyze carefully the key design features in choosing the peptide sequence and linker chemistry for the drug of interest, as well as the strategies to optimize the conjugate design. We highlight the recent progress in the design and synthesis of self-assembling peptide-drug amphiphiles to construct supramolecular nanomedicine and nanofiber hydrogels for both systemic and topical delivery of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Andrew G Cheetham
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Garren Angacian
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Lisi Xie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
84
|
|
85
|
Bochicchio S, Sala M, Spensiero A, Scala MC, Gomez-Monterrey IM, Lamberti G, Barba AA. On the design of tailored liposomes for KRX29 peptide delivery. NEW J CHEM 2017. [DOI: 10.1039/c7nj03115g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high interest in therapeutic peptides, due to the specificity of their mechanisms of action, has stimulated the research of new delivery strategies to overcome bioavailability problems concerning the use of peptides in their naked form. In this study liposomal suitable delivery system was designed and produced.
Collapse
Affiliation(s)
- S. Bochicchio
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | - M. Sala
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | - A. Spensiero
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | - M. C. Scala
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | | | - G. Lamberti
- Dipartimento di Ingegneria Industriale
- University of Salerno
- Italy
| | - A. A. Barba
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| |
Collapse
|
86
|
Arantes PDO, Santos QND, Freitas ZMFD, Pyrrho ADS, Cerqueira-Coutinho C, Villa ALV, Santos EPD, Ricci-Júnior E. Promotion of cutaneous penetration of nifedipine for nanoemulsion. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000215249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
87
|
Islam P, Water JJ, Bohr A, Rantanen J. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties. Pharmaceutics 2016; 9:E1. [PMID: 28025505 PMCID: PMC5374367 DOI: 10.3390/pharmaceutics9010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/14/2023] Open
Abstract
Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated, particularly with respect to the impact of composition on the resulting physicochemical properties. Different compositions were obtained as nanogels with sizes ranging from 203 to 561 nm. The addition of alginate and exclusion of sodium tri-penta phosphate led to an increase in nanogel size. The nanogels were subsequently spray-dried to form nano-embedded microparticles with trehalose or mannitol as matrix excipient. The microparticles of different composition were mostly spherical with a smooth surface and a mass median aerodynamic diameter of 6-10 µm. Superior redispersibility was observed for microparticles containing amorphous trehalose. This study demonstrates the potential of nano-embedded microparticles for stabilization and delivery of nanogel-based delivery systems.
Collapse
Affiliation(s)
- Paromita Islam
- Section for Pharmaceutical Technology and Engineering, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Jorrit J Water
- Section for Pharmaceutical Technology and Engineering, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Adam Bohr
- Section for Pharmaceutical Technology and Engineering, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Jukka Rantanen
- Section for Pharmaceutical Technology and Engineering, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
88
|
Jose A, Labala S, Venuganti VVK. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. J Drug Target 2016; 25:330-341. [PMID: 27819148 DOI: 10.1080/1061186x.2016.1258567] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Skin cancer is one of the most widely prevalent cancer types with over expression of multiple oncogenic signaling molecules including STAT3. Curcumin is a natural compound with effective anti-cancer properties. The objective of this work was to investigate the liposomal co-delivery of curcumin and STAT3 siRNA by non-invasive topical iontophoretic application to treat skin cancer. Curcumin was encapsulated in cationic liposomes and then complexed with STAT3 siRNA. The liposomal nanocomplex was characterized for particle size, zeta-potential, drug release and stability. Human epidermoid (A431) cancer cells were used to study the cell uptake, growth inhibition and apoptosis induction of curcumin-loaded liposome-siRNA complex. Topical iontophoresis was applied to study the skin penetration of nanocomplex in excised porcine skin model. Results showed that curcumin-loaded liposome-siRNA complex was rapidly taken up by cells preferentially through clathrin-mediated endocytosis pathway. The co-delivery of curcumin and STAT3 siRNA using liposomes resulted in significantly (p < .05) greater cancer cell growth inhibition and apoptosis events compared with neat curcumin and free STAT3 siRNA treatment. Furthermore, topical iontophoresis application enhanced skin penetration of nanocomplex to penetrate viable epidermis. In conclusion, cationic liposomal system can be developed for non-invasive iontophoretic co-delivery of curcumin and siRNA to treat skin cancer.
Collapse
Affiliation(s)
- Anup Jose
- a Department of Pharmacy , Birla Institute of Technology and Science (BITS) Pilani , Hyderabad Campus , Hyderabad , India
| | - Suman Labala
- a Department of Pharmacy , Birla Institute of Technology and Science (BITS) Pilani , Hyderabad Campus , Hyderabad , India
| | | |
Collapse
|
89
|
Wang Y, Rong J, Zhang J, Liu Y, Meng X, Guo H, Liu H, Chen L. Morphology, in vivo distribution and antitumor activity of bexarotene nanocrystals in lung cancer. Drug Dev Ind Pharm 2016; 43:132-141. [PMID: 27588517 DOI: 10.1080/03639045.2016.1225752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study was to develop and evaluate the morphology, biodistribution and antitumor activity of bexarotene nanocrystals delivery system. The morphology was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope and bexarotene nanocrystals exhibited the advantages of making the efficacy more steady and durable compared with control group in lung with less cardiac accumulation as shown by biodistribution studies in vivo. In addition, MTT assay, flow cytometry analysis, observation of morphological changes and apoptotic body demonstrated that bexarotene nanocrystals could significantly enhance the in vitro cytotoxicity and induced G1 cycle arrest and apoptosis against A549 cells. Also, bexarotene nanocrystals had significant antitumor activity in mice bearing A549 cell line. This finding was correlated with both in vitro and in vivo. Thereby, the overall results suggest that the bexarotene nanocrystals represent a potential source of medicine, which made bexarotene nanocrystals a promising candidate for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yongjie Wang
- b Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , 250012 , P.R. China
| | - Jinghong Rong
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China
| | - Jiaozhen Zhang
- c Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE) , School of Pharmaceutical Sciences, Shandong University , Jinan , 250012 , P.R. China
| | - Yu Liu
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China
| | - Xuelian Meng
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China
| | - Hejian Guo
- b Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , 250012 , P.R. China
| | - Hongsheng Liu
- d Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province , Shenyang , 110036 , P.R. China
| | - Lijiang Chen
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China.,d Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province , Shenyang , 110036 , P.R. China
| |
Collapse
|
90
|
Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int J Pharm 2016; 510:48-56. [DOI: 10.1016/j.ijpharm.2016.06.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022]
|
91
|
Neubert RHH, Sonnenberger S, Dobner B, Gray CW, Barger KN, Sevi-Maxwell K, Sommer E, Wohlrab J. Controlled Penetration of a Novel Dimeric Ceramide into and across the Stratum Corneum Using Microemulsions and Various Types of Semisolid Formulations. Skin Pharmacol Physiol 2016; 29:130-4. [PMID: 27193887 DOI: 10.1159/000445776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/23/2016] [Indexed: 11/19/2022]
Abstract
Ceramides (CERs) are integral parts of the intercellular lipid lamellae of the stratum corneum (SC), which is responsible for the barrier function of the skin. Many skin diseases such as atopic dermatitis and psoriasis are associated with the depletion or disturbance of the level of CERs in the SC. Administration of an exogenous novel dimeric ceramide (dCER) deep into the SC may help to stabilize the SC barrier substantially and to treat some skin disease conditions. Consequently, with the help of the existing technology, it might be possible to formulate various pharmaceutical dosage forms that can facilitate penetration of dCER into the SC. Therefore, the penetration of dCER was studied using a high-performance liquid chromatography/atmospheric-pressure ionization/mass spectrometry method for the detection and quantification of exogenous dCER in the SC as well as other skin layers. Penetration studies were carried out in the Franz diffusion cell using excised human skin ex vivo. Penetration of dCER was studied with 3 model formulations: a colloidal formulation (microemulsion), a cream formulation with ethoxydiglycol as penetration enhancer and a nanoformulation. The highest concentrations of dCER in the different skin layers were found after application of the cream with penetration enhancer. Surprisingly, the lowest concentrations of dCER in the different skin layers were found after application of the microemulsion.
Collapse
Affiliation(s)
- Reinhard H H Neubert
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Skin penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm 2016; 507:12-20. [PMID: 27130364 DOI: 10.1016/j.ijpharm.2016.03.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/23/2022]
Abstract
For an improved understanding of the relevant particle features for cutaneous use, we studied the effect of the surface charge of acrylic nanocapsules (around 150nm) and the effect of a chitosan gel vehicle on the particle penetration into normal and stripped human skin ex vivo as well as local tolerability (cytotoxicity and irritancy). Rhodamin-tagged nanocapsules penetrated and remained in the stratum corneum. Penetration of cationic nanocapsules exceeded the penetration of anionic nanocapsules. When applied on stripped skin, however, the fluorescence was also recorded in the viable epidermis and dermis. Cationic surface charge and embedding the particles into chitosan gel favored access to deeper skin. Keratinocytes took up the nanocapsules rapidly. Cytotoxicity (viability<80%), following exposure for ≥24h, appears to be due to the surfactant polysorbate 80, used for nanocapsuleś stabilization. Uptake by fibroblasts was low and no cytotoxicity was observed. No irritant reactions were detected in the HET-CAM test. In conclusion, the surface charge and chitosan vehicle, as well as the skin barrier integrity, influence the skin penetration of acrylic nanocapsules. Particle localization in the intact stratum corneum of normal skin and good tolerability make the nanocapsules candidates for topical use on the skin, provided that the polymer wall allows the release of the active encapsulated substance.
Collapse
|
93
|
Alkrad JA, Mrestani Y, Neubert RH. Development and characterization of microemulsions containing hyaluronic acid. Eur J Pharm Sci 2016; 86:84-90. [DOI: 10.1016/j.ejps.2016.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
|
94
|
Kong X, Zhao Y, Quan P, Fang L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
95
|
Maestrelli F, Bragagni M, Mura P. Advanced formulations for improving therapies with anti-inflammatory or anaesthetic drugs: A review. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
96
|
Marto J, Gouveia LF, Gonçalves LM, Gaspar DP, Pinto P, Carvalho FA, Oliveira E, Ribeiro HM, Almeida AJ. A Quality by design (QbD) approach on starch-based nanocapsules: A promising platform for topical drug delivery. Colloids Surf B Biointerfaces 2016; 143:177-185. [PMID: 27003468 DOI: 10.1016/j.colsurfb.2016.03.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/24/2022]
Abstract
Exploring novel applications for approved excipients with a history of safe use in therapeutics is a smart strategy to obtain improved pharmaceutical products. The present study aimed at developing a novel starch-based nanoparticulate carrier system (StNC) for topical delivery of lipophilic bioactive molecules. The role of the different factors that affect the particle size distribution and zeta potential of StNC prepared by the emulsification-solvent evaporation method was assessed using a quality by design approach. An optimal formulation was selected and fully characterized in terms of molecular interactions (DSC and FTIR), morphology (TEM and AFM), as well as in vitro and in vivo biological properties, including biological sensitivity/irritation studies performed in human volunteers. Results show the surfactant and lipid contents play a major role in StNC particle size distribution. In addition, all tested formulations presented a zeta potential of ca. +33.6±6.7 mV, indicating a good physical stability, while revealing an excellent compromise between stability, safety and cosmeticity, evidencing that StNC are suitable nanocarriers for topical use. Finally, the design planning methodology has clearly shown its usefulness for optimizing the formulation, being also crucial for the understanding of StNC formation process. The StNC proved to be a promising formulation strategy and a potential nanocarrier for topical lipophilic bioactive molecules.
Collapse
Affiliation(s)
- J Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - L F Gouveia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - L M Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - D P Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - P Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - F A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - E Oliveira
- Laboratórios Atral S.A., Vala do Carregado, Portugal
| | - H M Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - A J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
97
|
Rout B, Liu CH, Wu WC. Enhancement of photodynamic inactivation against Pseudomonas aeruginosa by a nano-carrier approach. Colloids Surf B Biointerfaces 2016; 140:472-480. [PMID: 26808214 DOI: 10.1016/j.colsurfb.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/01/2015] [Accepted: 01/01/2016] [Indexed: 12/12/2022]
Abstract
As pathogens steadily develop resistance to widely used antibiotics, new methodologies for their efficient inactivation must be developed. Photodynamic therapy is an upcoming technique that provides an alternative option for treating pathogenic infections. The efficiency of photodynamic therapy has been limited by the use of aqueous mediums for dispersing photosensitising agents. Toluidine Blue O (TBO) was chosen for this study as a cationic photosensitiser to inhibit Gram-negative bacterium Pseudomonas aeruginosa. Enhanced delivery of the photosensitiser was ensured by utilising an essential oil-based microemulsion. The efficiency of photodynamic therapy was further improved by the use of a chemical penetration enhancer to improve permeability of the bacterial outer membrane. TBO accumulation patterns in neonate pig skin were studied using confocal laser scanning microscopy. The physicochemical properties of the TBO loaded microemulsion, including UV-vis absorbance, size distribution and zeta potential, were analysed to understand the enhanced antimicrobial activity. Confocal laser scanning microscopy confirmed the formation of a TBO reservoir in the skin by the TBO-loaded microemulsions. TBO (5 μg/mL) in the vehicles significantly inhibited the growth of P. aeruginosa. All these efforts resulted in inhibition obtained at a drug concentration and light intensity much lower than what is reported by the works of previous investigators.
Collapse
Affiliation(s)
- Bishakh Rout
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Chi-Hsien Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan 333, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwand College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwand College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan; College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| |
Collapse
|
98
|
Lapteva M, Möller M, Gurny R, Kalia YN. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle. NANOSCALE 2015; 7:18651-18662. [PMID: 26498006 DOI: 10.1039/c5nr04770f] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn < 20 nm) increased the aqueous solubility of RA by >400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A(®) Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 ± 1.1% vs. 0.4 ± 0.1% and 7.5 ± 0.8% vs. 0.8 ± 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm(®) (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A(®) Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A(®) Micro in terms of delivery efficiency to PSU presenting human skin (10.4 ± 3.2% vs. 0.6 ± 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU, potentially translating to a safer and more efficient clinical management of acne.
Collapse
Affiliation(s)
- Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.
| | | | | | | |
Collapse
|
99
|
Hoppel M, Caneri M, Glatter O, Valenta C. Self-assembled nanostructured aqueous dispersions as dermal delivery systems. Int J Pharm 2015; 495:459-462. [DOI: 10.1016/j.ijpharm.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/28/2022]
|
100
|
Firooz A, Nafisi S, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm 2015; 495:599-607. [DOI: 10.1016/j.ijpharm.2015.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|