51
|
Karuturi R, Al-Horani RA, Mehta SC, Gailani D, Desai UR. Discovery of allosteric modulators of factor XIa by targeting hydrophobic domains adjacent to its heparin-binding site. J Med Chem 2013; 56:2415-28. [PMID: 23451707 DOI: 10.1021/jm301757v] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To discover promising sulfated allosteric modulators (SAMs) of glycosaminoglycan-binding proteins (GBPs), such as human factor XIa (FXIa), we screened a library of 26 synthetic, sulfated quinazolin-4(3H)-ones (QAOs) resulting in the identification of six molecules that reduced the Vmax of substrate hydrolysis without influencing the KM. Mutagenesis of residues of the heparin-binding site (HBS) of FXIa introduced a nearly 5-fold loss in inhibition potency supporting recognition of an allosteric site. Fluorescence studies showed a sigmoidal binding profile indicating highly cooperative binding. Competition with a positively charged, heparin-binding polymer did not fully nullify inhibition suggesting importance of hydrophobic forces to binding. This discovery suggests the operation of a dual-element recognition process, which relies on an initial Coulombic attraction of anionic SAMs to the cationic HBS of FXIa that forms a locked complex through tight interaction with an adjacent hydrophobic patch. The dual-element strategy may be widely applicable for discovering SAMs of other GBPs.
Collapse
Affiliation(s)
- Rajesh Karuturi
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
52
|
Borgel D, Lerolle N. Quel avenir pour les médicaments de l’hémostase dans le traitement du sepsis sévère après le Xigris® ? MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-013-0665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
53
|
Al-Horani RA, Ponnusamy P, Mehta AY, Gailani D, Desai UR. Sulfated pentagalloylglucoside is a potent, allosteric, and selective inhibitor of factor XIa. J Med Chem 2013; 56:867-78. [PMID: 23316863 DOI: 10.1021/jm301338q] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inhibition of factor XIa (FXIa) is a novel paradigm for developing anticoagulants without major bleeding consequences. We present the discovery of sulfated pentagalloylglucoside (6) as a highly selective inhibitor of human FXIa. Biochemical screening of a focused library led to the identification of 6, a sulfated aromatic mimetic of heparin. Inhibitor 6 displayed a potency of 551 nM against FXIa, which was at least 200-fold more selective than other relevant enzymes. It also prevented activation of factor IX and prolonged human plasma and whole blood clotting. Inhibitor 6 reduced V(MAX) of FXIa hydrolysis of chromogenic substrate without affecting the K(M), suggesting an allosteric mechanism. Competitive studies showed that 6 bound in the heparin-binding site of FXIa. No allosteric small molecule has been discovered to date that exhibits equivalent potency against FXIa. Inhibitor 6 is expected to open up a major route to allosteric FXIa anticoagulants with clinical relevance.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | | | | | |
Collapse
|
54
|
Al-Horani RA, Mehta AY, Desai UR. Potent direct inhibitors of factor Xa based on the tetrahydroisoquinoline scaffold. Eur J Med Chem 2012; 54:771-83. [PMID: 22770607 DOI: 10.1016/j.ejmech.2012.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022]
Abstract
Direct inhibition of coagulation factor Xa (FXa) carries significant promise for developing effective and safe anticoagulants. Although a large number of FXa inhibitors have been studied, each can be classified as either possessing a highly flexible or a rigid core scaffold. We reasoned that an intermediate level of flexibility will provide high selectivity for FXa considering that its active site is less constrained in comparison to thrombin and more constrained as compared to trypsin. We studied several core scaffolds including 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid for direct FXa inhibition. Using a genetic algorithm-based docking and scoring approach, a promising candidate 23 was identified, synthesized, and found to inhibit FXa with a K(i) of 28 μM. Optimization of derivative 23 resulted in the design of a potent dicarboxamide 47, which displayed a K(i) of 135 nM. Dicarboxamide 47 displayed at least 1852-fold selectivity for FXa inhibition over other coagulation enzymes and doubled PT and aPTT of human plasma at 17.1 μM and 20.2 μM, respectively, which are comparable to those of clinically relevant agents. Dicarboxamide 47 is expected to serve as an excellent lead for further anticoagulant discovery.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
55
|
Inhibition of factor XI activation attenuates inflammation and coagulopathy while improving the survival of mouse polymicrobial sepsis. Blood 2012; 119:4762-8. [PMID: 22442348 DOI: 10.1182/blood-2011-10-386185] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Severe bacterial sepsis often leads to a systemic procoagulant and proinflammatory condition that can manifest as disseminated intravascular coagulation, septic shock, and multiple organ failure. Because activation of the contact proteases factor XII (FXII), prekallikrein, and factor XI (FXI) can trigger coagulation and inflammatory responses, the contact factors have been considered potential targets for the treatment of sepsis. However, the pathogenic role of contact activation in severe infections has not been well defined. We therefore investigated whether an anticoagulant antibody (14E11) that selectively inhibits prothrombotic FXI activation by activated FXII (FXIIa) modifies the course of bowel perforation-induced peritoneal sepsis in mice. Early anticoagulation with 14E11 suppressed systemic thrombin- antithrombin complex formation, IL-6, and TNF-α levels, and reduced platelet consumption in the circulation and deposition in the blood vessels. Treatment with 14E11 within 12 hours after bowel perforation significantly improved survival compared with vehicle treatment, and the saturating dose did not increase tail bleeding. These data suggest that severe polymicrobial abdominal infection induces prothrombotic FXI activation, to the detriment of the host. Systemic anticoagulation by inhibiting FXI activation or FXIIa procoagulant activity during sepsis may therefore limit the development of disseminated intravascular coagulation without increasing bleeding risks.
Collapse
|
56
|
He R, Chen D, He S. Factor XI: hemostasis, thrombosis, and antithrombosis. Thromb Res 2011; 129:541-50. [PMID: 22197449 DOI: 10.1016/j.thromres.2011.11.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Coagulation factor FXI (FXI), a plasma serine protease zymogen, has important roles in both intrinsic and extrinsic coagulation pathways and bridges the initiation and amplification phases of plasmatic hemostasis. Recent studies have provided new insight into the molecular structure and functional features of FXI and have demonstrated distinct structural and biological differences between activated factor XII (FXIIa)-mediated FXI activation and tissue factor/thrombin-mediated FXI activation. The former is important in thrombosis; the latter is more essential in hemostasis. Activated partial thromboplastin tine (aPTT) artificially reflects FXIIa-initiated intrinsic coagulation pathway in vitro. Conversely, FXIIa-inhibited diluted thromboplastin time assay may reflect tissue factor/thrombin-mediated FXI activation in vivo. Further explication of the genetic mutations of FXI deficiency has improved the understanding of the structure-function relationship of FXI. Besides its procoagulant activity, the antifibrinolytic activity of FXI was well documented in a wealth of literature. Finally, the new emerging concept of inhibiting FXI as a novel antithrombotic approach with an improved benefit-risk ratio has been supported through observations from human FXI deficiency and various animal models. Large- and small-molecule FXI inhibitors have shown promising antithrombotic effects. The present review summarizes the recent advancements in the molecular physiology of FXI and the molecular pathogenesis of FXI deficiency and discusses the evidence and progress of FXI-targeting antithrombotics development.
Collapse
Affiliation(s)
- Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
57
|
Woodruff RS, Sullenger B, Becker RC. The many faces of the contact pathway and their role in thrombosis. J Thromb Thrombolysis 2011; 32:9-20. [PMID: 21404067 DOI: 10.1007/s11239-011-0578-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding inherent differences between thrombosis and hemostasis in the vascular system are critical to developing safe and effective anticoagulants. To this end, constituents of the contact activated and intrinsic pathway of coagulation appear to be involved in pathological thrombus formation, but are not required for normal hemostasis. In addition to coagulation, activation of the contact system is involved in fibrinolytic, inflammatory, and angiogenic processes that can also contribute to the thrombotic environment. This review discusses the role of the contact system in these processes, and highlights the potential of FXII and FXI as safer targets for antithrombotic therapy.
Collapse
Affiliation(s)
- Rebecca S Woodruff
- Duke Translational Research Institute, Duke University School of Medicine, Durham, NC, USA
| | | | | |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW Arterial and venous thrombosis are major causes of morbidity and mortality, and the incidence of thromboembolic diseases increases as a population ages. Thrombi are formed by activated platelets and fibrin. The latter is a product of the plasma coagulation system. Currently available anticoagulants such as heparins, vitamin K antagonists and inhibitors of thrombin or factor Xa target enzymes of the coagulation cascade that are critical for fibrin formation. However, fibrin is also necessary for terminating blood loss at sites of vascular injury. As a result, anticoagulants currently in clinical use increase the risk of bleeding, partially offsetting the benefits of reduced thrombosis. This review focuses on new targets for anticoagulation that are associated with minimal or no therapy-associated increased bleeding. RECENT FINDINGS Data from experimental models using mice and clinical studies of patients with hereditary deficiencies of coagulation factors XI or XII have shown that both of these clotting factors are important for thrombosis, while having minor or no apparent roles in processes that terminate blood loss (hemostasis). SUMMARY Hereditary deficiency of factor XII (Hageman factor) or factor XI, plasma proteases that initiate the intrinsic pathway of coagulation, impairs thrombus formation and provides protection from vascular occlusive events, while having a minimal impact on hemostasis. As the factor XII-factor XI pathway contributes to thrombus formation to a greater extent than to normal hemostasis, pharmacological inhibition of these coagulation factors may offer the exciting possibility of anticoagulation therapies with minimal or no bleeding risk.
Collapse
Affiliation(s)
- Felicitas Müller
- Clinical Chemistry, Department of Molecular Medicine and Surgery, University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Karolinska Institutet, University Hospital, Stockholm, Sweden
- Center of Thrombosis and Hemostasis, University Medical Center, Mainz, Germany
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas Renné
- Clinical Chemistry, Department of Molecular Medicine and Surgery, University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Karolinska Institutet, University Hospital, Stockholm, Sweden
| |
Collapse
|
59
|
Bird JE, Smith PL, Bostwick JS, Shipkova P, Schumacher WA. Bleeding response induced by anti-thrombotic doses of a phosphoinositide 3-kinase (PI3K)-β inhibitor in mice. Thromb Res 2011; 127:560-4. [DOI: 10.1016/j.thromres.2011.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/03/2011] [Accepted: 02/10/2011] [Indexed: 02/05/2023]
|
60
|
A small-molecule factor XIa inhibitor produces antithrombotic efficacy with minimal bleeding time prolongation in rabbits. J Thromb Thrombolysis 2011; 32:129-37. [DOI: 10.1007/s11239-011-0599-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
Perzborn E, Roehrig S, Straub A, Kubitza D, Misselwitz F. The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor. Nat Rev Drug Discov 2010; 10:61-75. [PMID: 21164526 DOI: 10.1038/nrd3185] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
62
|
Hanessian S, Larsson A, Fex T, Knecht W, Blomberg N. Design and synthesis of macrocyclic indoles targeting blood coagulation cascade Factor XIa. Bioorg Med Chem Lett 2010; 20:6925-8. [DOI: 10.1016/j.bmcl.2010.09.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 11/27/2022]
|
63
|
Gómez-Outes A, Suárez-Gea ML, Lecumberri R, Rocha E, Pozo-Hernández C, Vargas-Castrillón E. New parenteral anticoagulants in development. Ther Adv Cardiovasc Dis 2010; 5:33-59. [PMID: 21045018 DOI: 10.1177/1753944710387808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The therapeutic armamentarium of parenteral anticoagulants available to clinicians is mainly composed by unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), fondaparinux, recombinant hirudins (i.e. bivalirudin, desirudin, lepirudin) and argatroban. These drugs are effective and safe for prevention and/or treatment of thromboembolic diseases but they have some drawbacks. Among other inconveniences, UFH requires regular anticoagulant monitoring as a result of variability in the anticoagulant response and there is a risk of serious heparin-induced thrombocytopaenia (HIT). LMWH, fondaparinux and recombinant hirudins are mainly cleared through the kidneys and their use in patients with severe renal insufficiency may be problematic. LMWH is only partially neutralized by protamine while fondaparinux and recombinant hirudins have no specific antidote. Novel anticoagulants in development for parenteral administration include new indirect activated factor Xa (FXa) inhibitors (idrabiotaparinux, ultra-low-molecular-weight heparins [semuloparin, RO-14], new LMWH [M118]), direct FXa inhibitors (otamixaban), direct FIIa inhibitors (flovagatran sodium, pegmusirudin, NU172, HD1-22), direct FXIa inhibitors (BMS-262084, antisense oligonucleotides targeting FXIa, clavatadine), direct FIXa inhibitors (RB-006), FVIIIa inhibitors (TB-402), FVIIa/tissue factor inhibitors (tifacogin, NAPc2, PCI-27483, BMS-593214), FVa inhibitors (drotrecogin alpha activated, ART-123) and dual thrombin/FXa inhibitors (EP217609, tanogitran). These new compounds have the potential to complement established parenteral anticoagulants. In the present review, we discuss the pharmacology of new parenteral anticoagulants, the results of clinical studies, the newly planned or ongoing clinical trials with these compounds, and their potential advantages and drawbacks over existing therapies.
Collapse
Affiliation(s)
- Antonio Gómez-Outes
- Division of Pharmacology and Clinical Evaluation, Medicines for Human Use, Spanish Agency for Medicines and Health Care Products (AEMPS), Parque Empresarial Las Mercedes, Edificio 8, C/Campezo 1, Madrid, 28022, Spain.
| | | | | | | | | | | |
Collapse
|
64
|
Löwenberg EC, Meijers JCM, Monia BP, Levi M. Coagulation factor XI as a novel target for antithrombotic treatment. J Thromb Haemost 2010; 8:2349-57. [PMID: 20727068 DOI: 10.1111/j.1538-7836.2010.04031.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coagulation factor (F)XI was first described as a member of the contact pathway of coagulation. However, the 'classic' theory of the extrinsic and intrinsic pathway has been revised and FXI was found to be activated by thrombin and to play a role in sustained thrombin generation and fibrinolysis inhibition. Recent studies have pointed to a disproportionate role of FXI in thrombosis and hemostasis. The observations that human congenital FXI deficiency is generally accompanied by mild and injury-related bleeding, and that experimental, provoked bleeding in animals is unaffected by FXI deficiency or FXI inhibition, suggest that the FXI amplification pathway is less important for normal hemostasis in vivo. In contrast, elevated plasma levels of FXI may contribute to human thromboembolic disease and the antithrombotic efficacy of FXI inhibition has been demonstrated in numerous animal models of arterial, venous and cerebral thrombosis. Whether severe FXI deficiency in humans protects against thromboembolic events remains unclear, although some evidence exists that the occurrence of ischemic stroke or venous thrombosis is low in severely FXI-deficient patients. Because of its distinctive function in thrombosis and hemostasis, FXI is an attractive target for the treatment and prevention of thromboembolism. A novel strategy for FXI inhibition is the use of antisense technology which has been studied in various thrombosis and bleeding animal models. The results are promising and support the concept that targeting FXI might serve as a new, effective and potentially safer alternative for the treatment of thromboembolic disease in humans.
Collapse
Affiliation(s)
- E C Löwenberg
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
65
|
Abstract
Currently, there are several lines of evidence supporting the interplay between coagulation and inflammation in the propagation of various disease processes, including venous thromboembolism (VTE) and inflammatory diseases. Major advances in the development of oral anticoagulants have resulted in considerable progress toward the goal of safe and effective oral anticoagulants that do not require frequent monitoring or dose adjustment and have minimal food/drug interactions. Indirect inhibitors such as low-molecular-weight heparin (LMWH) and the pentasaccharide fondaparinux represent improvements over traditional drugs such as unfractionated heparin for acute treatment of VTE, constituting a more targeted anticoagulant approach with predictable pharmacokinetic profiles and no requirement for monitoring. Vitamin K antagonist, with its inherent limitations in terms of multiple food and drug interactions and frequent need for monitoring, remains the only oral anticoagulant approved for long-term secondary thromboprophylaxis in VTE. The oral-direct thrombin inhibitor ximelagatran was withdrawn from the world market due to safety concerns. Newer anticoagulant drugs such as parenteral pentasaccharides (idraparinux, SSR126517E), novel oral-direct thrombin inhibitors (dabigatran), oral-direct factor Xa inhibitors (rivaroxaban, apixaban, YM-150, DU-176b), and tissue factor/factor VIIa complex inhibitors have been "tailor-made" to target specific procoagulant complexes and have the potential to greatly expand oral antithrombotic targets for both acute and long-term treatment of VTE, acute coronary syndromes, and for the prevention of stroke in atrial fibrillation patients.
Collapse
|
66
|
Abstract
Apixaban is an oral, direct, and highly selective factor Xa inhibitor in late-stage clinical development for the prevention and treatment of thromboembolic diseases. Apixaban was evaluated in rat thrombosis and hemostasis models. Thrombosis was produced in the carotid artery by FeCl2 application, in the vena cava by either FeCl2 application or tissue factor injection, and in an arterial-venous shunt. Hemostasis was assessed using cuticle, renal cortex, and mesenteric artery bleeding times. Intravenous apixaban infusions of 0.1, 0.3, 1, and 3 mg/kg per hour increased the ex vivo prothrombin time to 1.24, 1.93, 2.75, and 3.98 times control, respectively. The 0.3, 1, and 3-mg/kg per hour doses inhibited thrombosis in all models. Concentrations for 50% thrombus reduction ranged from 1.84 to 7.57 microM. The 3-mg/kg per hour dose increased cuticle, renal, and mesenteric bleeding times to 1.92, 2.13, and 2.98 times control, respectively. Lower doses had variable (1 mg/kg per hour) or no effect (0.1, 0.3 mg/kg per hour) on hemostasis. Heparin's prolongation of renal and cuticle bleeding time was twice that of apixaban when administered at a dose that approximated apixaban (3 mg/kg per hour) efficacy in arterial thrombosis. In summary, apixaban was effective in a broad range of thrombosis models at doses producing modest increases in multiple bleeding time models.
Collapse
|
67
|
Takahashi M, Yamashita A, Moriguchi-Goto S, Sugita C, Matsumoto T, Matsuda S, Sato Y, Kitazawa T, Hattori K, Shima M, Asada Y. Inhibition of factor XI reduces thrombus formation in rabbit jugular vein under endothelial denudation and/or blood stasis. Thromb Res 2010; 125:464-70. [DOI: 10.1016/j.thromres.2009.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/10/2009] [Accepted: 12/27/2009] [Indexed: 12/01/2022]
|
68
|
Schumacher WA, Luettgen JM, Quan ML, Seiffert DA. Inhibition of Factor XIa as a New Approach to Anticoagulation. Arterioscler Thromb Vasc Biol 2010; 30:388-92. [DOI: 10.1161/atvbaha.109.197178] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dose-limiting issue with available anticoagulant therapies is bleeding. Is there an approach that could provide antithrombotic protection with reduced bleeding? One hypothesis is that targeting proteases upstream from the common pathway provides a reduction in thrombin sufficient to impede occlusive thrombosis yet allows enough thrombin generation to support hemostasis. The impairment of intrinsic coagulation by selective inhibition of factor XI (FXI) leaves the extrinsic and common pathways of coagulation intact, making FXI a drug target. This concept is supported by the observation that human deficiency in FXI results in a mild bleeding disorder compared with other coagulation factor deficiencies, and that elevated levels of FXI are a risk factor for thromboembolic disease. Moreover, FXI knockout mice have reduced thrombosis with little effect on hemostasis. The results from genetic models have been supported by studies using neutralizing antibodies, peptide inhibitors, and small-molecule inhibitors. These agents impede thrombosis without affecting bleeding time in a variety of experimental animals, including primates. Together, these data strongly support FXIa inhibition as a viable method to increase the ratio of benefit to risk in an antithrombotic drug.
Collapse
Affiliation(s)
- William A. Schumacher
- From Department of Thrombosis Biology (W.A.S., J.M.L., and D.A.S.), Bristol-Myers Squibb, Pennington, NJ; and Department of Cardiovascular Discovery Chemistry (M.L.Q.), Bristol-Myers Squibb, Pennington, NJ
| | - Joseph M. Luettgen
- From Department of Thrombosis Biology (W.A.S., J.M.L., and D.A.S.), Bristol-Myers Squibb, Pennington, NJ; and Department of Cardiovascular Discovery Chemistry (M.L.Q.), Bristol-Myers Squibb, Pennington, NJ
| | - Mimi L. Quan
- From Department of Thrombosis Biology (W.A.S., J.M.L., and D.A.S.), Bristol-Myers Squibb, Pennington, NJ; and Department of Cardiovascular Discovery Chemistry (M.L.Q.), Bristol-Myers Squibb, Pennington, NJ
| | - Dietmar A. Seiffert
- From Department of Thrombosis Biology (W.A.S., J.M.L., and D.A.S.), Bristol-Myers Squibb, Pennington, NJ; and Department of Cardiovascular Discovery Chemistry (M.L.Q.), Bristol-Myers Squibb, Pennington, NJ
| |
Collapse
|
69
|
Li D, He Q, Kang T, Yin H, Jin X, Li H, Gan W, Yang C, Hu J, Wu Y, Peng L. Identification of an anticoagulant peptide that inhibits both fXIa and fVIIa/tissue factor from the blood-feeding nematode Ancylostoma caninum. Biochem Biophys Res Commun 2010; 392:155-9. [PMID: 20059979 DOI: 10.1016/j.bbrc.2009.12.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 12/25/2009] [Indexed: 10/20/2022]
Abstract
Factor VIIa-tissue factor complex (fVIIa/TF) and factor XIa (fXIa) play important roles in the initiation and amplification of coagulation, respectively. They may be good targets for the development of novel anticoagulants to treat and prevent thromboembolic disease. In this study, we cloned, expressed and identified a novel anticoagulant peptide, AcaNAP10, from the blood-feeding nematode Ancylostoma caninum. AcaNAP10 showed potent anticoagulant activity and doubled the activated partial thromboplastin and prothrombin times at estimated concentrations of 92.9 nM and 28.8 nM, respectively. AcaNAP10 demonstrated distinct mechanisms of action compared with known anticoagulants. It inhibited fXIa and fVIIa/TF with IC(50) values of 25.76+/-1.06 nM and 123.9+/-1.71 nM, respectively. This is the first report on an anticoagulant that can inhibit both fXIa and fVIIa/TF. This anticoagulant peptide may be an alternative molecule for the development of novel anticoagulants.
Collapse
Affiliation(s)
- Deng Li
- Department of Parasitology, Guangdong Medical College, Zhanjiang 524023, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|