51
|
Castegna A, Iacobazzi V, Infantino V. The mitochondrial side of epigenetics. Physiol Genomics 2015; 47:299-307. [PMID: 26038395 DOI: 10.1152/physiolgenomics.00096.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
The bidirectional cross talk between nuclear and mitochondrial DNA is essential for cellular homeostasis and proper functioning. Mitochondria depend on nuclear contribution for much of their functionality, but their activities have been recently recognized to control nuclear gene expression as well as cell function in many different ways. Epigenetic mechanisms, which tune gene expression in response to environmental stimuli, are key regulatory events at the interplay between mitochondrial and nuclear interactions. Emerging findings indicate that epigenetic factors can be targets or instruments of mitochondrial-nuclear cross talk. Additionally, the growing interest into mtDNA epigenetic modifications opens new avenues into the interaction mechanisms between mitochondria and nucleus. In this review we summarize the points of mitochondrial and nuclear reciprocal control involving epigenetic factors, focusing on the role of mitochondrial genome and metabolism in shaping epigenetic modulation of gene expression. The relevance of the new findings on the methylation of mtDNA is also highlighted as a new frontier in the complex scenario of mitochondrial-nuclear communication.
Collapse
Affiliation(s)
- Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," Bari, Italy;
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, Bari, Italy; and
| | | |
Collapse
|
52
|
Qureshi IA, Mehler MF. An evolving view of epigenetic complexity in the brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0506. [PMID: 25135967 DOI: 10.1098/rstb.2013.0506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent scientific advances have revolutionized our understanding of classical epigenetic mechanisms and the broader landscape of molecular interactions and cellular functions that are inextricably linked to these processes. Our current view of epigenetics includes an increasing appreciation for the dynamic nature of DNA methylation, active mechanisms for DNA demethylation, differential functions of 5-methylcytosine and its oxidized derivatives, the intricate regulatory logic of histone post-translational modifications, the incorporation of histone variants into chromatin, nucleosome occupancy and dynamics, and direct links between cellular signalling pathways and the actions of chromatin 'reader', 'writer' and 'eraser' molecules. We also have an increasing awareness of the seemingly ubiquitous roles played by diverse classes of selectively expressed non-coding RNAs in transcriptional, post-transcriptional, post-translational and local and higher order chromatin modulatory processes. These perspectives are still evolving with novel insights continuing to emerge rapidly (e.g. those related to epigenetic regulation of mobile genetic elements, epigenetic mechanisms in mitochondria, roles in nuclear architecture and 'RNA epigenetics'). The precise functions of these epigenetic factors/phenomena are largely unknown. However, it is unequivocal that they serve as key mediators of brain complexity and flexibility, including neural development and aging, cellular differentiation, homeostasis, stress responses, and synaptic and neural network connectivity and plasticity.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark F Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA Ruth S. and David L. Gottesman Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
53
|
Smalheiser NR. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0504. [PMID: 25135965 PMCID: PMC4142025 DOI: 10.1098/rstb.2013.0504] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
54
|
Effects of Mood Stabilizers on Brain Energy Metabolism in Mice Submitted to an Animal Model of Mania Induced by Paradoxical Sleep Deprivation. Neurochem Res 2015; 40:1144-52. [PMID: 25894682 DOI: 10.1007/s11064-015-1575-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/23/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
Abstract
There is a body of evidence suggesting that mitochondrial dysfunction is involved in bipolar disorder (BD) pathogenesis. Studies suggest that abnormalities in circadian cycles are involved in the pathophysiology of affective disorders; paradoxical sleep deprivation (PSD) induces hyperlocomotion in mice. Thus, the present study aims to investigate the effects of lithium (Li) and valproate (VPA) in an animal model of mania induced by PSD for 96 h. PSD increased exploratory activity, and mood stabilizers prevented PSD-induced behavioral effects. PSD also induced a significant decrease in the activity of complex II-III in hippocampus and striatum; complex IV activity was decreased in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex. Additionally, VPA administration was able to prevent PSD-induced inhibition of complex II-III and IV activities in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex, whereas Li administration prevented PSD-induced inhibition only in prefrontal cortex and hippocampus. Regarding the enzymes of Krebs cycle, only citrate synthase activity was increased by PSD in prefrontal cortex. We also found a similar effect in creatine kinase, an important enzyme that acts in the buffering of ATP levels in brain; its activity was increased in prefrontal cortex, hippocampus and cerebral cortex. These results are consistent with the connection of mitochondrial dysfunction and hyperactivity in BD and suggest that the present model fulfills adequate face, construct and predictive validity as an animal model of mania.
Collapse
|
55
|
Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 2015; 16:569-85. [DOI: 10.1007/s10522-015-9562-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/19/2015] [Indexed: 01/15/2023]
|
56
|
Lopes-Borges J, Valvassori SS, Varela RB, Tonin PT, Vieira JS, Gonçalves CL, Streck EL, Quevedo J. Histone deacetylase inhibitors reverse manic-like behaviors and protect the rat brain from energetic metabolic alterations induced by ouabain. Pharmacol Biochem Behav 2014; 128:89-95. [PMID: 25433326 DOI: 10.1016/j.pbb.2014.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
Abstract
Studies have revealed alterations in mitochondrial complexes in the brains of bipolar patients. However, few studies have examined changes in the enzymes of the tricarboxylic acid cycle. Several preclinical studies have suggested that histone deacetylase inhibitors may have antimanic effects. The present study aims to investigate the effects of lithium, valproate and sodium butyrate, a histone deacetylase inhibitor, on the activity of tricarboxylic acid cycle enzymes in the brains of rats subjected to an animal model of mania induced by ouabain. Wistar rats received a single intracerebroventricular injection of ouabain or cerebrospinal fluid. Starting on the day following the intracerebroventricular injection, the rats were treated for 7days with intraperitoneal injections of saline, lithium, valproate or sodium butyrate. Risk-taking behavior, locomotor and exploratory activities were measured using the open-field test. Citrate synthase, succinate dehydrogenase, and malate dehydrogenase were examined in the frontal cortex and hippocampus. All treatments reversed ouabain-related risk-taking behavior and hyperactivity in the open-field test. Ouabain inhibited tricarboxylic acid cycle enzymes in the brain, and valproate and sodium butyrate but not lithium reversed this ouabain-induced dysfunction. Thus, protecting the tricarboxylic acid cycle may contribute to the therapeutic effects of histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Jéssica Lopes-Borges
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil.
| | - Roger B Varela
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Paula T Tonin
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Julia S Vieira
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Cinara L Gonçalves
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
57
|
Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion 2014; 18:58-62. [DOI: 10.1016/j.mito.2014.07.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/16/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022]
|
58
|
Byun HM, Baccarelli AA. Environmental exposure and mitochondrial epigenetics: study design and analytical challenges. Hum Genet 2014; 133:247-57. [PMID: 24402053 DOI: 10.1007/s00439-013-1417-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023]
Abstract
The environment can influence human health and disease in many harmful ways. Many epidemiological studies have been conducted with the aim of elucidating the association between environmental exposure and human disease at the molecular and pathological levels, and such associations can often be through induced epigenetic changes. One such mechanism for this is through environmental factors increasing oxidative stress in the cell, and this stress can subsequently lead to alterations in DNA molecules. The two cellular organelles that contain DNA are the nucleus and mitochondria, and the latter are particularly sensitive to oxidative stress, with mitochondrial functions often disrupted by increased stress. There has been a substantial increase over the past decade in the number of epigenetic studies investigating the impact of environmental exposures upon genomic DNA, but to date there has been insufficient attention paid to the impact upon mitochondrial epigenetics in studying human disease with exposure to environment. Here, in this review, we will discuss mitochondrial epigenetics with regard to epidemiological studies, with particular consideration given to study design and analytical challenges. Furthermore, we suggest future directions and perspectives in the field of mitochondrial epigenetic epidemiological studies.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Exposure Epidemiology and Risk Program, Laboratory of Environmental Epigenetics, Harvard School of Public Health, Boston, MA, 02115, USA,
| | | |
Collapse
|
59
|
Ammal Kaidery N, Tarannum S, Thomas B. Epigenetic landscape of Parkinson's disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics 2013; 10:698-708. [PMID: 24030213 PMCID: PMC3805874 DOI: 10.1007/s13311-013-0211-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Parkinson's disease (PD) is a complex multifactorial disorder marked by extensive system-wide pathology, including a substantial loss of nigrostriatal dopaminergic neurons. The etiology of PD remains elusive, but there is considerable evidence that, in addition to well-defined genetic mechanisms environmental factors play a crucial role in disease pathogenesis. How the environment might influence the genetic factors and contribute to disease development and progression remains unclear. In recent years, epigenetic mechanisms such as DNA methylation, chromatin remodeling and alterations in gene expression via non-coding RNAs have begun to be revealed as potential factors in PD pathogenesis. Epigenetic modulation exists throughout life, beginning in prenatal stages, is dependent on the lifestyle, environmental exposure and genetic makeup of an individual and may serve as a missing link between PD risk factors and development of the disease. This chapter sheds light on the emerging role of epigenetics in disease pathogenesis and on prospective interventional strategies for the therapeutic modulation of PD.
Collapse
Affiliation(s)
- Navneet Ammal Kaidery
- />Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, CB-3618, 30912 Augusta, Georgia
| | - Shaista Tarannum
- />Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, CB-3618, 30912 Augusta, Georgia
| | - Bobby Thomas
- />Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, CB-3618, 30912 Augusta, Georgia
- />Department of Neurology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd, CB-3618, 30912 Augusta, Georgia
| |
Collapse
|
60
|
Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 2013; 110:25-34. [PMID: 23920043 DOI: 10.1016/j.ymgme.2013.07.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
Recent expansion of our knowledge on epigenetic changes strongly suggests that not only nuclear DNA (nDNA), but also mitochondrial DNA (mtDNA) may be subjected to epigenetic modifications related to disease development, environmental exposure, drug treatment and aging. Thus, mtDNA methylation is attracting increasing attention as a potential biomarker for the detection and diagnosis of diseases and the understanding of cellular behavior in particular conditions. In this paper we review the current advances in mtDNA methylation studies with particular attention to the evidences of mtDNA methylation changes in diseases and physiological conditions so far investigated. Technological advances for the analysis of epigenetic variations are promising tools to provide insights into methylation of mtDNA with similar resolution levels as those reached for nDNA. However, many aspects related to mtDNA methylation are still unclear. More studies are needed to understand whether and how changes in mtDNA methylation patterns, global and gene specific, are associated to diseases or risk factors.
Collapse
Affiliation(s)
- Vito Iacobazzi
- Department of Biosciences, Biotechnology and Pharmacological Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy.
| | | | | | | |
Collapse
|
61
|
Abstract
Epigenetic genome marking and chromatin regulation are central to establishing tissue-specific gene expression programs, and hence to several biological processes. Until recently, the only known epigenetic mark on DNA in mammals was 5-methylcytosine, established and propagated by DNA methyltransferases and generally associated with gene repression. All of a sudden, a host of new actors—novel cytosine modifications and the ten eleven translocation (TET) enzymes—has appeared on the scene, sparking great interest. The challenge is now to uncover the roles they play and how they relate to DNA demethylation. Knowledge is accumulating at a frantic pace, linking these new players to essential biological processes (e.g. cell pluripotency and development) and also to cancerogenesis. Here, we review the recent progress in this exciting field, highlighting the TET enzymes as epigenetic DNA modifiers, their physiological roles, and their functions in health and disease. We also discuss the need to find relevant TET interactants and the newly discovered TET–O-linked N-acetylglucosamine transferase (OGT) pathway.
Collapse
|
62
|
Koh DXP, Sng JCG. Highlights from the latest articles on DNA methylation. Epigenomics 2012; 4:601-3. [PMID: 23244306 DOI: 10.2217/epi.12.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dawn X P Koh
- Neuroepigenetics Laboratory, Growth, Development & Metabolism Programme, Singapore Institute for Clinical Sciences, Agency for Science & Technology (A*STAR), 30 Medical Drive 117609, Singapore
| | | |
Collapse
|