51
|
Kocan M, See HB, Seeber RM, Eidne KA, Pfleger KDG. Demonstration of improvements to the bioluminescence resonance energy transfer (BRET) technology for the monitoring of G protein-coupled receptors in live cells. ACTA ACUST UNITED AC 2008; 13:888-98. [PMID: 18812574 DOI: 10.1177/1087057108324032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bioluminescence resonance energy transfer (BRET) technique has become extremely popular for studying protein-protein interactions in living cells and real time. Of particular interest is the ability to monitor interactions between G protein-coupled receptors, such as the thyrotropin-releasing hormone receptor (TRHR), and proteins critical for regulating their function, such as beta-arrestin. Using TRHR/beta-arrestin interactions, we have demonstrated improvements to all 3 generations of BRET (BRET(1), BRET(2), and eBRET) by using the novel forms of luciferase, Rluc2 and Rluc8, developed by the Gambhir laboratory. Furthermore, for the 1st time it was possible to use the BRET2 system to detect ligand-induced G protein-coupled receptor/beta-arrestin interactions over prolonged periods (on the scale of hours rather than seconds) with a very stable signal. As demonstrated by our Z'-factor data, these luciferases increase the sensitivity of BRET to such an extent that they substantially increase the potential applicability of this technology for effective drug discovery high-throughput screening.
Collapse
Affiliation(s)
- Martina Kocan
- Laboratory for Molecular Endocrinology-GPCRs, Western Australian Institute for Medical Research (WAIMR), Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|
52
|
Bacart J, Corbel C, Jockers R, Bach S, Couturier C. The BRET technology and its application to screening assays. Biotechnol J 2008; 3:311-24. [DOI: 10.1002/biot.200700222] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
53
|
Verkaar F, van Rosmalen JWG, Blomenröhr M, van Koppen CJ, Blankesteijn WM, Smits JFM, Zaman GJR. G protein-independent cell-based assays for drug discovery on seven-transmembrane receptors. BIOTECHNOLOGY ANNUAL REVIEW 2008; 14:253-74. [PMID: 18606367 DOI: 10.1016/s1387-2656(08)00010-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conventional cell-based assays for seven-transmembrane receptors, also known as G protein-coupled receptors, rely on the coupling of the ligand-bound receptor to heterotrimeric G proteins. New assay methods have become available that are not based on G protein activation, but that apply the molecular mechanism underlying the attenuation of G protein signaling mediated by beta-arrestin. beta-arrestin is a cytoplasmic protein that targets receptors to clathrin-coated endocytotic vesicles for degradation or recycling. This process has been visualized and quantified in high-content imaging assays using receptor- or beta-arrestin-chimeras with green fluorescent protein. Other assay methods use bioluminescence resonance energy transfer, enzyme fragment complementation, or a protease-activated transcriptional reporter gene, to measure receptor-beta-arrestin proximity. beta-arrestin recruitment assays have been applied successfully for receptors coupling to Galpha(q), Galpha(s) and Galpha(i) proteins, thus providing a generic assay platform for drug discovery on G protein-coupled receptors. The best understood signal transduction pathway elicited by the seven-transmembrane Frizzled receptors does not involve G proteins. The activation of Frizzleds by their cognate ligands of the Wnt family recruits the phosphoprotein dishevelled. Dishevelled regulates a protein complex involved in the destruction of beta-catenin. Activation of Frizzled blocks degradation of beta-catenin, which translocates to the nucleus to activate transcription of Wnt-responsive genes. The cytoplasm-to-nuclear translocation of beta-catenin forms the basis of several high-content assays to measure Wnt/Frizzled signal transduction. Interestingly, Frizzled receptors have recently been shown to internalize and to recruit beta-arrestin. This suggests that beta-arrestin recruitment assays may be applied for drug discovery on seven-transmembrane receptors beyond G protein-coupled receptors.
Collapse
Affiliation(s)
- Folkert Verkaar
- Molecular Pharmacology Unit, Organon BioSciences, Oss, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
54
|
Molinari P, Casella I, Costa T. Functional complementation of high-efficiency resonance energy transfer: a new tool for the study of protein binding interactions in living cells. Biochem J 2007; 409:251-61. [PMID: 17868039 DOI: 10.1042/bj20070803] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Green bioluminescence in Renilla species is generated by a ∼100% efficient RET (resonance energy transfer) process that is caused by the direct association of a blue-emitting luciferase [Rluc (Renilla luciferase)] and an RGFP (Renilla green fluorescent protein). Despite the high efficiency, such a system has never been evaluated as a potential reporter of protein–protein interactions. To address the question, we compared and analysed in mammalian cells the bioluminescence of Rluc and RGFP co-expressed as free native proteins, or as fused single-chain polypeptides and tethered partners of self-assembling coiled coils. Here, we show that: (i) no spontaneous interactions generating detectable BRET (bioluminescence RET) signals occur between the free native proteins; (ii) high-efficiency BRET similar to that observed in Renilla occurs in both fusion proteins and self-interacting chimaeras, but only if the N-terminal of RGFP is free; (iii) the high-efficiency BRET interaction is associated with a dramatic increase in light output when the luminescent reaction is triggered by low-quantum yield coelenterazine analogues. Here, we propose a new functional complementation assay based on the detection of the high-efficiency BRET signal that is generated when the reporters Rluc and RGFP are brought into close proximity by a pair of interacting proteins to which they are linked. To demonstrate its performance, we implemented the assay to measure the interaction between GPCRs (G-protein-coupled receptors) and β-arrestins. We show that complementation-induced BRET allows detection of the GPCR–β-arrestin interaction in a simple luminometric assay with high signal-to-noise ratio, good dynamic range and rapid response.
Collapse
Affiliation(s)
- Paola Molinari
- Dipartimento del Farmaco, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy
| | | | | |
Collapse
|
55
|
Jorgensen R, Holliday ND, Hansen JL, Vrecl M, Heding A, Schwartz TW, Elling CE. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer. Mol Pharmacol 2007; 73:349-58. [PMID: 17986524 DOI: 10.1124/mol.107.038877] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive mutants. We observed agonist induced interaction of both GRK5 and GRK2 with the activated NK-1 receptor. In saturation experiments, we observed GRK5 to interact with the activated receptor in a monophasic manner while GRK2 interacted in a biphasic manner with the low affinity phase corresponding to receptor affinity for GRK5. Agonist induced GRK5 interaction with the receptor was dependent on intact kinase-activity, whereas the high affinity phase of GRK2 interaction was independent of kinase activity. We were surprised to find that the BRET(2) saturation experiments indicated that before receptor activation, the full-length NK-1 receptor, but not a functional C-terminal tail-truncated receptor, is preassociated with GRK5 in a relatively low-affinity state. We demonstrate that GRK5 can compete for agonist induced GRK2 interaction with the NK-1 receptor, whereas GRK2 does not compete for receptor interaction with GRK5. We suggest that GRK5 is preassociated with the NK-1 receptor and that GRK5, rather than GRK2, is a key player in competitive regulation of GRK subtype specific interaction with the NK-1 receptor.
Collapse
|
56
|
Xu X, Soutto M, Xie Q, Servick S, Subramanian C, von Arnim AG, Johnson CH. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci U S A 2007; 104:10264-9. [PMID: 17551013 PMCID: PMC1891211 DOI: 10.1073/pnas.0701987104] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Indexed: 11/18/2022] Open
Abstract
FRET is a well established method for cellular and subcellular imaging of protein interactions. However, FRET obligatorily necessitates fluorescence excitation with its concomitant problems of photobleaching, autofluorescence, phototoxicity, and undesirable stimulation of photobiological processes. A sister technique, bioluminescence resonance energy transfer (BRET), avoids these problems because it uses enzyme-catalyzed luminescence; however, BRET signals usually have been too dim to image effectively in the past. Using a new generation electron bombardment-charge-coupled device camera coupled to an image splitter, we demonstrate that BRET can be used to image protein interactions in plant and animal cells and in tissues; even subcellular imaging is possible. We have applied this technology to image two different protein interactions: (i) dimerization of the developmental regulator, COP1, in plant seedlings; and (ii) CCAAT/enhancer binding protein alpha (C/EBPalpha) in the mammalian nucleus. This advance heralds a host of applications for imaging without fluorescent excitation and its consequent limitations.
Collapse
Affiliation(s)
- Xiaodong Xu
- *Department of Biological Sciences, Box 1634-B, Vanderbilt University, Nashville, TN 37235; and
| | - Mohammed Soutto
- *Department of Biological Sciences, Box 1634-B, Vanderbilt University, Nashville, TN 37235; and
| | - Qiguang Xie
- *Department of Biological Sciences, Box 1634-B, Vanderbilt University, Nashville, TN 37235; and
| | - Stein Servick
- *Department of Biological Sciences, Box 1634-B, Vanderbilt University, Nashville, TN 37235; and
| | - Chitra Subramanian
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G. von Arnim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Carl Hirschie Johnson
- *Department of Biological Sciences, Box 1634-B, Vanderbilt University, Nashville, TN 37235; and
| |
Collapse
|
57
|
Renner U, Glebov K, Lang T, Papusheva E, Balakrishnan S, Keller B, Richter DW, Jahn R, Ponimaskin E. Localization of the mouse 5-hydroxytryptamine(1A) receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol Pharmacol 2007; 72:502-13. [PMID: 17540717 DOI: 10.1124/mol.107.037085] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we have used wild-type and palmitoylation-deficient mouse 5-hydroxytryptamine(1A) receptor (5-HT1A) receptors fused to the yellow fluorescent protein- and the cyan fluorescent protein (CFP)-tagged alpha(i3) subunit of heterotrimeric G-protein to study spatiotemporal distribution of the 5-HT1A-mediated signaling in living cells. We also addressed the question on the molecular mechanisms by which receptor palmitoylation may regulate communication between receptors and G(i)-proteins. Our data demonstrate that activation of the 5-HT1A receptor caused a partial release of Galpha(i) protein into the cytoplasm and that this translocation is accompanied by a significant increase of the intracellular Ca(2+) concentration. In contrast, acylation-deficient 5-HT1A mutants failed to reproduce both Galpha(i3)-CFP relocation and changes in [Ca(2+)](i) upon agonist stimulation. By using gradient centrifugation and copatching assays, we also demonstrate that a significant fraction of the 5-HT1A receptor resides in membrane rafts, whereas the yield of the palmitoylation-deficient receptor in these membrane microdomains is reduced considerably. Our results suggest that receptor palmitoylation serves as a targeting signal responsible for the retention of the 5-HT1A receptor in membrane rafts. More importantly, the raft localization of the 5-HT1A receptor seems to be involved in receptor-mediated signaling.
Collapse
Affiliation(s)
- Ute Renner
- Abteilung Neuro- und Sinnesphysiologie, Physiologisches Institut, Universität Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1592-9. [PMID: 17481575 DOI: 10.1016/j.bbamem.2007.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/28/2007] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
Although extensive studies provided molecular and pharmacological characterization of metabotropic P2Y receptors for extracellular nucleotides, little is still known about their quaternary structure. By the use of transfected cellular systems and SDS-PAGE, in our previous work we established the propensity of P2Y(4) receptor to form dimeric interactions. Here we focused on endogenously expressed P2Y(4) and P2Y(6) subtypes, comparing their oligomeric complexes under Blue Native (BN) gel electrophoresis. We provided evidence that P2Y(4) and P2Y(6) receptors form high order complexes in native neuronal phenotypes and that the oligomers can be disaggregated down to the dimeric P2Y(4) or to the dimeric and monomeric P2Y(6) receptor. Moreover, dimeric P2Y(4) and monomeric P2Y(6) proteins display selective microdomain partitioning in lipid rafts from specialized subcellular compartments such as synaptosomes. Ligand activation by UTP shifted the oligomerization of P2Y(6) but not of P2Y(4) receptor, as analysed by BN electrophoresis. Finally, whereas transfected P2Y(4) and P2Y(6) proteins homo-interact and posses the appropriate domains to associate with all P2Y(1,2,4,6,11) subtypes, in naive PC12 cells the endogenous P2Y(4) forms hetero-oligomers only with the P2Y(6) subunit. In conclusion, our results indicate that quaternary structure distinguishing P2Y(4) from P2Y(6) receptors might be crucial for specific ligand activation, membrane partitioning and consequent functional regulation.
Collapse
|
59
|
McLaughlin JN, Patterson MM, Malik AB. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci U S A 2007; 104:5662-7. [PMID: 17376866 PMCID: PMC1838494 DOI: 10.1073/pnas.0700763104] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thrombin activates endothelial cell signaling by cleaving the protease-activated receptor-1 (PAR1). However, the function of the apparently nonsignaling receptor PAR3 also expressed in endothelial cells is unknown. We demonstrate here the crucial role of PAR3 in potentiating the responsiveness of PAR1 to thrombin. We tested the hypothesis that PAR1/PAR3 heterodimerization and its effect in modifying G protein selectivity was responsible for PAR3 regulation of PAR1 sensitivity. Using bioluminescent resonance energy transfer-2, we showed that PAR1 had comparable dimerization affinity for PAR3 as for itself. We observed increased Galpha(13) coupling between the PAR1/3 heterodimer compared with the PAR1/1 homodimer. Moreover, knockdown of PAR3 moderated the PAR1-activated increase in endothelial permeability. These results demonstrate a role of PAR3 in allosterically regulating PAR1 signaling governing increased endothelial permeability. Because PAR3 is a critical determinant of PAR1 function, targeting of PAR3 may mitigate the effects of PAR1 in activating endothelial responses such as vascular inflammation.
Collapse
Affiliation(s)
- Joseph N McLaughlin
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
60
|
Nicholson RL, Welch M, Ladlow M, Spring DR. Small-molecule screening: advances in microarraying and cell-imaging technologies. ACS Chem Biol 2007; 2:24-30. [PMID: 17243780 DOI: 10.1021/cb600321j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell-permeable small molecules can be used to modulate protein function selectively, rapidly, reversibly, and conditionally with temporal and quantitative control in biological systems. The identification of these chemical probes can require the screening of large numbers of small molecules. With the advent of new technologies, small-molecule high-throughput screening is widely available. This Review focuses on the emerging technologies of microarray screening platforms and high-content screening formats.
Collapse
Affiliation(s)
- Rebecca L Nicholson
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
61
|
Milligan G, Canals M, Pediani JD, Ellis J, Lopez-Gimenez JF. The role of GPCR dimerisation/oligomerisation in receptor signalling. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2007:145-61. [PMID: 17703581 DOI: 10.1007/2789_2006_007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A wide range of techniques have been employed to examine the quaternary structure of G-protein-coupled receptors (GPCRs). Although it is well established that homo-dimerisation is common, recent studies have sought to explore the physical basis of these interactions and the role of dimerisation in signal transduction. Growing evidence hints at the existence of higher-order organisation of individual GPCRs and the potential for hetero-dimerisation between pairs of co-expressed GPCRs. Here we consider how both homo-dimerisation/oligomerisation and hetero-dimerisation can regulate signal transduction through GPCRs and the potential consequences of this for function of therapeutic medicines that target GPCRs. Hetero-dimerisation is not the sole means by which co-expressed GPCRs may regulate the function of one another. Heterologous desensitisation may be at least as important and we also consider if this can be the basis for physiological antagonism between pairs of co-expressed GPCRs. Although there may be exceptions (Meyer et al. 2006), a great deal of recent evidence has indicated that most G-protein-coupled receptors (GPCRs) do not exist as monomers but rather as dimers or, potentially, within higher-order oligomers (Milligan 2004b; Park et al. 2004). Support for such models has been provided by a range of studies employing different approaches, including co-immunoprecipitation of differentially epitope-tagged but co-expressed forms of the same GPCR, co-operativity in ligand binding and a variety of resonance energy transfer techniques (Milligan and Bouvier 2005). Only for the photon receptor rhodopsin has the organisational structure of a GPCR been studied in situ. The application of atomic force microscopy to murine rod outer segment discs indicated that rhodopsin is organised in a series of parallel arrays of dimers (Liang et al. 2003) and based on this, molecular models were constructed to try to define and interpret regions of contact between the monomers (Fotiadis et al. 2004). Only for relatively few other GPCRs are details of the molecular basis of dimerisation available but within this limited data set, recent studies on the dopamine D2 receptor suggest a means by which information on the binding of an agonist can be transmitted between the two elements of the dimer via the dimer interface (Guo et al. 2005). Although the availability of cDNAs encoding molecularly defined GPCRs has allowed high-throughput screening for ligands that modulate GPCR function, this is performed almost exclusively in heterologous cell lines transfected to express only the specific GPCR of interest. Given that the human genome contains some 400-450 genes encoding non-chemosensory GPCRs, it is clear that any individual cell of the body may express a considerable number of GPCRs. Interactions between these, either via hetero-dimerisation, via heterologous desensitisation or via the integration of downstream signals can potentially alter the pharmacology, sensitivity and function of receptor agonists and hence produce varied responses. In this article, we will use specific examples to consider the role of homo-dimerisation/oligomerisation in GPCR function and whether either direct hetero-dimerisation or heterologous desensitisation between pairs of co-expressed GPCRs affects the function of the receptor pairs.
Collapse
Affiliation(s)
- G Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK.
| | | | | | | | | |
Collapse
|
62
|
Glatz RV, Leifert WR, Cooper TH, Bailey K, Barton CS, Martin AS, Aloia AL, Bucco O, Waniganayake L, Wei G, Raguse B, Wieczorek L, McMurchie EJ. Molecular Engineering of G Protein-Coupled Receptors and G Proteins for Cell-Free Biosensing. Aust J Chem 2007. [DOI: 10.1071/ch06435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to express and purify modified recombinant proteins, so they retain their biological function in a cell-free format, has provided a basis for development of molecular biosensors. Here we utilize recombinant G Protein-coupled receptors (GPCRs) and their G proteins for cell-free detection of various binding partners. Fusion peptides were used to improve surface-attachment and fluorescent-labelling capabilities. A novel homogeneous fluorescence resonance energy transfer (FRET)-based assay was developed to detect rearrangements in the G protein heterotrimer. By using this heterotrimeric ‘molecular switch’, we are developing a generic technology such that multiple GPCRs could be assayed for ligand-mediated activation while tethered to surfaces or in solution, with increased throughput compared to current assay platforms.
Collapse
|
63
|
Batenburg WW, van Esch JHM, Garrelds IM, Jorde U, Lamers JMJ, Dekkers DHW, Walther T, Kellett E, Milligan G, van Kats JP, Danser AHJ. Carvedilol-induced antagonism of angiotensin II: a matter of alpha1-adrenoceptor blockade. J Hypertens 2006; 24:1355-63. [PMID: 16794485 DOI: 10.1097/01.hjh.0000234116.17778.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate whether renin-angiotensin system blockade might underlie the favorable metabolic effects of the nonselective beta + alpha1-adrenoceptor blocker carvedilol as compared with the selective beta1-adrenoceptor blocker metoprolol. METHODS Human coronary microarteries (HCMAs), obtained from 32 heart valve donors, were mounted in myographs. RESULTS Angiotensin II and the alpha1-adrenoceptor agonist phenylephrine constricted HCMAs to maximally 63 +/- 10 and 46 +/- 15% of the contraction to 100 mmol/l K. Neither carvedilol, metoprolol, the nonselective beta-adrenoceptor antagonist propranolol, nor the alpha1-adrenoceptor antagonist prazosin affected the constrictor response to angiotensin II. alpha1-adrenoreceptors and beta-adrenoceptors are thus not involved in the direct constrictor effects of angiotensin II. When added to the organ bath at a subthreshold concentration, angiotensin II greatly amplified the response to phenylephrine. Both carvedilol and the angiotensin II type 1 (AT1) receptor antagonist irbesartan inhibited this angiotensin II-induced potentiation. Furthermore, carvedilol blocked the angiotensin II-induced amplification of phenylephrine-induced inositol phosphate accumulation in cardiomyocytes. CONCLUSIONS AT1-alpha1-receptor crosstalk, involving inositol phosphates, sensitizes HCMAs to alpha1-adrenoceptor agonists. Our results suggest that, in the presence of an increased sympathetic tone, carvedilol provides AT1 receptor blockade via its alpha1-adrenoceptor blocking effects. This could explain the favorable effects of carvedilol versus metoprolol.
Collapse
|
64
|
Milligan G, Pediani JD, Canals M, Lopez-Gimenez JF. Oligomeric structure of the alpha1b-adrenoceptor: comparisons with rhodopsin. Vision Res 2006; 46:4434-41. [PMID: 17005232 DOI: 10.1016/j.visres.2006.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 11/20/2022]
Abstract
The structural basis of the quaternary organization of rhodopsin has recently been explored and modeled. Because information obtained from studying rhodopsin has frequently been directly applicable to other G protein-coupled receptors we wished to ascertain if dimeric and/or oligomeric forms of the alpha(1b)-adrenoceptor could be observed and if so whether rhodopsin might provide insights into the quaternary structure of this receptor. Co-immunoprecipitation and both conventional and time-resolved fluorescence resonance energy transfer studies demonstrated quaternary structure of the alpha(1b)-adrenoceptor and, in concert with the reconstitution of fragments of this receptor, provided information on the molecular basis of these interactions. Development of three color fluorescence resonance energy transfer (FRET) allowed the imaging of alpha(1b)-adrenoceptor oligomers in single living cells. Mutation of hydrophobic residues in transmembrane domains I and IV of the receptor resulted in marked reduction in three color FRET suggesting an alteration in oligomeric organization and potential similarities with rhodopsin. The mutated alpha(1b)-adrenoceptor was unable to reach the cell surface, did not become terminally N-glycosylated and was unable to signal.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | |
Collapse
|
65
|
Galés C, Van Durm JJJ, Schaak S, Pontier S, Percherancier Y, Audet M, Paris H, Bouvier M. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 2006; 13:778-86. [PMID: 16906158 DOI: 10.1038/nsmb1134] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 07/21/2006] [Indexed: 12/12/2022]
Abstract
Activation of heterotrimeric G proteins by their cognate seven transmembrane domain receptors is believed to involve conformational changes propagated from the receptor to the G proteins. However, the nature of these changes remains unknown. We monitored the conformational rearrangements at the interfaces between receptors and G proteins and between G protein subunits by measuring bioluminescence resonance energy transfer between probes inserted at multiple sites in receptor-G protein complexes. Using the data obtained for the alpha(2A)AR-G alpha(i1) beta1gamma2 complex and the available crystal structures of G alpha(i1) beta1gamma2, we propose a model wherein agonist binding induces conformational reorganization of a preexisting receptor-G protein complex, leading the G alpha-G betagamma interface to open but not dissociate. This conformational change may represent the movement required to allow nucleotide exit from the G alpha subunit, thus reflecting the initial activation event.
Collapse
Affiliation(s)
- Céline Galés
- Department of Biochemistry and Groupe de Recherche Universitaire sur le Médicament, Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Downtown station, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Harrison C, van der Graaf PH. Current methods used to investigate G protein coupled receptor oligomerisation. J Pharmacol Toxicol Methods 2006; 54:26-35. [PMID: 16343954 DOI: 10.1016/j.vascn.2005.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Classical models of G protein coupled receptor (GPCR) signalling assume that each receptor functions as a single unit. However, evidence is increasing that GPCRs may form functional assemblies of dimeric or oligomeric units. There are several methods that can be used to give evidence of GPCR oligomerisation that will be discussed in this review. These include co-immunoprecipitation and Western blotting, resonance energy transfer methods and transactivation / complementation of partially functional receptors. One definitive method currently does not exist and there are various advantages and disadvantages to each method depending upon the system considered. Although co-immunoprecipitation and Western blot studies require disruption of the cellular environment and require specific antibodies, they are a good starting point to show that receptor oligomerisation occurs in native systems. Resonance energy transfer techniques provide evidence that receptors are in close proximity, are measured in living cells and some formats may be used for imaging applications. Transactivation / complementation requires extensive modification of the GPCR, but provides evidence that the receptors are in physical contact. Despite great advances being made using these techniques, future challenges involve the development of other methodologies to determine the role of receptor complexes in the pharmacology and physiology of native systems.
Collapse
Affiliation(s)
- Charlotte Harrison
- Discovery Biology, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ, United Kingdom.
| | | |
Collapse
|
67
|
Abstract
Phosphorylated derivatives of phosphatidylinositol (PtdIns), known as phosphoinositides (PIs), are essential regulators of nuclear functions, cytoskeletal dynamics, cell signaling and membrane trafficking. These lipids are found on the cytosolic face of intracellular membranes but can also be detected in membrane-free regions of the nucleoplasm. Their downstream effectors include several proteins that contain various PI-specific domains. Because impaired PI metabolism is associated with disorders such as cancer, cardiovascular disease and immune dysfunction, there is currently great interest in studying PIs and their metabolic enzymes. Here we describe strategies and techniques for quantitative and qualitative measurement of PIs, for characterization of specific PI-binding proteins and for determination of PI kinase and phosphatase activities in vitro and in vivo.
Collapse
Affiliation(s)
- Tor Erik Rusten
- Department of Biochemistry, the Norwegian Radium Hospital and the University of Oslo, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
68
|
Peelman F, Couturier C, Dam J, Zabeau L, Tavernier J, Jockers R. Techniques: new pharmacological perspectives for the leptin receptor. Trends Pharmacol Sci 2006; 27:218-25. [PMID: 16537093 DOI: 10.1016/j.tips.2006.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 01/04/2006] [Accepted: 02/23/2006] [Indexed: 11/28/2022]
Abstract
The function of leptin, initially confined to its role in energy homeostasis and obesity, has now expanded to the regulation of reproduction, glucose homeostasis, bone formation, wound healing and the immune system. Both stimulation and inhibition of the molecular target of leptin, the leptin receptor (LR), might find applications in disease treatment. Recent advances in the understanding of LR activation mechanisms have led to the design of LR antagonists. Several assays have been developed for the screening and evaluation of LR ligands. Both the extracellular and the intracellular domains of the LR are potential drug targets. The bioluminescence resonance energy transfer technique can be used to screen for compounds that target the extracellular part of the LR, and we propose that the novel reverse mammalian protein-protein interaction trap technique can be used to screen compounds that affect intracellular aspects of LR signalling. These assays can be easily adapted to other pharmacologically relevant receptors.
Collapse
Affiliation(s)
- Frank Peelman
- Flanders Interuniversity Institute for Biotechnology, VIB09, Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsonenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
69
|
Pfleger KDG, Dromey JR, Dalrymple MB, Lim EML, Thomas WG, Eidne KA. Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells. Cell Signal 2006; 18:1664-70. [PMID: 16492395 DOI: 10.1016/j.cellsig.2006.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
Bioluminescence resonance energy transfer (BRET) is an increasingly popular technique for studying protein-protein interactions in live cells. It is particularly suitable for real-time monitoring of such interactions, however, the timescale over which assays can be carried out is currently relatively short (minutes) due to substrate instability. We present a new derivation of the BRET technology, termed 'extended BRET' (eBRET), which now enables protein-protein interactions to be monitored in real-time for many hours. This capability has significant benefits for investigating cellular function over extended timescales, as we have illustrated using the agonist-induced G-protein coupled receptor/beta-arrestin interaction. The potential for studying the modulation of such interactions by agonists, antagonists, inhibitors, dominant negative mutants and co-expressed accessory proteins is substantial. Furthermore, the advantages of eBRET have important implications for the development of high-throughput BRET screening systems, an ever-expanding area of interest for the pharmaceutical industry.
Collapse
Affiliation(s)
- Kevin D G Pfleger
- 7TM Laboratory/Laboratory for Molecular Endocrinology, Western Australian Institute for Medical Research (WAIMR) and Centre for Medical Research, University of Western Australia, Nedlands, Perth, WA 6009, Australia.
| | | | | | | | | | | |
Collapse
|
70
|
de Jong LAA, Uges DRA, Franke JP, Bischoff R. Receptor–ligand binding assays: Technologies and Applications. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 829:1-25. [PMID: 16253574 DOI: 10.1016/j.jchromb.2005.10.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 09/26/2005] [Accepted: 10/02/2005] [Indexed: 02/06/2023]
Abstract
Receptor-ligand interactions play a crucial role in biological systems and their measurement forms an important part of modern pharmaceutical development. Numerous assay formats are available that can be used to screen and quantify receptor ligands. In this review, we give an overview over both radioactive and non-radioactive assay technologies with emphasis on the latter. While radioreceptor assays are fast, easy to use and reproducible, their major disadvantage is that they are hazardous to human health, produce radioactive waste, require special laboratory conditions and are thus rather expensive on a large scale. This has led to the development of non-radioactive assays based on optical methods like fluorescence polarization, fluorescence resonance energy transfer or surface plasmon resonance. In light of their application in high-throughput screening environments, there has been an emphasis on so called "mix-and-measure" assays that do not require separation of bound from free ligand. The advent of recombinant production of receptors has contributed to the increased availability of specific assays and some aspects of the expression of recombinant receptors will be reviewed. Applications of receptor-ligand binding assays described in this review will relate to screening and the quantification of pharmaceuticals in biological matrices.
Collapse
Affiliation(s)
- Lutea A A de Jong
- Department of Analytical Biochemistry, University Centre for Pharmacy, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | |
Collapse
|
71
|
Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. ACTA ACUST UNITED AC 2005; 10:463-75. [PMID: 16093556 DOI: 10.1177/1087057105275344] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the authors developed HEK293 cell lines that stably coexpressed optimal amounts of beta-arrestin2-Rluc and VENUS fusions of G protein-coupled receptors (GPCRs) belonging to both class A and class B receptors, which include receptors that interact transiently or stably with beta-arrestins. This allowed the use of a bioluminescence resonance energy transfer (BRET) 1- beta-arrestin2 translocation assay to quantify receptor activation or inhibition. One of the developed cell lines coexpressing CCR5-VENUS and beta-arrestin2- Renilla luciferase was then used for high-throughput screening (HTS) for antagonists of the chemokine receptor CCR5, the primary co-receptor for HIV. A total of 26,000 compounds were screened for inhibition of the agonist-promoted beta-arrestin2 recruitment to CCR5, and 12 compounds were found to specifically inhibit the agonist-induced beta-arrestin2 recruitment to CCR5. Three of the potential hits were further tested using other functional assays, and their abilities to inhibit CCR5 agonist-promoted signaling were confirmed. This is the 1st study describing a BRET1-beta-arrestin recruitment assay in stable mammalian cells and its successful application in HTS for GPCRs antagonists.
Collapse
Affiliation(s)
- Fadi F Hamdan
- University of Montreal, Department of Biochemistry, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
72
|
Atienza JM, Zhu J, Wang X, Xu X, Abassi Y. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. ACTA ACUST UNITED AC 2005; 10:795-805. [PMID: 16234347 DOI: 10.1177/1087057105279635] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellular interaction with and adhesion on different biological surfaces is a dynamic and integrated process requiring the participation of specialized cell surface receptors, structural proteins, signaling proteins, and the cellular cytoskeleton. In this report, the authors describe a label-free and real-time method for measuring and monitoring cell adhesion on special microplates integrated with electronic cell sensor arrays. These plates were used in conjunction with the real-time cell electronic sensing (RT-CES) system to dynamically and quantitatively monitor the specific interaction of fibroblasts with extracellular matrix (ECM) proteins and compared with standard adhesion techniques. Cell adhesion on ECM-coated cell sensor arrays is dependent on the concentration of ECM proteins coated and is inhibited by agents that disrupt the interaction of ECM with cell surface receptors. Furthermore, the authors demonstrate that the integrity of the actin cytoskeleton is required for productive cell adhesion and spreading on ECM-coated microelectronic sensors. Confirming earlier results, it is shown that interfering with Src expression or activity, via siRNA or small molecule, results in the disruption of adhesion and spreading of Bx PC3 cells. The results indicate that the RT-CES system offers a convenient and quantitative means of assessing the kinetics of cell adhesion in a high-throughput manner.
Collapse
|
73
|
Leifert WR, Aloia AL, Bucco O, Glatz RV, McMurchie EJ. G-protein-coupled receptors in drug discovery: nanosizing using cell-free technologies and molecular biology approaches. ACTA ACUST UNITED AC 2005; 10:765-79. [PMID: 16234342 DOI: 10.1177/1087057105280517] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signal transduction by G-protein-coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. Signal transduction has been studied extensively with both cell-based systems and assays comprising isolated signaling components. Interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high throughput screening, biosensors, and so on will focus greater attention on assay development to allow for miniaturization, ultra-high throughput and, eventually, microarray/biochip assay formats. Although cell-based assays are adequate for many GPCRs, it is likely that these formats will limit the development of higher density GPCR assay platforms mandatory for other applications. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR assay platforms adaptable for such applications as microarrays. The authors review current cell-free GPCR assay technologies and molecular biological approaches for construction of novel, functional GPCR assays.
Collapse
Affiliation(s)
- Wayne R Leifert
- CSIRO Molecular and Health Technologies, Adelaide, SA, Australia.
| | | | | | | | | |
Collapse
|
74
|
Mukasa R, Terada Y, Shiroishi M, Fujiwara H, Hayata K, Morishita K, Ra C, Takashi T. Rapid receptor-proximal signaling assays for FcR gamma-containing receptors. J Immunol Methods 2005; 303:105-21. [PMID: 16048727 DOI: 10.1016/j.jim.2005.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/25/2005] [Accepted: 06/08/2005] [Indexed: 11/27/2022]
Abstract
Novel, cell-based assays, based on bioluminescence resonance energy transfer, have been developed for FcepsilonRI- and GPVI-FcRgamma complex-mediated signaling at receptor-proximal steps. In a stable transfectant of the HEK-293 cell line expressing human FcepsilonRIalpha, FcepsilonRIbeta, and FcRgamma-GFP2 and Syk(1-265)-Rluc fusion proteins, FcepsilonRI cross-linking markedly increased BRET2 ratios, which are the ratios of GFP2 emission to Rluc emission. These ratios reflect the FcRgamma-GFP2-Syk(1-265)-Rluc interaction in living cells. The signals are specifically inhibited by the Src-family kinase inhibitor PP2. Separately, in transient transfectants expressing GPVI, FcRgamma-GFP2, and Syk(1-265)-Rluc, the GPVI-specific ligand convulxin induced a two-fold increase in the BRET2 ratio and this increase was also inhibited by PP2. Finally, a differential assay was developed which permits the measurement of FcepsilonRI- and GPVI-FcRgamma complex-mediated signaling in the same cell. These assays provide useful methods for monitoring FcRgamma-Syk interaction in real time in living cells and may contribute to the understanding of signal regulation through FcRgamma-containing receptors.
Collapse
Affiliation(s)
- Ryuta Mukasa
- New Product Research Laboratories III, Daiichi Pharmaceutical Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Kostenis E, Waelbroeck M, Milligan G. Techniques: promiscuous Galpha proteins in basic research and drug discovery. Trends Pharmacol Sci 2005; 26:595-602. [PMID: 16183138 DOI: 10.1016/j.tips.2005.09.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 08/01/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
Assay technologies that measure the activation of heterotrimeric (alphabetagamma) G proteins by G-protein-coupled receptors (GPCRs) are well established within the pharmaceutical industry, either for pharmacological characterization or for the identification of natural or surrogate receptor ligands. Despite recent evidence indicating that GPCR-linked signalling events might not be mediated exclusively by G proteins, G-protein activation remains a common benchmark for assessing GPCR family members. Thus, assay systems that translate ligand-mediated modulation of GPCRs into G-protein-dependent intracellular responses still represent key components of both basic research and the drug discovery process. In this article, the current knowledge and recent progress of integrating Galpha subunits into assay systems for GPCR drug discovery will be reviewed. Emphasis is given to novel promiscuous and chimeric Galpha proteins. Because of their ability to interact with a wide range of GPCRs, such novel G proteins are likely to be incorporated rapidly into drug discovery programmes.
Collapse
Affiliation(s)
- Evi Kostenis
- 7TM Pharma A/S, 3 Fremtidsvej, 2970 Hoersholm, Denmark.
| | | | | |
Collapse
|
76
|
Abstract
A wide range of approaches has been applied to examine the quaternary structure of G protein-coupled receptors, the basis of such protein-protein interactions and how such interactions might modulate the pharmacology and function of these receptors. These include co-immunoprecipitation, various adaptations of resonance energy transfer techniques, functional complementation studies and the analysis of ligand-binding data. Each of the available techniques has limitations that restrict interpretation of the data. However, taken together, they provide a coherent body of evidence indicating that many, if not all, G protein-coupled receptors exist and function as dimer/oligomers. Herein we assess the widely applied techniques and discuss the relative benefits and limitations of these approaches.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | |
Collapse
|
77
|
Wilson S, Wilkinson G, Milligan G. The CXCR1 and CXCR2 Receptors Form Constitutive Homo- and Heterodimers Selectively and with Equal Apparent Affinities. J Biol Chem 2005; 280:28663-74. [PMID: 15946947 DOI: 10.1074/jbc.m413475200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both homo- and heterodimeric interactions between the CXCR1 and CXCR2 chemokine receptors were observed following co-expression of forms of these receptors in HEK293 cells using assays, including co-immunoprecipitation, single cell imaging of fluorescence resonance energy transfer, cell surface time-resolved fluorescence resonance energy transfer, and bioluminescence resonance energy transfer. These interactions were constitutive and unaffected by the presence of the agonist interleukin 8 and selective as no significant interactions were noted between either the CXCR1 or CXCR2 receptor and the alpha(1A)-adrenoreceptor. Saturation bioluminescence resonance energy transfer indicated that heteromeric interactions between CXCR1 and CXCR2 were of similar affinity as the corresponding homomeric interactions. A novel endoplasmic reticulum trapping strategy demonstrated that these interactions were initiated during protein synthesis and maturation and prior to cell surface delivery. These studies indicated that CXCR1-CXCR2 heterodimers are as likely to form in cells co-expressing these two chemokine receptors as the corresponding homodimers and stand in contrast to previous studies indicating an inability of the CXCR1 receptor to homodimerize or to interact with the CXCR2 receptor (Trettel, F., Di Bartolomeo, S., Lauro, C., Catalano, M., Ciotti, M. T., and Limatola, C. (2003) J. Biol. Chem. 278, 40980-40988).
Collapse
Affiliation(s)
- Shirley Wilson
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|
78
|
Charest PG, Terrillon S, Bouvier M. Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. EMBO Rep 2005; 6:334-40. [PMID: 15776020 PMCID: PMC1299283 DOI: 10.1038/sj.embor.7400373] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 02/07/2005] [Accepted: 02/14/2005] [Indexed: 12/13/2022] Open
Abstract
Recruitment of beta-arrestin (beta-arr) to agonist-stimulated G-protein-coupled receptors (GPCRs) has a crucial role in controlling signalling efficacy and selectivity. When translocated to the receptor, beta-arr is believed to undergo important conformational rearrangement necessary for its downstream actions. To probe these changes in living cells, we constructed an intramolecular bioluminescence resonance energy transfer (BRET)-based biosensor, in which beta-arr is sandwiched between the Renilla luciferase (Luc) and the yellow fluorescent protein (YFP). We show that the intramolecular BRET between Luc and YFP was significantly increased following GPCR activation, suggesting a conformational rearrangement bringing the amino terminus and carboxyl terminus of beta-arr in closer proximity. Kinetic analysis showed that this conformational change follows the initial beta-arr/receptor engagement. In addition to providing new insights into the agonist-induced conformational rearrangements of beta-arr in living cells, the double-brilliance beta-arr offers a universal biosensor for GPCR activation, allowing the study of native receptors in large-scale screening analysis.
Collapse
Affiliation(s)
- Pascale G Charest
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Sonia Terrillon
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Michel Bouvier
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Tel: +1 514 343 6372; Fax: +1 514 343 2210; E-mail:
| |
Collapse
|
79
|
Pfleger KDG, Eidne KA. Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 2005; 385:625-37. [PMID: 15504107 PMCID: PMC1134737 DOI: 10.1042/bj20041361] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
GPCRs (G-protein-coupled receptors) play an extremely important role in transducing extracellular signals across the cell membrane with high specificity and sensitivity. They are central to many of the body's endocrine and neurotransmitter pathways, and are consequently a major drug target. It is now clear that GPCRs interact with a range of proteins, including other GPCRs. Identifying and elucidating the function of such interactions will significantly enhance our understanding of cellular function, with the promise of new and improved pharmaceuticals. Biophysical techniques involving resonance energy transfer, namely FRET (fluorescence resonance energy transfer) and BRET (bioluminescence resonance energy transfer), now enable us to monitor the formation of dynamic GPCR-protein complexes in living cells, in real time. Their use has firmly established the concept of GPCR oligomerization, as well as demonstrating GPCR interactions with GPCR kinases, beta-arrestins, adenylate cyclase and a subunit of an inwardly rectifying K+ channel. The present review examines recent technological advances and experimental applications of FRET and BRET, discussing particularly how they have been adapted to extract an ever-increasing amount of information about the nature, specificity, stoichiometry, kinetics and agonist-dependency of GPCR-protein interactions.
Collapse
Affiliation(s)
- Kevin D G Pfleger
- Molecular Endocrinology Research Group/7TM Receptor Laboratory, Western Australian Institute for Medical Research, The University of Western Australia, Sir Charles Gairdner Hospital, Nedlands, Perth, WA 6009.
| | | |
Collapse
|
80
|
|
81
|
Deo SK, Mirasoli M, Daunert S. Bioluminescence resonance energy transfer from aequorin to a fluorophore: an artificial jellyfish for applications in multianalyte detection. Anal Bioanal Chem 2005; 381:1387-94. [PMID: 15731912 DOI: 10.1007/s00216-005-3081-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 01/18/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
In nature, the green light emission observed in the jellyfish Aequorea victoria is a result of a non-radiative energy transfer from the excited-state aequorin to the green fluorescent protein. In this work, we have modified the photoprotein aequorin by attaching selected fluorophores at a unique site on the protein. This will allow for in vitro transfer of bioluminescent energy from aequorin to the fluorophore thus creating an "artificial jellyfish". The fluorophores are selected such that the excitation spectrum of the fluorophore overlaps with the emission spectrum of aequorin. By modifying aequorin with different fluorophores, bioluminescent labels with different emission maxima are produced, which will allow for the simultaneous detection of multiple analytes. By examining the X-ray crystal structure of the protein, four different sites for introduction of the unique cysteine residue were evaluated. Two fluorophores with differing emission maxima were attached individually to the mutants through the sulfhydryl group of the cysteine molecule. Two of the fluorophore-labeled mutants showed a peak corresponding to fluorophore emission thus indicating resonance energy transfer from aequorin to the fluorophore.
Collapse
Affiliation(s)
- Sapna K Deo
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | |
Collapse
|
82
|
Hoffmann C, Gaietta G, Bünemann M, Adams SR, Oberdorff-Maass S, Behr B, Vilardaga JP, Tsien RY, Ellisman MH, Lohse MJ. A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells. Nat Methods 2005; 2:171-6. [PMID: 15782185 DOI: 10.1038/nmeth742] [Citation(s) in RCA: 383] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 01/26/2005] [Indexed: 11/10/2022]
Abstract
Fluorescence resonance energy transfer (FRET) from cyan to yellow fluorescent proteins (CFP/YFP) is a well-established method to monitor protein-protein interactions or conformational changes of individual proteins. But protein functions can be perturbed by fusion of large tags such as CFP and YFP. Here we use G protein-coupled receptor (GPCR) activation in living cells as a model system to compare YFP with the small, membrane-permeant fluorescein derivative with two arsen-(III) substituents (fluorescein arsenical hairpin binder; FlAsH) targeted to a short tetracysteine sequence. Insertion of CFP and YFP into human adenosine A(2A) receptors allowed us to use FRET to monitor receptor activation but eliminated coupling to adenylyl cyclase. The CFP/FlAsH-tetracysteine system gave fivefold greater agonist-induced FRET signals, similar kinetics (time constant of 66-88 ms) and perfectly normal downstream signaling. Similar results were obtained for the mouse alpha(2A)-adrenergic receptor. Thus, FRET from CFP to FlAsH reports GPCR activation in living cells without disturbing receptor function and shows that the small size of the tetracysteine-biarsenical tag can be decisively advantageous.
Collapse
Affiliation(s)
- Carsten Hoffmann
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Schreiber G, Avissar S. Mood disorders and their treatment: alterations in the regulation of receptor-G protein coupling. Drug Dev Res 2005. [DOI: 10.1002/ddr.20018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
84
|
Bioluminescence Resonance Energy Transfer: Techniques and Potential. Mol Imaging 2005. [DOI: 10.1016/b978-019517720-6.50023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
|
85
|
Kotevic I, Kirschner KM, Porzig H, Baltensperger K. Constitutive interaction of the P2Y2 receptor with the hematopoietic cell-specific G protein G(alpha16) and evidence for receptor oligomers. Cell Signal 2004; 17:869-80. [PMID: 15763429 DOI: 10.1016/j.cellsig.2004.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/16/2022]
Abstract
Hematopoietic cells uniquely express G(alpha16), a G protein alpha-subunit of the G(q)-type. G(alpha16) is obligatory for P2Y2 receptor-dependent Ca2+-mobilization in human erythroleukemia cells and induces hematopoietic cell differentiation. We tested whether P2Y2 receptors physically interact with G(alpha16). Receptor and G protein were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein (GFP), respectively. When expressed in K562 leukemia cells, the fusion proteins were capable of triggering a Ca2+-signal upon receptor stimulation, demonstrating their functional integrity. In fluorescence resonance energy transfer (FRET) measurements using confocal microscopy, a strong FRET signal from the plasma membrane region of fixed, resting cells was detected when the receptor was co-expressed with the G protein as the FRET acceptor, as well as when the CFP-tagged receptor was co-expressed with receptor fused to YFP. We conclude that, under resting conditions, G(alpha16) and P2Y2 receptors form constitutive complexes, and that the P2Y2 receptor is present as an oligomer.
Collapse
Affiliation(s)
- Ivana Kotevic
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, 3010 Bern, Switzerland
| | | | | | | |
Collapse
|
86
|
Carrillo JJ, López-Giménez JF, Milligan G. Multiple Interactions between Transmembrane Helices Generate the Oligomeric α1b-Adrenoceptor. Mol Pharmacol 2004; 66:1123-37. [PMID: 15304550 DOI: 10.1124/mol.104.001586] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Combinations of coimmunoprecipitation, single-cell fluorescence resonance energy transfer, and cell-surface time-resolved fluorescence resonance energy transfer demonstrated protein-protein interactions and quaternary structure for the alpha(1b)-adrenoceptor. Self-association of transmembrane domain 1 and its interaction with the full-length receptor indicated a symmetrical interface provided by this domain. Lack of effect of mutation of the glycophorin-A dimerization-like region within this helix demonstrated that this did not provide the molecular mechanism. Multiple interactions were observed between the alpha(1b)-adrenoceptor and fragments derived from its sequence. Fragments comprising transmembrane domains 3 and 4 and transmembrane domains 5 and 6, but not transmembrane domain 7, were also able to interact with the full-length receptor. Transmembrane domain 7 failed to interact significantly with any element of the receptor and was not transported to the cell surface after coexpression with the full-length receptor. Symmetrical interactions were also noted between fragments incorporating transmembrane domain 4, but this segment of the receptor failed to interact with transmembrane domains 1 and 2 or transmembrane domains 5 and 6. Time-resolved fluorescence resonance energy transfer studies were also consistent with contributions of transmembrane domains 1 and/or 2 and transmembrane domains 3 and/or 4 to protein-protein interactions within the quaternary structure of the alpha(1b)-adrenoceptor, and with a contribution of transmembrane domains 5 and/or 6. These data are consistent with a complex oligomeric quaternary structure of the alpha(1b)-adrenoceptor in which major, symmetrical interactions may define intradimeric contacts with other contributions, providing interdimer contacts to generate oligomeric complexes akin to those observed for murine rhodopsin. A model derived from this was developed.
Collapse
Affiliation(s)
- Juan J Carrillo
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|
87
|
Abstract
It is now generally accepted that G protein-coupled receptors (GPCRs) can exist as dimers or as part of larger oligomeric complexes. Increasing evidence suggests that a dimer is the minimal functional structure, but considerable variation exists between reports of the effects of agonist ligands on quaternary structure. Many studies have intimated the existence of heterodimeric GPCR pairings. Key questions that remain to be addressed effectively include the prevalence and relevance of these in native tissues and the implications of heterodimerization for pharmacology and, potentially, for drug design.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Davidson Building, University of Glasgow, Glasgow G12 8QQ Scotland, UK.
| |
Collapse
|
88
|
Abstract
High-throughput screening (HTS) is the process of testing a large number of diverse chemical structures against disease targets to identify 'hits'. Compared to traditional drug screening methods, HTS is characterized by its simplicity, rapidness, low cost, and high efficiency, taking the ligand-target interactions as the principle, as well as leading to a higher information harvest. As a multidisciplinary field, HTS involves an automated operation-platform, highly sensitive testing system, specific screening model (in vitro), an abundant components library, and a data acquisition and processing system. Various technologies, especially the novel technologies such as fluorescence, nuclear-magnetic resonance, affinity chromatography, surface plasmon resonance, and DNA microarray, are now available, and the screening of more than 100,000 samples per day is already possible. Fluorescence-based assays include the scintillation proximity assay, time-resolved energy transfer, fluorescence anisotropy, fluorescence correlation spectroscopy, and fluorescence fluctuation spectroscopy. Fluorescence-based techniques are likely to be among the most important detection approaches used for HTS due to their high sensitivity and amenability to automation, giving the industry-wide drive to simplify, miniaturize, and speed up assays. The application of NMR technology to HTS is another recent trend in drug research. One advantage afforded by NMR technology is that it can provide direct information on the affinity of the screening compounds and the binding location of protein. The structure-activity relationship acquired from NMR analysis can sharpen the library design, which will be very important in furnishing HTS with well-defined drug candidates. Affinity chromatography used for library screening will provide the information on the fundamental processes of drug action, such as absorption, distribution, excretion, and receptor activation; also the eluting curve can give directly the possibility of candidate drug. SPR can measure the quantity of a complex formed between two molecules in real-time without the need for fluorescent or radioisotopic labels. SPR is capable of characterizing unmodified biopharmaceuticals, studying the interaction of drug candidates with macromolecular targets, and identifying binding partners during ligand fishing experiments. DNA microarrays can be used in HTS be used to further investigate the expression of biological targets associated with human disease, which then opens new and exciting opportunities for drug discovery. Without doubt, the addition of new technologies will further increase the application of HTS in drug screening and its related fields.
Collapse
Affiliation(s)
- Bailing Liu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Peoples Republic of China.
| | | | | |
Collapse
|