51
|
Scott E, Elliott DJ, Munkley J. Tumour associated glycans: A route to boost immunotherapy? Clin Chim Acta 2019; 502:167-173. [PMID: 31870793 DOI: 10.1016/j.cca.2019.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
While the development of immunotherapies for cancer treatment offer significant promise across several cancers, still only a small subset of patients respond to immune based monotherapies. As such, attention has turned to the development of combination therapies. These use conventional cancer treatments such as chemotherapy to sensitise tumours to immunotherapy. Here, we summarise key research, highlighting the exciting potential of tumour associated glycans as therapeutic targets to sensitise tumours to immunotherapy. When cells undergo carcinogenesis they reprogram their glyco-code. Several cancer associated glycans have been identified, and therapies targeting them are under development. Proteins containing carbohydrate binding domains (lectins) are expressed by many immune cell subtypes, and upon glycan binding, transduce immune modulatory signals that regulate the tumour immune microenvironment.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK.
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| |
Collapse
|
52
|
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's Mechanistic and Clinical Effects on Breast Cancer. Biomolecules 2019; 9:biom9120789. [PMID: 31783552 PMCID: PMC6995578 DOI: 10.3390/biom9120789] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX), the most widely used anticancer drug, is applied for the treatment of various types of malignant diseases. Mechanisms of PTX action represent several ways in which PTX affects cellular processes resulting in programmed cell death. PTX is frequently used as the first-line treatment drug in breast cancer (BC). Unfortunately, the resistance of BC to PTX treatment is a great obstacle in clinical applications and one of the major causes of death associated with treatment failure. Factors contributing to PTX resistance, such as ABC transporters, microRNAs (miRNAs), or mutations in certain genes, along with side effects of PTX including peripheral neuropathy or hypersensitivity associated with the vehicle used to overcome its poor solubility, are responsible for intensive research concerning the use of PTX in preclinical and clinical studies. Novelties such as albumin-bound PTX (nab-PTX) demonstrate a progressive approach leading to higher efficiency and decreased risk of side effects after drug administration. Moreover, PTX nanoparticles for targeted treatment of BC promise a stable and efficient therapeutic intervention. Here, we summarize current research focused on PTX, its evaluations in preclinical research and application clinical practice as well as the perspective of the drug for future implication in BC therapy.
Collapse
Affiliation(s)
- Tala M. Abu Samaan
- Department of Pre-Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| |
Collapse
|
53
|
Xu J, Ren X, Guo T, Sun X, Chen X, Patterson LH, Li H, Zhang J. NLG919/cyclodextrin complexation and anti-cancer therapeutic benefit as a potential immunotherapy in combination with paclitaxel. Eur J Pharm Sci 2019; 138:105034. [DOI: 10.1016/j.ejps.2019.105034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 01/21/2023]
|
54
|
Asahina H, Oizumi S, Takamura K, Harada T, Harada M, Yokouchi H, Kanazawa K, Fujita Y, Kojima T, Sugaya F, Tanaka H, Honda R, Kikuchi E, Ikari T, Ogi T, Shimizu K, Suzuki M, Konno S, Dosaka-Akita H, Isobe H, Nishimura M. A prospective phase II study of carboplatin and nab-paclitaxel in patients with advanced non-small cell lung cancer and concomitant interstitial lung disease (HOT1302). Lung Cancer 2019; 138:65-71. [PMID: 31654836 DOI: 10.1016/j.lungcan.2019.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Patients with concomitant advanced non-small cell lung cancer (NSCLC) and interstitial lung disease (ILD) are excluded from most clinical chemotherapy trials because of the high risk of exacerbating the latter condition. This study prospectively investigated the efficacy and safety of albumin-bound paclitaxel (nab-paclitaxel) in combination with carboplatin in patients with both advanced NSCLC and ILD. PATIENTS AND METHODS The enrolled patients had treatment-naïve, advanced NSCLC with ILD. Patients received 100 mg/m2nab-paclitaxel weekly and carboplatin at an area under the concentration-time curve of 6 once every 3 weeks for 4-6 cycles. The primary endpoint was the overall response rate (ORR); secondary endpoints included toxicity, progression-free survival (PFS), and overall survival (OS). RESULTS Thirty-six patients were enrolled between April 2014 and September 2017. Sixteen patients (44.4%) had adenocarcinoma, 15 (41.7%) had squamous cell carcinoma (Sq), and 5 (13.9%) had non-small cell carcinoma. The median number of cycles administered were 4 (range: 1-6). The ORR was 55.6% (95% confidence interval [CI]: 39.6-70.5). The median PFS and OS were 5.3 months (95% CI: 3.9-8.2) and 15.4 months (95% CI: 9.4-18.7), respectively. A greater proportion of patients with Sq experienced improvements than did those with non-Sq: ORRs, 66.7% (95% CI: 41.7-84.8) vs. 47.6% (95% CI: 28.3-67.6) (P = 0.254); median PFS, 8.2 months (95% CI: 4.0-10.2) vs. 4.1 months (95% CI: 3.3-5.4) (HR, 0.60 [95% CI, 0.30-1.20]; P = 0.15); and median OS, 16.8 months (95% CI: 9.8-not reached) vs. 11.9 months (95% CI: 7.3-17.4) (HR, 0.56 [95% CI, 0.24-1.28]; P = 0.17). Two patients (5.6%) experienced grade ≥2 pneumonitis and 1 patient (2.8%) died. CONCLUSION Weekly nab-paclitaxel combined with carboplatin showed favorable efficacy with acceptable toxicity in patients with both advanced NSCLC and ILD.
Collapse
Affiliation(s)
- Hajime Asahina
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Satoshi Oizumi
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Kei Takamura
- Department of Respiratory Medicine, Obihiro-Kosei General Hospital, Obihiro, Japan
| | - Toshiyuki Harada
- Center for Respiratory Diseases, JCHO Hokkaido Hospital, Sapporo, Japan
| | - Masao Harada
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Hiroshi Yokouchi
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan; Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenya Kanazawa
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuka Fujita
- Department of Respiratory Medicine, National Hospital Organization Asahikawa Medical Center, Asahikawa, Japan
| | - Tetsuya Kojima
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Fumiko Sugaya
- Department of Respiratory Medicine, Teine Keijinkai Hospital, Sapporo, Japan
| | - Hisashi Tanaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryoichi Honda
- Department of Respiratory Medicine, Asahi Chuo Hospital, Asahi, Japan
| | - Eiki Kikuchi
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoo Ikari
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Center for Respiratory Diseases, JCHO Hokkaido Hospital, Sapporo, Japan
| | - Takahiro Ogi
- Department of Respiratory Medicine, Obihiro-Kosei General Hospital, Obihiro, Japan; Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Isobe
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
55
|
Guigay J, Tahara M, Licitra L, Keilholz U, Friesland S, Witzler P, Mesía R. The Evolving Role of Taxanes in Combination With Cetuximab for the Treatment of Recurrent and/or Metastatic Squamous Cell Carcinoma of the Head and Neck: Evidence, Advantages, and Future Directions. Front Oncol 2019; 9:668. [PMID: 31497530 PMCID: PMC6712586 DOI: 10.3389/fonc.2019.00668] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022] Open
Abstract
The addition of cetuximab to platinum-based chemotherapy (cisplatin or carboplatin plus 5-fluorouracil [5-FU]), followed by maintenance cetuximab until disease progression (EXTREME), resulted in the first regimen to yield significantly improved survival outcomes in the first-line treatment of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN) in over 30 years. Currently, the EXTREME regimen is a guideline-recommended treatment in the first-line R/M setting, and, therefore, it is used as a control arm in all new first-line, phase 3 immunotherapy trials. More recently, new checkpoint inhibitor approaches have emerged and are changing the treatment landscape for PD-L1-positive patients with R/M SCCHN. Additionally, alternative chemotherapy backbones in R/M SCCHN are continually investigated. Replacing 5-FU with a taxane in the EXTREME regimen seeks to take advantage of the potential immunogenic and proapoptotic synergy between cetuximab and docetaxel or paclitaxel. These cetuximab-, platinum-, and taxane-based treatments have demonstrated promising survival results and cytoreductive properties in single-arm studies. Thus, these combination treatments may be of importance to patients with high tumor burden and dangerous site involvements (e.g., causing bleeding, suffocation, dysphagia, or ulceration), in whom symptom relief is a key treatment goal. TPExtreme is the first large, randomized trial comparing a cetuximab, platinum, and taxane combination regimen with EXTREME. Currently, the substitution of 5-FU with a taxane is a feasible and clinically beneficial option for patients with contraindications to 5-FU. The TPEx regimen appears to be a new option in first-line R/M SCCHN, with a shorter time on CT and significantly lower toxicity than the EXTREME regimen. For patients with R/M disease in whom further cisplatin- or carboplatin-based treatment is unsuitable, or whose disease has already progressed on first-line R/M therapy, treatment options such as cetuximab plus a taxane, which capitalize on the combinative ability of the 2 agents, can be considered. Notably, it is as of yet unknown what second-line treatments may be suitable to follow a checkpoint inhibitor-based first-line therapy.
Collapse
Affiliation(s)
- Joël Guigay
- Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Tokyo, Japan
| | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale Tumori, University of Milan, Milan, Italy
| | | | | | | | - Ricard Mesía
- Medical Oncology Department, Catalan Institute of Oncology, B-ARGO Group–Badalona, Barcelona, Spain
| |
Collapse
|
56
|
Hartl CA, Bertschi A, Puerto RB, Andresen C, Cheney EM, Mittendorf EA, Guerriero JL, Goldberg MS. Combination therapy targeting both innate and adaptive immunity improves survival in a pre-clinical model of ovarian cancer. J Immunother Cancer 2019; 7:199. [PMID: 31362778 PMCID: PMC6668091 DOI: 10.1186/s40425-019-0654-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Despite major advancements in immunotherapy among a number of solid tumors, response rates among ovarian cancer patients remain modest. Standard treatment for ovarian cancer is still surgery followed by taxane- and platinum-based chemotherapy. Thus, there is an urgent need to develop novel treatment options for clinical translation. Methods Our approach was to analyze the effects of standard chemotherapy in the tumor microenvironment of mice harboring orthotopic, syngeneic ID8-Vegf-Defb29 ovarian tumors in order to mechanistically determine a complementary immunotherapy combination. Specifically, we interrogated the molecular and cellular consequences of chemotherapy by analyzing gene expression and flow cytometry data. Results These data show that there is an immunosuppressive shift in the myeloid compartment, with increased expression of IL-10 and ARG1, but no activation of CD3+ T cells shortly after chemotherapy treatment. We therefore selected immunotherapies that target both the innate and adaptive arms of the immune system. Survival studies revealed that standard chemotherapy was complemented most effectively by a combination of anti-IL-10, 2′3’-cGAMP, and anti-PD-L1. Immunotherapy dramatically decreased the immunosuppressive myeloid population while chemotherapy effectively activated dendritic cells. Together, combination treatment increased the number of activated T and dendritic cells as well as expression of cytotoxic factors. It was also determined that the immunotherapy had to be administered concurrently with the chemotherapy to reverse the acute immunosuppression caused by chemotherapy. Mechanistic studies revealed that antitumor immunity in this context was driven by CD4+ T cells, which acquired a highly activated phenotype. Our data suggest that these CD4+ T cells can kill cancer cells directly via granzyme B-mediated cytotoxicity. Finally, we showed that this combination therapy is also effective at delaying tumor growth substantially in an aggressive model of lung cancer, which is also treated clinically with taxane- and platinum-based chemotherapy. Conclusions This work highlights the importance of CD4+ T cells in tumor immunology. Furthermore, the data support the initiation of clinical trials in ovarian cancer that target both innate and adaptive immunity, with a focus on optimizing dosing schedules. Electronic supplementary material The online version of this article (10.1186/s40425-019-0654-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina A Hartl
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrian Bertschi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Regina Bou Puerto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Carolin Andresen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Emily M Cheney
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elizabeth A Mittendorf
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02215, USA.,Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Michael S Goldberg
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
57
|
Jiao R, Luo H, Xu W, Ge H. Immune checkpoint inhibitors in esophageal squamous cell carcinoma: progress and opportunities. Onco Targets Ther 2019; 12:6023-6032. [PMID: 31551657 PMCID: PMC6677374 DOI: 10.2147/ott.s214579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the common malignant tumors in the world. More than half of patients with ESCC were detected in advanced or metastatic disease at the time of initial diagnosis and lost the opportunities of surgery. Currently, surgical resection, radiotherapy, and chemotherapy are most utilized in clinical practice, however, they are associated with limited survival benefits. Recognition of the limitation of traditional antitumor strategies prompt the development of new means to treat human cancer. In recent years, studies on immune checkpoint inhibitors (eg PD-1/PD-L1 inhibitors, CTLA-4 inhibitors, etc.) in ESCC have shown promising results. In addition, the combination of immune checkpoint inhibitor and traditional antitumor strategies for ESCC has caused extensive interest, and the results are encouraging. Previous analysis indicated that tumor cell PD-L1 expression, tumor mutation load (TMB), microsatellite instability-high status (MSI-H), and other biomarkers have relatively correlated with the efficacy of immunotherapy. This review explores the recent studies investigating checkpoint inhibitors in ESCC.
Collapse
Affiliation(s)
- Ruidi Jiao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province450008, People’s Republic of China
| | - Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province450008, People’s Republic of China
| | - Wenbo Xu
- Department of Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450008, People’s Republic of China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province450008, People’s Republic of China
| |
Collapse
|
58
|
Verco J, Johnston W, Frost M, Baltezor M, Kuehl PJ, Lopez A, Gigliotti A, Belinsky SA, Wolff R, diZerega G. Inhaled Submicron Particle Paclitaxel (NanoPac) Induces Tumor Regression and Immune Cell Infiltration in an Orthotopic Athymic Nude Rat Model of Non-Small Cell Lung Cancer. J Aerosol Med Pulm Drug Deliv 2019; 32:266-277. [PMID: 31347939 PMCID: PMC6781259 DOI: 10.1089/jamp.2018.1517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: This study evaluated the antineoplastic and immunostimulatory effects of inhaled (IH) submicron particle paclitaxel (NanoPac®) in an orthotopic non-small cell lung cancer rodent model. Methods: Male nude rats were whole body irradiated, intratracheally instilled with Calu-3 cancer cells and divided into six treatment arms (n = 20 each): no treatment (Group 1); intravenous nab-paclitaxel at 5.0 mg/kg once weekly for 3 weeks (Group 2); IH NanoPac at 0.5 or 1.0 mg/kg, once weekly for 4 weeks (Groups 3 and 4), or twice weekly for 4 weeks (Groups 5 and 6). Upon necropsy, left lungs were paraffin embedded, serially sectioned, and stained for histopathological examination. A subset was evaluated by immunohistochemistry (IHC), anti-pan cytokeratin staining AE1/AE3+ tumor cells and CD11b+ staining dendritic cells, natural killer lymphocytes, and macrophage immune cells (n = 2, Group 1; n = 3 each for Groups 2–6). BCL-6 staining identified B lymphocytes (n = 1 in Groups 1, 2, and 6). Results: All animals survived to scheduled necropsy, exhibited no adverse clinical observations due to treatment, and gained weight at the same rate throughout the study. Histopathological evaluation of Group 1 lung samples was consistent with unabated tumor growth. Group 2 exhibited regression in 10% of animals (n = 2/20). IH NanoPac-treated groups exhibited significantly higher tumor regression incidence per group (n = 11–13/20; p < 0.05, χ2). IHC subset analysis revealed tumor-nodule cluster separation, irregular borders between tumor and non-neoplastic tissue, and an increased density of infiltrating CD11b+ cells in Group 2 animals (n = 2/3) and in all IH NanoPac-treated animals reviewed (n = 3/3 per group). A single animal in Group 4 and Group 6 exhibited signs of pathological complete response at necropsy with organizing stroma and immune cells replacing areas presumed to have previously contained adenocarcinoma nodules. Conclusion: Tumor regression and immune cell infiltration were observed in all treatment groups, with an increased incidence noted in animals receiving IH submicron particle paclitaxel treatment.
Collapse
Affiliation(s)
- James Verco
- US Biotest, Inc., San Luis Obispo, California
| | | | - Michael Frost
- Western Diagnostic Services Laboratory, Santa Maria, California
| | | | | | - Anita Lopez
- Lovelace Biomedical, Albuquerque, New Mexico
| | | | | | | | - Gere diZerega
- US Biotest, Inc., San Luis Obispo, California.,NanOlogy, LLC, Fort Worth, Texas
| |
Collapse
|
59
|
Bernier C, Soliman A, Gravel M, Dankner M, Savage P, Petrecca K, Park M, Siegel PM, Shore GC, Roulston A. DZ-2384 has a superior preclinical profile to taxanes for the treatment of triple-negative breast cancer and is synergistic with anti-CTLA-4 immunotherapy. Anticancer Drugs 2019; 29:774-785. [PMID: 29878901 PMCID: PMC6133219 DOI: 10.1097/cad.0000000000000653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancer (TNBC) is typically aggressive, difficult to treat, and commonly metastasizes to the visceral organs and soft tissues, including the lungs and the brain. Taxanes represent the most effective and widely used therapeutic class in metastatic TNBC but possess limiting adverse effects that often result in a delay, reduction, or cessation of their use. DZ-2384 is a candidate microtubule-targeting agent with a distinct mechanism of action and strong activity in several preclinical cancer models, with reduced toxicities. DZ-2384 is highly effective in patient-derived taxane-sensitive and taxane-resistant xenograft models of TNBC at lower doses and over a wider range relative to paclitaxel. When comparing compound exposure at minimum effective doses relative to safe exposure levels, the therapeutic window for DZ-2384 is 14-32 compared with 2.0 and less than 2.8 for paclitaxel and docetaxel, respectively. DZ-2384 is effective at reducing brain metastatic lesions when used at maximum tolerated doses and is equivalent to paclitaxel. Drug distribution experiments indicate that DZ-2384 is taken up more efficiently by tumor tissue but at equivalent levels in the brain compared with paclitaxel. Selective DZ-2384 uptake by tumor tissue may in part account for its wider therapeutic window compared with taxanes. In view of the current clinical efforts to combine chemotherapy with immune checkpoint inhibitors, we demonstrate that DZ-2384 acts synergistically with anti-CTLA-4 immunotherapy in a syngeneic murine model. These results demonstrate that DZ-2384 has a superior pharmacologic profile over currently used taxanes and is a promising therapeutic agent for the treatment of metastatic TNBC.
Collapse
Affiliation(s)
- Cynthia Bernier
- Laboratory for Therapeutic Development.,Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre
| | - Ahmed Soliman
- Laboratory for Therapeutic Development.,Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre
| | - Michel Gravel
- Laboratory for Therapeutic Development.,Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre
| | - Matthew Dankner
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre
| | - Paul Savage
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Morag Park
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre
| | - Peter M Siegel
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre
| | - Gordon C Shore
- Laboratory for Therapeutic Development.,Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre
| | - Anne Roulston
- Laboratory for Therapeutic Development.,Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre
| |
Collapse
|
60
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019. [PMID: 31143517 DOI: 10.1080/2162402x.2019.1596004] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
61
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019; 8:1596004. [PMID: 31143517 PMCID: PMC6527283 DOI: 10.1080/2162402x.2019.1596004] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/17/2019] [Accepted: 03/09/2019] [Indexed: 02/08/2023] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
62
|
Adamek P, Heles M, Palecek J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. Neuropharmacology 2018; 146:163-174. [PMID: 30471295 DOI: 10.1016/j.neuropharm.2018.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Paclitaxel chemotherapy treatment often leads to neuropathic pain resistant to available analgesic treatments. Recently spinal Toll-like receptor 4 (TLR4) and the transient receptor potential cation channel subfamily V member 1 (TRPV1) were identified to be involved in the pro-nociceptive effect of paclitaxel. The aim of this study was to investigate the role of phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinases in this process, with the use of their antagonists (wortmannin, LY-294002, and staurosporine). The single paclitaxel administration (8 mg/kg i.p.) in mice induced robust mechanical allodynia measured as a reduced threshold to von Frey filament stimulation and generated reduced tachyphylaxis of capsaicin-evoked responses, recorded as changes in mEPSC frequency in patch-clamp recordings of dorsal horn neurons activity in vitro, for up to eight days. Paclitaxel application also induced increased Akt kinase phosphorylation in rat DRG neurons. All these paclitaxel-induced changes were prevented by the wortmannin in vivo pretreatment. Acute co-application of wortmannin or LY-294002 with paclitaxel in spinal cord slices also attenuated the paclitaxel effect on capsaicin-evoked responses. Staurosporine was effective in the acute in vitro experiments and on the first day after the paclitaxel treatment in vivo, but in contrast to wortmannin, it did not have a significant impact later. Our data suggest that the inhibition of PI3K signaling may help alleviate pathological pain syndromes in the paclitaxel-induced neuropathy.
Collapse
Affiliation(s)
- Pavel Adamek
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, 128 44, Czech Republic
| | - Mario Heles
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, 128 44, Czech Republic
| | - Jiri Palecek
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic.
| |
Collapse
|
63
|
Bonomi M, Ahmed T, Addo S, Kooshki M, Palmieri D, Levine BJ, Ruiz J, Grant S, Petty WJ, Triozzi PL. Circulating immune biomarkers as predictors of the response to pembrolizumab and weekly low dose carboplatin and paclitaxel in NSCLC and poor PS: An interim analysis. Oncol Lett 2018; 17:1349-1356. [PMID: 30655905 DOI: 10.3892/ol.2018.9724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
The combination of standard-dose chemotherapy and immunotherapy has been shown to be beneficial for patients with non-small cell lung cancer (NSCLC) with good performance status (PS). However, treatment options for patients with poor PS are limited. In the present study, the feasibility and immunological effects of low-dose chemotherapy with carboplatin and paclitaxel combined with immunotherapy with pembrolizumab were examined in patients with metastatic NSCLC and a poor PS. Patients with advanced NSCLC and a PS of 2 were randomized to single-agent pembrolizumab at 200 mg every 3 weeks or pembrolizumab combined with weekly carboplatin area under the curve 1 and paclitaxel 25 mg/m2. Blood for circulating immune cell phenotyping, soluble program death ligand 1 (sPD-L1) and immune-modulatory microRNAs (miRNAs) was collected prior to treatment and at weeks 4 and 7. Ten patients were randomized to the combination arm and 10 to the single-agent arm. Therapy was well tolerated. Four patients discontinued carboplatin due to hypersensitivity reactions but continued pembrolizumab and paclitaxel treatments. Increases in activated CD4+ T cells and in immune-regulatory miRNA, and decreases in myeloid derived suppressor cells were observed in the blood of patients in the combination arm and not in the single-agent arm. Changes in circulating regulatory T cells and sPD-L1 were not observed. Seven patients in the combination arm manifested a partial response compared with only two in the single-agent arm. Weekly low-dose chemotherapy carboplatin and paclitaxel was well tolerated and immunologically active when combined with pembrolizumab in patients with advanced NSCLC and a PS of 2. This combination merits further study in this patient population.
Collapse
Affiliation(s)
- Marcelo Bonomi
- Department of Medical Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Tamjeed Ahmed
- Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Safoa Addo
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Mitra Kooshki
- Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Dario Palmieri
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Beverly J Levine
- Division of Public Health Sciences, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Jimmy Ruiz
- Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Stefan Grant
- Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - William J Petty
- Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Pierre L Triozzi
- Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
64
|
Yoon HK, Kim TH, Park S, Jung H, Quan X, Park SJ, Han J, Lee A. Effect of anthracycline and taxane on the expression of programmed cell death ligand-1 and galectin-9 in triple-negative breast cancer. Pathol Res Pract 2018; 214:1626-1631. [DOI: 10.1016/j.prp.2018.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/29/2018] [Accepted: 08/08/2018] [Indexed: 01/22/2023]
|
65
|
Burkert SC, Shurin GV, White DL, He X, Kapralov AA, Kagan VE, Shurin MR, Star A. Targeting myeloid regulators by paclitaxel-loaded enzymatically degradable nanocups. NANOSCALE 2018; 10:17990-18000. [PMID: 30226240 PMCID: PMC6563927 DOI: 10.1039/c8nr04437f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Tumor microenvironment is characterized by immunosuppressive mechanisms associated with the accumulation of immune regulatory cells - myeloid-derived suppressor cells (MDSC). Therapeutic depletion of MDSC has been associated with inhibition of tumor growth and therefore represents an attractive approach to cancer immunotherapy. MDSC in cancer are characterized by enhanced enzymatic capacity to generate reactive oxygen and nitrogen species (RONS) which have been shown to effectively degrade carbonaceous materials. We prepared enzymatically openable nitrogen-doped carbon nanotube cups (NCNC) corked with gold nanoparticles and loaded with paclitaxel as a therapeutic cargo. Loading and release of paclitaxel was confirmed through electron microscopy, Raman spectroscopy and LC-MS analysis. Under the assumption that RONS generated by MDSCs can be utilized as a dual targeting and oxidative degradation mechanism for NCNC, here we report that systemic administration of paclitaxel loaded NCNC delivers paclitaxel to circulating and lymphoid tissue MDSC resulting in the inhibition of growth of tumors (B16 melanoma cells inoculated into C57BL/6 mice) in vivo. Tumor growth inhibition was associated with decreased MDSC accumulation quantified by flow cytometry that correlated with bio-distribution of gold-corked NCNC resolved by ICP-MS detection of residual gold in mouse tissue. Thus, we developed a novel immunotherapeutic approach based on unique nanodelivery vehicles, which can be loaded with therapeutic agents that are released specifically in MDSC via NCNC selective enzymatic "opening" affecting change in the tumor microenvironment.
Collapse
Affiliation(s)
- Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Li M, Shi K, Tang X, Wei J, Cun X, Chen X, Yu Q, Zhang Z, He Q. pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma. Eur J Pharm Sci 2018; 124:240-248. [PMID: 30071282 DOI: 10.1016/j.ejps.2018.07.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
Abstract
Effective chemotherapy for clinical glioma treatment is still lacking due to the poor penetration of blood-brain barrier (BBB) and the poor internalization into tumor cells. To facilitate the transmigration across the BBB as well as the glioma targeting of chemotherapeutics, we constructed cell penetrating peptide dNP2 and tumor microenvironment-cleavable folic acid (FA) dual modified, paclitaxel (PTX) loaded liposome for the targeted delivery of glioma. The modification of dNP2 significantly enhanced the transmigration across the BBB in an in vitro BBB model. The acid-cleavable cFd-Lip/PTX exhibited sensitive cleavage of FA at pH 6.8, which led to enhanced cellular uptake mediated by both cell penetrating peptide dNP2 and the interaction between FA and folate receptor (FR) on the glioma cells. After intravenous injection, compared with non-cleavable Fd-Lip and single modified liposomes, cFd-Lip enhanced the accumulation in orthotropic glioma and improved the anti-tumor effect of glioma-bearing mice. The dual modified liposomes also facilitated deep penetration into tumor cells and consequently enhanced the cytotoxicity of PTX-loaded liposomes. The acid-cleavable dual modified strategy retained the BBB penetrating and tumor targeting ability, meanwhile, the cleavage of FA further maximized the cell permeability of dNP2, exhibiting enhanced tumor targeting effect. The multi-targeting strategy provides a promising approach towards targeted chemotherapy for glioma.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kairong Shi
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xian Tang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaojie Wei
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingli Cun
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoxiao Chen
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qianwen Yu
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
67
|
Huang ST, Wang YP, Chen YH, Lin CT, Li WS, Wu HC. Liposomal paclitaxel induces fewer hematopoietic and cardiovascular complications than bioequivalent doses of Taxol. Int J Oncol 2018; 53:1105-1117. [PMID: 29956746 PMCID: PMC6065427 DOI: 10.3892/ijo.2018.4449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
Paclitaxel (PTX) exhibits potent antineoplastic activity against various human malignancies; however, clinical application must overcome the inherent hydrophobicity of this molecule. The commercialized Taxol formulation utilizes Cremophor EL (CrEL)/ethanol as a solvent to stabilize and dispense PTX in an aqueous solution. However, adverse CrEL-induced hypersensitivity reactions have been reported in ~30% of recipients, and 40% of patients receiving premedication may also experience this adverse effect. Therefore, the development of a CrEL-free delivery system is crucial, in order to fully exploit the therapeutic efficacy of PTX. In the present study, a novel liposomal PTX (lipo-PTX) formulation was optimized with regards to encapsulation rate and long-term stability, arriving at a molar constituent ratio of soybean phosp hatidylcholine:cholesterol:N-(carbonyl-methoxy-poly-ethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt:PTX at 95:2:1:2. Comparable doses of lipo-PTX and Taxol were bioequivalent in terms of therapeutic efficacy in xenograft tumor models. However, the systemic side effects, including hematopoietic toxicity, acute hypersensitivity reactions and cardiac irregularities, were significantly reduced in lipo-PTX-treated mice compared with those infused with reference formulations of PTX. In conclusion, the present study reported that lipo-PTX exhibited a higher therapeutic index than clinical PTX formulations.
Collapse
Affiliation(s)
- Shih-Ting Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Yi-Ping Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Chin-Tarng Lin
- Department of Pathology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Wen-Shan Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Han-Chung Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| |
Collapse
|
68
|
Jayashree S, Nirekshana K, Guha G, Bhakta-Guha D. Cancer chemotherapeutics in rheumatoid arthritis: A convoluted connection. Biomed Pharmacother 2018; 102:894-911. [PMID: 29710545 DOI: 10.1016/j.biopha.2018.03.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is one of the most popular therapeutic strategies to treat cancer. However, cancer chemotherapeutics have often been associated with impairment of the immune system, which might consequently lead to an augmented risk of autoimmune disorders, such as rheumatoid arthritis. Though the accurate mechanistic facets of rheumatoid arthritis induction have not been interpreted yet, a conglomeration of genetic and environmental factors might promote its etiology. What makes the scenario more challenging is that patients with rheumatoid arthritis are at a significantly elevated risk of developing various types of cancer. It is intriguing to note that diverse cancer chemotherapy drugs are also commonly used to treat symptoms of rheumatoid arthritis. However, a colossal multitude of such cancer therapeutics has demonstrated highly varied results in rheumatoid arthritis patients, including both beneficial and adverse effects. Herein, we attempt to present a holistic account of the variegated modalities of this complex tripartite cross-talk between cancer, rheumatoid arthritis and chemotherapy drugs in order to decode the sinuous correlation between these two appalling pathological conditions.
Collapse
Affiliation(s)
- S Jayashree
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - K Nirekshana
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
69
|
Duhamel M, Rose M, Rodet F, Murgoci AN, Zografidou L, Régnier-Vigouroux A, Vanden Abeele F, Kobeissy F, Nataf S, Pays L, Wisztorski M, Cizkova D, Fournier I, Salzet M. Paclitaxel Treatment and Proprotein Convertase 1/3 (PC1/3) Knockdown in Macrophages is a Promising Antiglioma Strategy as Revealed by Proteomics and Cytotoxicity Studies. Mol Cell Proteomics 2018. [PMID: 29531019 DOI: 10.1074/mcp.ra117.000443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
High grade gliomas are the most common brain tumors in adult. These tumors are characterized by a high infiltration in microglial cells and macrophages. The immunosuppressive tumor environment is known to orient immune cells toward a pro-tumoral and anti-inflammatory phenotype. Therefore, the current challenge for cancer therapy is to find a way to reorient macrophages toward an antitumoral phenotype. Previously, we demonstrated that macrophages secreted antitumoral factors when they were invalidated for the proprotein converstase 1/3 (PC1/3) and treated with LPS. However, achieving an activation of macrophages via LPS/TLR4/Myd88-dependent pathway appears yet unfeasible in cancer patients. On the contrary, the antitumor drug Paclitaxel is also known to activate the TLR4 MyD88-dependent signaling pathway and mimics LPS action. Therefore, we evaluated if PC1/3 knock-down (KD) macrophages could be activated by Paclitaxel and efficient against glioma. We report here that such a treatment of PC1/3 KD macrophages drove to the overexpression of proteins mainly involved in cytoskeleton rearrangement. In support of this finding, we found that these cells exhibited a Ca2+ increase after Paclitaxel treatment. This is indicative of a possible depolymerization of microtubules and may therefore reflect an activation of inflammatory pathways in macrophages. In such a way, we found that PC1/3 KD macrophages displayed a repression of the anti-inflammatory pathway STAT3 and secreted more pro-inflammatory cytokines. Extracellular vesicles isolated from these PC1/3 KD cells inhibited glioma growth. Finally, the supernatant collected from the coculture between glioma cells and PC1/3 KD macrophages contained more antitumoral factors. These findings unravel the potential value of a new therapeutic strategy combining Paclitaxel and PC1/3 inhibition to switch macrophages toward an antitumoral immunophenotype.
Collapse
Affiliation(s)
- Marie Duhamel
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France;
| | - Mélanie Rose
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France.,§Oncovet Clinical Research (OCR), SIRIC ONCOLille, Villeneuve d'Ascq, France
| | - Franck Rodet
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Adriana Natalia Murgoci
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France.,§§Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic
| | - Lea Zografidou
- ¶Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 15, D-55128 Mainz, Germany
| | - Anne Régnier-Vigouroux
- ¶Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 15, D-55128 Mainz, Germany
| | - Fabien Vanden Abeele
- ‖Inserm U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Firas Kobeissy
- **Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut, Lebanon
| | - Serge Nataf
- ‡‡Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, Hôpital Edouard Herriot, 69437 Lyon cedex 03, France
| | - Laurent Pays
- ‡‡Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, Hôpital Edouard Herriot, 69437 Lyon cedex 03, France
| | - Maxence Wisztorski
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Dasa Cizkova
- §§Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic
| | - Isabelle Fournier
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Michel Salzet
- From the ‡Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| |
Collapse
|
70
|
Rebelo SP, Pinto C, Martins TR, Harrer N, Estrada MF, Loza-Alvarez P, Cabeçadas J, Alves PM, Gualda EJ, Sommergruber W, Brito C. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials 2018; 163:185-197. [PMID: 29477032 DOI: 10.1016/j.biomaterials.2018.02.030] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
The tumour microenvironment (TME) shapes disease progression and influences therapeutic response. Most aggressive solid tumours have high levels of myeloid cell infiltration, namely tumour associated macrophages (TAM). Recapitulation of the interaction between the different cellular players of the TME, along with the extracellular matrix (ECM), is critical for understanding the mechanisms underlying disease progression. This particularly holds true for prediction of therapeutic response(s) to standard therapies and interrogation of efficacy of TME-targeting agents. In this work, we explored a culture platform based on alginate microencapsulation and stirred culture systems to develop the 3D-3-culture, which entails the co-culture of tumour cell spheroids of non-small cell lung carcinoma (NSCLC), cancer associated fibroblasts (CAF) and monocytes. We demonstrate that the 3D-3-culture recreates an invasive and immunosuppressive TME, with accumulation of cytokines/chemokines (IL4, IL10, IL13, CCL22, CCL24, CXCL1), ECM elements (collagen type I, IV and fibronectin) and matrix metalloproteinases (MMP1/9), supporting cell migration and promoting cell-cell interactions within the alginate microcapsules. Importantly, we show that both the monocytic cell line THP-1 and peripheral blood-derived monocytes infiltrate the tumour tissue and transpolarize into an M2-like macrophage phenotype expressing CD68, CD163 and CD206, resembling the TAM phenotype in NSCLC. The 3D-3-culture was challenged with chemo- and immunotherapeutic agents and the response to therapy was assessed in each cellular component. Specifically, the macrophage phenotype was modulated upon treatment with the CSF1R inhibitor BLZ945, resulting in a decrease of the M2-like macrophages. In conclusion, the crosstalk between the ECM and tumour, stromal and immune cells in microencapsulated 3D-3-culture promotes the activation of monocytes into TAM, mimicking aggressive tumour stages. The 3D-3-culture constitutes a novel tool to study tumour-immune interaction and macrophage plasticity in response to external stimuli, such as chemotherapeutic and immunomodulatory drugs.
Collapse
Affiliation(s)
- Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Catarina Pinto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Tatiana R Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Nathalie Harrer
- Boehringer Ingelheim RCV GmbH & Co KG, Department of Lead Discovery, 1121, Vienna, Austria
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Pablo Loza-Alvarez
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - José Cabeçadas
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Emilio J Gualda
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Wolfgang Sommergruber
- Boehringer Ingelheim RCV GmbH & Co KG, Department of Lead Discovery, 1121, Vienna, Austria
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
71
|
Khairallah AS, Genestie C, Auguste A, Leary A. Impact of neoadjuvant chemotherapy on the immune microenvironment in advanced epithelial ovarian cancer: Prognostic and therapeutic implications. Int J Cancer 2017; 143:8-15. [DOI: 10.1002/ijc.31200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Aya S. Khairallah
- Department of Pathology and Laboratory Medicine; Gustave Roussy Cancer Center; Villejuif France
| | - Catherine Genestie
- Department of Pathology and Laboratory Medicine; Gustave Roussy Cancer Center; Villejuif France
| | - Aurélie Auguste
- INSERM U981 Gynaecological Tumours, Gustave Roussy Cancer Center; Villejuif France
| | - Alexandra Leary
- Department of Pathology and Laboratory Medicine; Gustave Roussy Cancer Center; Villejuif France
- Department of Medical Oncology; Gustave Roussy Cancer Center; Villejuif France
- Faculty of Sciences; University Paris-Sud; Orsay France
| |
Collapse
|
72
|
|
73
|
Millrud CR, Mehmeti M, Leandersson K. Docetaxel promotes the generation of anti-tumorigenic human macrophages. Exp Cell Res 2017; 362:525-531. [PMID: 29269075 DOI: 10.1016/j.yexcr.2017.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
The taxanes Docetaxel and Paclitaxel are two of the standard chemotherapies for patients with metastatic breast cancer. The functional effect of Docetaxel and Paclitaxel on human innate immune cells of the myeloid lineage is not well established, nor is the effects these agents have on differentiation of monocytes into macrophages and dendritic cells. Therefore, the aim with this project was to determine the effects of Docetaxel and Paclitaxel on primary human monocyte differentiation, activation and function. For this purpose, primary human monocytes were isolated from healthy donors and cultured with or without Docetaxel and Paclitaxel. We found that Docetaxel promoted the differentiation of primary human monocytes into pro-inflammatory macrophages with an M1 phenotype and an ability to present antigens to T cells. Monocytes treated with Docetaxel also displayed an elevated secretion of IL-8 and IL-1β, but did not promote generation of monocytic myeloid-derived suppressor cells. In conclusion, Docetaxel appears to have an immune stimulatory effect that would be beneficial for an anti-tumorigenic type of immune response, whereas Paclitaxel seems to have less effect on myeloid cells.
Collapse
Affiliation(s)
- Camilla Rydberg Millrud
- Cancer Immunology, Department of Translational Medicine, Lund University, Skånes University Hospital, Malmö, Sweden.
| | - Meliha Mehmeti
- Cancer Immunology, Department of Translational Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| |
Collapse
|
74
|
Zhao Y, Song Q, Yin Y, Wu T, Hu X, Gao X, Li G, Tan S, Zhang Z. Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti-tumor effects. J Control Release 2017; 269:322-336. [PMID: 29174440 DOI: 10.1016/j.jconrel.2017.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 01/10/2023]
Abstract
The efficacy of immunotherapy was demonstrated to be compromised by reduced immunogenicity of tumor cells and enhanced suppressive properties of the tumor microenvironment in cancer treatment. There is growing evidence that low-dose chemotherapy can modulate the immune system to improve the anti-tumor effects of immunotherapy through multiple mechanisms, including the enhancement of tumor immunogenicity and reversal of the immunosuppressive tumor microenvironment. Here, we fabricated thermosponge nanoparticles (TSNs) for the co-delivery of chemotherapeutic drug paclitaxel (PTX) and immunostimulant interleukin-2 (IL-2) to explore the synergistic anti-tumor effects of chemotherapy and immunotherapy. The distinct temperature-responsive swelling/deswelling character facilitated the effective post-entrapment of cytokine IL-2 in nanoparticles by a facile non-solvent mild incubation method with unaffected bioactivity and favorable pharmacokinetics. PTX and IL-2 co-loaded TSNs exhibited significant inhibition on tumor growth and metastasis, and prolonged overall survival for tumor-bearing mice compared with the corresponding monotherapies. The synergistic effect was evidenced from the remodeled tumor microenvironment in which low-dose chemotherapeutics disrupted the immunosuppressive tumor microenvironment and enhanced tumor immunogenicity, and immunostimulant cytokine promoted the anti-tumor immune response of immune effector cells. The immunochemotherapy mediated by this thermosponge nanoplatform may provide a promising treatment strategy against cancer.
Collapse
Affiliation(s)
- Yongdan Zhao
- Tongji School of Pharmacy, China; Shanxi Medical University, China
| | | | | | | | | | | | - Gao Li
- Tongji School of Pharmacy, China
| | | | - Zhiping Zhang
- Tongji School of Pharmacy, China; National Engineering Research Center for Nanomedicine, China; Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
75
|
Zhang M, Hu J, Zou Y, Wu J, Yao Y, Fan H, Liu K, Wang J, Gao S. Modification of degradable nonviral delivery vehicle with a novel bifunctional peptide to enhance transfection in vivo. Nanomedicine (Lond) 2017; 13:9-24. [PMID: 29094654 DOI: 10.2217/nnm-2017-0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To increase in vivo DNA transfection efficiency of a nonviral delivery vehicle, its tumor targeting and nuclear delivery ability was improved. MATERIALS & METHODS A novel bifunctional peptide tLyP-1-NLS (named K12) was prepared by coupling a tumor-targeting peptide (tLyP-1) with a nuclear localization signal (NLS), and then was used to modify a degradable polyethyleneimine (PEI) derivative called "N-octyl-N-quaternary chitosan (OTMCS)-PEI". The carrier OTMCS-PEI-K12 was characterized in terms of the physicochemical properties, in vitro gene transfection and antitumor effect in vivo. RESULTS OTMCS-PEI-K12 showed good suitability, stability and transfection capacity in vitro on the premise of noncytotoxicity. OTMCS-PEI-K12/pING4 complexes induced extensive apoptosis of tumor tissues and shrunk the tumor volume of mice noticeably in vivo. CONCLUSION This study offers a way to enhance in vivo transfection of a nonviral carrier.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biopharmaceutics, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Hu
- Department of Biopharmaceutics, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zou
- Department of Biopharmaceutics, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junwen Wu
- Department of Biopharmaceutics, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yun Yao
- Department of Biopharmaceutics, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hua Fan
- Institut für Laboratoriumsmedizin, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Wang
- East Branch, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 201306, China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
76
|
Ruxolitinib sensitizes ovarian cancer to reduced dose Taxol, limits tumor growth and improves survival in immune competent mice. Oncotarget 2017; 8:94040-94053. [PMID: 29212208 PMCID: PMC5706854 DOI: 10.18632/oncotarget.21541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/02/2017] [Indexed: 12/15/2022] Open
Abstract
Background Chemotherapy initially reduces the tumor burden in patients with ovarian cancer. However, tumors recur in over 70% of patients, creating the need for novel therapeutic approaches. Methods We evaluated Ruxolitinib, an FDA-approved JAK 1/2 kinase inhibitor, as a potential adjunctive therapy for use with low-dose Taxol (Paclitaxel) by assessing the impact on in vitro proliferation and colony formation of ID8 cells or human TOV-112D ovarian cancer cells, as well as flow cytometric measurement of surface markers associated with cellular stress and stemness by ID8 cells. The syngeneic ID8 murine model of ovarian cancer was used to assess the impact of Ruxolitinib and Taxol, individually and in combination, on tumor initiation and growth, as well as capacity to extend survival. Results Ruxolitinib (≤10 μM) sensitized both ID8 and TOV-112D cells to low concentrations of Taxol (≤5 nM), limiting cell proliferation and colony formation in vitro. Mechanistically, we demonstrated that Taxol induced expression of stress and stemness markers including GRP78 and CD133 was significantly reduced by addition of Ruxolitinib. Finally, we demonstrated that a single administration of a low-dose of Taxol (10 mg/Kg) together with daily Ruxolitinib (30 mg/Kg; which is equivalent to plasma concentrations of ∼ 0.01 μM steady-state) limited ID8 tumor growth in vivo and significantly extended median survival up to 53.5% (median 70 v 107.5 days) as compared to control mice. Conclusion Together, these data support the use of Ruxolitinib in combination with low-dose Taxol as a therapeutic approach with the potential for improved efficacy and reduced side effects for patients with recurrent ovarian cancer.
Collapse
|
77
|
Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM, Waisman J, Allison KH, Dang Y, Disis ML. Topical Imiquimod Plus Nab-paclitaxel for Breast Cancer Cutaneous Metastases: A Phase 2 Clinical Trial. JAMA Oncol 2017; 3:969-973. [PMID: 28114604 DOI: 10.1001/jamaoncol.2016.6007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Salvage chemotherapy for recurrent chest wall lesions in breast cancer results in response rates of 20% to 30%. Preclinical studies showed significant disease regression could be induced in murine chest wall mammary cancers with a topical toll-like receptor (TLR)-7 agonist, imiquimod. Objective To evaluate the safety and objective response rate (ORR) of imiquimod in combination with systemic albumin bound paclitaxel in treatment-refractory breast cancer of the chest wall. Design, Setting, and Particpants A single arm phase 2 clinical trial of 15 patients with breast cancer previously treated in an academic medical center setting between 2009 and 2012 for chest wall disease that had recurred. Interventions Imiquimod cream, 5%, was applied topically to a designated target lesion once per day for 4 consecutive days on days 1 through 4, 8 through 11, 15 through 18, and 22 through 25 of a 28-day cycle, for 12 weeks. Albumin bound paclitaxel, 100 mg/m2, was given intravenously on days 1, 8, and 15, and repeated every 28 days over the 12-week period. Main Outcomes and Measures The primary endpoint was safety and ORR. Secondary endpoints included the generation of tumor-infiltrating lymphocytes and modulation of immune cell populations. Results The median age at baseline of the 15 study participants was 54 years (range, 46-92 years). Fourteen patients were evaluable. Combination therapy was associated with low-grade toxic effects. Of 358 adverse events 330 (92%) were grades 1 and 2. Five (36%) patients achieved a compete response and another 5 (36%) were partial responders for an overall response rate of 72% (10 of 14). The response duration was limited. Pretreatment levels of programmed death-1 (PD-1)+ peripheral blood T cells (PD-1+ cluster of differentiation [CD]4+; 95% CI, 2.68-6.63; P < .001 and PD-1+CD8+; 95% CI, 1.13-8.35; P = .01) and monocytic myeloid derived suppressor cells (mMDSC) (95% CI, 3.62-12.74; P = .001) greater than controls predicted suboptimal clinical response. Conclusions and Relevance Chemoimmunomodulation with a TLR-7 agonist and albumin bound paclitaxel is effective in inducing disease regression in treatment-refractory breast cancer chest wall metastases but responses are short-lived. Preexisting levels of cells indicating either T-cell exhaustion or systemic immunosuppression may be markers of selection for responsive patients. Trial Registration clinicaltrials.gov Identifier: NCT00821964.
Collapse
Affiliation(s)
- Lupe G Salazar
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle
| | | | - Jessica L Reichow
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle
| | - Jennifer S Childs
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle
| | - Andrew L Coveler
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle
| | - Doreen M Higgins
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle
| | | | | | - Yushe Dang
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle
| |
Collapse
|
78
|
Meng X, Du G, Ye L, Sun S, Liu Q, Wang H, Wang W, Wu Z, Tian J. Combinatorial antitumor effects of indoleamine 2,3-dioxygenase inhibitor NLG919 and paclitaxel in a murine B16-F10 melanoma model. Int J Immunopathol Pharmacol 2017; 30:215-226. [PMID: 28604143 PMCID: PMC5815254 DOI: 10.1177/0394632017714696] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is involved in tumor immune escape and resistance to chemotherapy, and is clinically correlated with tumor progression. IDO inhibitors show marginal efficacy as single agents; therefore, combinations of these inhibitors with other therapies hold promise for cancer therapy. The aim of this study was to investigate the synergistic antitumor effects of IDO inhibitor NLG919 in combination with different regimens of paclitaxel in a murine B16-F10 melanoma model. NLG919 increased the cytotoxic activity of paclitaxel toward B16-F10 cells in the presence of pretreatment with interferon (IFN)-γ in vitro. In B16-F10 tumor-bearing mice, NLG919 was uniformly distributed throughout tumors and decreased kynurenine levels and kynurenine/tryptophan ratios in tumors and plasma for 6-12 h. NLG919 suppressed tumor growth in a dose-dependent manner and exhibited maximum efficacy at 100 mg/kg. In combination with different regimens of paclitaxel, NLG919 displayed synergistic antitumor effects, and NLG919 did not increase the side effects of paclitaxel. Within the tumors, the percentage of CD3+, CD8+, and CD4+ T cells and secretion of IFN-γ and interleukin-2 were synergistically increased, whereas the percentage of CD4+CD25+ regulatory T cells was decreased. NLG919 can potentiate the antitumor efficacy of paclitaxel without increasing its side effects, suggesting that the combination of IDO inhibitor-based immunotherapy with chemotherapy could be a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Xiangjing Meng
- 1 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Guangying Du
- 1 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Liang Ye
- 2 School of Public Health and Management, Institute of Toxicology, Binzhou Medical University, Yantai, P.R. China
| | - Shanyue Sun
- 1 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Qiaofeng Liu
- 1 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Hongbo Wang
- 1 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Wenyan Wang
- 1 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Zimei Wu
- 1 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Jingwei Tian
- 1 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| |
Collapse
|
79
|
Tang W, Yang J, Yuan Y, Zhao Z, Lian Z, Liang G. Paclitaxel nanoparticle awakens immune system to fight against cancer. NANOSCALE 2017; 9:6529-6536. [PMID: 28466929 DOI: 10.1039/c6nr09895a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A high concentration of paclitaxel (PTX) is used as an anti-tumor chemotherapy but is toxic to immune cells. At lower concentrations, PTX was found able to stimulate the anti-tumor potentials of immune cells. Thus, decreasing the cytotoxicity of PTX at high concentration while maintaining its anti-tumor stimulation to immune cells remains challenging. Herein, by employing a click condensation reaction, we rationally designed a PTX derivative, Cys(StBu)-Arg-Arg-Arg-Lys(PTX)-CBT (1), for the facile preparation of its nanoparticle 1-NP. In vitro assays indicated that, at high PTX concentrations, 1-NP showed significantly lower cytotoxicity to macrophages than did PTX, and could be efficiently phagocytosed by macrophages and consequently polarize the cells into an anti-tumor state in a dose-dependent manner. In vivo experiments further confirmed that 1-NP had a higher anti-tumor efficacy than did free PTX but lower cytotoxicity to immune cells in both immune organs and tumor sites. Our results suggest that, by using different doses of 1-NP, patients can precisely regulate the activation of the immune system for an effective anti-tumor and balanced autoimmune responses. We also envision that our strategy could lead to a combined use of immunotherapy and chemotherapy for a more efficient anti-tumor treatment in the future.
Collapse
Affiliation(s)
- Wei Tang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | | | | | | | | | | |
Collapse
|
80
|
Demečková V, Solár P, Hrčková G, Mudroňová D, Bojková B, Kassayová M, Gancarčiková S. Immodin and its immune system supportive role in paclitaxel therapy of 4T1 mouse breast cancer. Biomed Pharmacother 2017; 89:245-256. [PMID: 28235687 DOI: 10.1016/j.biopha.2017.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022] Open
Abstract
It is evident that standard chemotherapy agents may have an impact on both tumor and host immune system. Paclitaxel (PTX), a very potent anticancer drug from a taxane family, has achieved prominence in clinical oncology for its efficacy against a wide range of tumors including breast cancer. However, significant toxicity, such as myelosuppression, limit the effectiveness of Paclitaxel-based treatment regimens. Immodin (IM) is low molecular dialysate fraction of homogenate made from human leukocytes. It contains a mixture of substances from which so far have been described e.g. Imreg 1 and Imreg 2 formed by the dipeptide tyrosine-glycine and the tripeptide tyrosine-glycine-glycine, respectively. The aim of this study was to explore immunopharmacological activities of IM, using the strongly immunogenic 4T1 mouse breast cancer model, and evaluate its effect on the reactivity and the efficiency of PTX cancer therapy. The results highlight a potentially beneficial role for IM in alleviating PTX-induced toxicity, especially on the nonspecific immunity, during breast cancer therapy. Co-treatment exhibited an antitumor effect including reduced tumor growth, prolonged survival of tumor bearing mice, increased number of monocytes and lymphocytes in peripheral blood. In spleens, IM+PTX therapy elevated proportion of whole lymphocytes in the account of myelo-monocytic cells characteristic with low expression of CD11c+ and bearing Fc receptor (CD16/32) as well as T-lymphocytes, NK cells and dendritic cells. Accumulation of tumor-associated granulocytes in stroma of PTX-treated group and intensive 4T1-necrosis/apoptosis in tumors after co-treatment were also recorded. These findings suggest the possibility of using IM alongside PTX treatment for maintaining the immune system functions and increasing patient survival.
Collapse
Affiliation(s)
- Vlasta Demečková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01, Košice, Slovak Republic
| | - Peter Solár
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01, Košice, Slovak Republic.
| | - Gabriela Hrčková
- Parasitological Institute of the Slovak Academy of Sciences, 040 01, Košice, Slovak Republic
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovak Republic
| | - Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01, Košice, Slovak Republic
| | - Monika Kassayová
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01, Košice, Slovak Republic
| | - Soňa Gancarčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovak Republic
| |
Collapse
|
81
|
Zeng SQ, Chen YZ, Chen Y, Liu H. Lipid–polymer hybrid nanoparticles for synergistic drug delivery to overcome cancer drug resistance. NEW J CHEM 2017. [DOI: 10.1039/c6nj02819e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Co-delivery of a chemotherapeutic drug and a drug resistance inhibitor by lipid–polymer hybrid nanoparticles can effectively overcome tumor drug resistance.
Collapse
Affiliation(s)
- Shao-Qi Zeng
- Key Laboratory of Biotechnology of Chinese Traditional Medicine of Hubei Province
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources
- College of Life Sciences
- Hubei University
- Wuhan 430062
| | - Yi-Zhen Chen
- Key Laboratory of Biotechnology of Chinese Traditional Medicine of Hubei Province
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources
- College of Life Sciences
- Hubei University
- Wuhan 430062
| | - Yong Chen
- Key Laboratory of Biotechnology of Chinese Traditional Medicine of Hubei Province
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources
- College of Life Sciences
- Hubei University
- Wuhan 430062
| | - Hong Liu
- Key Laboratory of Biotechnology of Chinese Traditional Medicine of Hubei Province
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources
- College of Life Sciences
- Hubei University
- Wuhan 430062
| |
Collapse
|
82
|
Kim HJ, Joo HG. Paclitaxel inhibits the hyper-activation of spleen cells by lipopolysaccharide and induces cell death. J Vet Sci 2016; 17:453-458. [PMID: 27030196 PMCID: PMC5204022 DOI: 10.4142/jvs.2016.17.4.453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/25/2015] [Accepted: 03/04/2016] [Indexed: 01/12/2023] Open
Abstract
Paclitaxel was isolated from the bark of the Pacific yew, Taxus brevifolia, and used as an anticancer agent. Paclitaxel prevents cancer cell division by inhibiting spindle fiber function, inducing cell death. A recent study demonstrated that paclitaxel binds to myeloid differentiation protein-2 of Toll-like receptor 4 and prevents the signal transduction of lipopolysaccharide (LPS). Paclitaxel converts immune cells hypo-responsive to LPS. In this study, we investigated whether paclitaxel can inhibit the phenotype and function of immune cells. To accomplish this, we used spleen cells, a major type of immune cell, LPS, a representative inflammatory agent and a mitogen for B lymphocytes. LPS profoundly increased the activation and cytokine production of spleen cells. However, paclitaxel significantly inhibited LPS-induced hyper-activation of spleen cells. Furthermore, we found that paclitaxel induced cell death of LPS-treated spleen cells. These results suggest that paclitaxel can inhibit the hyper-immune response of LPS in spleen cells via a variety of mechanisms. These findings suggest that paclitaxel can be used as a modulating agent for diseases induced by hyper-activation of B lymphocytes. Taken together, these results demonstrate that paclitaxel inhibits the function of spleen cells activated by LPS, and further induces cell death.
Collapse
Affiliation(s)
- Hyun-Ji Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Hong-Gu Joo
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
83
|
Hu J, Zhu M, Liu K, Fan H, Zhao W, Mao Y, Zhang Y. A Biodegradable Polyethylenimine-Based Vector Modified by Trifunctional Peptide R18 for Enhancing Gene Transfection Efficiency In Vivo. PLoS One 2016; 11:e0166673. [PMID: 27935984 PMCID: PMC5147860 DOI: 10.1371/journal.pone.0166673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Lack of capacity to cross the nucleus membrane seems to be one of the main reasons for the lower transfection efficiency of gene vectors observed in vivo study than in vitro. To solve this problem, a new non-viral gene vector was designed. First, a degradable polyethylenimine (PEI) derivate was synthesized by crosslinking low-molecular-weight (LMW) PEI with N-octyl-N-quaternary chitosan (OTMCS), and then adopting a designed trifunctional peptide (RGDC-TAT-NLS) with good tumor targeting, cell uptake and nucleus transport capabilities to modify OTMCS-PEI. The new gene vector was termed as OTMCS-PEI-R18 and characterized in terms of its chemical structure and biophysical parameters. Gene transfection efficiency and nucleus transport mechanism of this vector were also evaluated. The polymer showed controlled degradation and remarkable buffer capabilities with the particle size around 100–300 nm and the zeta potential ranged from 5 mV to 40 mV. Agraose gel electrophoresis showed that OTMCS-PEI-R18 could effectively condensed plasmid DNA at a ratio of 1.0. Besides, the polymer was stable in the presence of sodium heparin and could resist digestion by DNase I at a concentration of 63U DNase I/DNA. OTMCS-PEI-R18 also showed much lower cytotoxicity and better transfection rates compared to polymers OTMCS-PEI-R13, OTMCS-PEI and PEI 25 KDa in vitro and in vivo. Furthermore, OTMCS-PEI-R18/DNA complexes could accumulate in the nucleus well soon and not rely on mitosis absolutely due to the newly incorporated ligand peptide NLS with the specific nuclear delivery pathway indicating that the gene delivery system OTMCS-PEI-R18 could reinforce gene transfection efficiency in vivo.
Collapse
Affiliation(s)
- Jing Hu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Manman Zhu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
- * E-mail: ;
| | - Hua Fan
- Institut für Laboratoriumsmedizin, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Wenfang Zhao
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Yuan Mao
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Yaguang Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| |
Collapse
|
84
|
Yue T, Zheng X, Dou Y, Zheng X, Sun R, Tian Z, Wei H. Interleukin 12 shows a better curative effect on lung cancer than paclitaxel and cisplatin doublet chemotherapy. BMC Cancer 2016; 16:665. [PMID: 27549240 PMCID: PMC4994391 DOI: 10.1186/s12885-016-2701-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/10/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Interleukin 12 (IL-12) is a cytokine that has been reported to exhibit potent tumoricidal effects in animal tumor models. A combined approach using Paclitaxel and platinum-based doublet chemotherapy is the most commonly used backbone regimen for treating lung cancer. Despite numerous studies regarding the anti-tumor effects of IL-12 and the widespread use of conventional chemotherapy, few direct comparisons of IL-12 and conventional chemotherapy in the treatment of lung cancer have been performed. METHODS We compared IL-12 to paclitaxel and cisplatin doublet chemotherapy in terms of efficacy against lung cancer in mouse models. The antitumor effect was measured by survival assays, histological analyses and imaging analyses. The cytokine levels were assessed using enzyme linked immunosorbent assay (ELISA) and flow cytometry (FACS). The spleen sizes were measured. CD31, CD105 and Vascular endothelial growth factor receptor 3 (VEGFR3) were analyzed using immunofluorescence. Matrix metalloprotein-9 (MMP-9) and cadherin 1 (CDH1) transcript levels were measured by quantitative PCR. Tumor cells apoptosis were examined by Tunel assay. RESULTS The results showed that IL-12 treatment inhibited lung tumor growth, resulting in the long-term survival of lung cancer-bearing mice. Further examination revealed that IL-12 rapidly activated NK cells to secrete IFN-γ, resulting in the inhibition of tumor angiogenesis. In contrast, paclitaxel and cisplatin doublet chemotherapy did not show the expected efficacy in orthotopic lung cancer models; the IFN-γ levels were not increased after this treatment, and the number of peripheral lymphocytes was reduced. CONCLUSION Together, these animal model data indicate that IL-12 shows a better curative effect than PTX + CDDP doublet chemotherapy.
Collapse
Affiliation(s)
- Ting Yue
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaodong Zheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yaling Dou
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaohu Zheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Rui Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. .,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haiming Wei
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. .,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
85
|
Meng Z, Lv Q, Lu J, Yao H, Lv X, Jiang F, Lu A, Zhang G. Prodrug Strategies for Paclitaxel. Int J Mol Sci 2016; 17:E796. [PMID: 27223283 PMCID: PMC4881612 DOI: 10.3390/ijms17050796] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Collapse
Affiliation(s)
- Ziyuan Meng
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Quanxia Lv
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Jun Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Houzong Yao
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiaoqing Lv
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Feng Jiang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiping Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Ge Zhang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| |
Collapse
|
86
|
Taxanes in the Treatment of Advanced Gastric Cancer. Molecules 2016; 21:molecules21050651. [PMID: 27196887 PMCID: PMC6274234 DOI: 10.3390/molecules21050651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 01/11/2023] Open
Abstract
Although rapid advances in treatment options have improved the prognosis of advanced gastric cancer (AGC), it remains a major public health problem and the second leading cause of cancer-related deaths in the world. Taxanes (paclitaxel and docetaxel) are microtubule stabilizing agents that inhibit the process of cell division, and have shown antitumor activity in the treatment of AGC as a single or combination chemotherapy. Accordingly, this review focuses on the efficacy and tolerability of taxanes in the first- or second-line chemotherapy setting for AGC.
Collapse
|
87
|
Farren MR, Mace TA, Geyer S, Mikhail S, Wu C, Ciombor K, Tahiri S, Ahn D, Noonan AM, Villalona-Calero M, Bekaii-Saab T, Lesinski GB. Systemic Immune Activity Predicts Overall Survival in Treatment-Naïve Patients with Metastatic Pancreatic Cancer. Clin Cancer Res 2016; 22:2565-74. [PMID: 26719427 PMCID: PMC4867263 DOI: 10.1158/1078-0432.ccr-15-1732] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a 5-year survival rate <7% and is ultimately refractory to most treatments. To date, an assessment of immunologic factors relevant to disease has not been comprehensively performed for treatment-naïve patients. We hypothesized that systemic immunologic biomarkers could predict overall survival (OS) in treatment-naïve PDAC patients. EXPERIMENTAL DESIGN Peripheral blood was collected from 73 patients presenting with previously untreated metastatic PDAC. Extensive immunologic profiling was conducted to assess relationships between OS and the level of soluble plasma biomarkers or detailed immune cell phenotypes as measured by flow cytometry. RESULTS Higher baseline levels of the immunosuppressive cytokines IL6 and IL10 were strongly associated with poorer OS (P = 0.008 and 0.026, respectively; HR = 1.16 and 1.28, respectively), whereas higher levels of the monocyte chemoattractant MCP-1 were associated with significantly longer OS (P = 0.045; HR = 0.69). Patients with a greater proportion of antigen-experienced T cells (CD45RO(+)) had longer OS (CD4 P = 0.032; CD8 P = 0.036; HR = 0.36 and 0.61, respectively). Although greater expression of the T-cell checkpoint molecule CTLA-4 on CD8(+) T cells was associated with significantly shorter OS (P = 0.020; HR = 1.53), the TIM3 molecule had a positive association with survival when expressed on CD4(+) T cells (P = 0.046; HR = 0.62). CONCLUSIONS These data support the hypothesis that baseline immune status predicts PDAC disease course and overall patient survival. To our knowledge, this work represents the largest cohort and most comprehensive immune profiling of treatment-naïve metastatic PDAC patients to date. Clin Cancer Res; 22(10); 2565-74. ©2015 AACR.
Collapse
Affiliation(s)
- Matthew R. Farren
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio
| | - Thomas A. Mace
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio
| | - Susan Geyer
- Health Informatics Institute, University of South Florida, Tampa, FL
| | - Sameh Mikhail
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio
| | - Christina Wu
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio
| | - Kristen Ciombor
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio
| | - Sanaa Tahiri
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio
| | - Daniel Ahn
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio
| | - Anne M. Noonan
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio
| | | | - Tanios Bekaii-Saab
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio
| | - Gregory B. Lesinski
- The Ohio State University, Department of Internal Medicine, Columbus, Ohio,Corresponding Author: To whom correspondence should be addressed: Gregory B. Lesinski, Department of Internal Medicine, The Ohio State University, 400 W. 12 Ave., Columbus, OH, 43210 USA. Tel.: (614) 685-9107; Fax: (614) 293-7529;
| |
Collapse
|
88
|
Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1039-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
89
|
Bashour SI, Ibrahim NK. CCR 20th Anniversary Commentary: Setting the Stage for Nanoparticle Albumin-Bound Paclitaxel-How Far Science Has Come. Clin Cancer Res 2016; 21:1975-7. [PMID: 25934886 DOI: 10.1158/1078-0432.ccr-14-2554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this phase I pharmacokinetic study of ABI-007, which was published in the May 1, 2002, issue of Clinical Cancer Research, Ibrahim and colleagues provided the framework needed for subsequent studies to confirm the benefits of ABI-007 over solvent-based formulations. Since the study's publication, experiments have highlighted the importance of drug-delivery systems, the immune system in cancer biology, and immunoregulatory properties of taxane compounds.
Collapse
Affiliation(s)
- Sami I Bashour
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
90
|
Zhang H, Li Y, de Carvalho-Barbosa M, Kavelaars A, Heijnen CJ, Albrecht PJ, Dougherty PM. Dorsal Root Ganglion Infiltration by Macrophages Contributes to Paclitaxel Chemotherapy-Induced Peripheral Neuropathy. THE JOURNAL OF PAIN 2016; 17:775-86. [PMID: 26979998 DOI: 10.1016/j.jpain.2016.02.011] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chemotherapy-induced peripheral neuropathy (CIPN) is a disruptive and persistent side effect of cancer treatment with paclitaxel. Recent reports showed that paclitaxel treatment results in the activation of Toll-like receptor 4 (TLR4) signaling and increased expression of monocyte chemoattractant protein 1 (MCP-1) in dorsal root ganglion cells. In this study, we sought to determine whether an important consequence of this signaling and also a key step in the CIPN phenotype was the recruitment and infiltration of macrophages into dorsal root ganglia (DRG). Here, we show that macrophage infiltration does occur in a time course that matches the onset of the behavioral CIPN phenotype in Sprague-Dawley rats. Moreover, depletion of macrophages by systemic administration of liposome-encapsulated clodronate (clophosome) partially reversed behavioral signs of paclitaxel-induced CIPN as well as reduced tumor necrosius factor α expression in DRG. Intrathecal injection of MCP-1 neutralizing antibodies reduced paclitaxel-induced macrophage recruitment into the DRG and also blocked the behavioral signs of CIPN. Intrathecal treatment with the TLR4 antagonist lipopolysaccharide-RS (LPS-RS) blocked mechanical hypersensitivity, reduced MCP-1 expression, and blocked the infiltration of macrophages into the DRG in paclitaxel-treated rats. The inhibition of macrophage infiltration into DRG after paclitaxel treatment with clodronate or LPS-RS prevented the loss of intraepidermal nerve fibers (IENFs) observed after paclitaxel treatment alone. These results are the first to indicate a mechanistic link such that activation of TLR4 by paclitaxel leads to increased expression of MCP-1 by DRG neurons resulting in macrophage infiltration to the DRG that express inflammatory cytokines and the combination of these events results in IENF loss and the development of behavioral signs of CIPN. PERSPECTIVE This paper shows that activation of innate immunity by paclitaxel results in a sequence of signaling events that results in the infiltration of the dorsal root ganglia by activated macrophages. Macrophages appear to drive the development of behavioral hypersensitivity and the loss of distal epidermal nerve fibers, and hence play an important role in the mechanism of paclitaxel-related neuropathy.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yan Li
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Marianna de Carvalho-Barbosa
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Annemieke Kavelaars
- Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Cobi J Heijnen
- Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Phillip J Albrecht
- Center for Neuropharmacology & Neuroscience, Albany Medical College, Albany, New York
| | - Patrick M Dougherty
- Department of Anesthesia and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
91
|
Adapting conventional cancer treatment for immunotherapy. J Mol Med (Berl) 2016; 94:489-95. [DOI: 10.1007/s00109-016-1393-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
|
92
|
The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. J Neurosci 2015; 35:13487-500. [PMID: 26424893 DOI: 10.1523/jneurosci.1956-15.2015] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Peripheral neuropathy is dose limiting in paclitaxel cancer chemotherapy and can result in both acute pain during treatment and chronic persistent pain in cancer survivors. The hypothesis tested was that paclitaxel produces these adverse effects at least in part by sensitizing transient receptor potential vanilloid subtype 1 (TRPV1) through Toll-like receptor 4 (TLR4) signaling. The data show that paclitaxel-induced behavioral hypersensitivity is prevented and reversed by spinal administration of a TRPV1 antagonist. The number of TRPV1(+) neurons is increased in the dorsal root ganglia (DRG) in paclitaxel-treated rats and is colocalized with TLR4 in rat and human DRG neurons. Cotreatment of rats with lipopolysaccharide from the photosynthetic bacterium Rhodobacter sphaeroides (LPS-RS), a TLR4 inhibitor, prevents the increase in numbers of TRPV1(+) neurons by paclitaxel treatment. Perfusion of paclitaxel or the archetypal TLR4 agonist LPS activated both rat DRG and spinal neurons directly and produced acute sensitization of TRPV1 in both groups of cells via a TLR4-mediated mechanism. Paclitaxel and LPS sensitize TRPV1 in HEK293 cells stably expressing human TLR4 and transiently expressing human TRPV1. These physiological effects also are prevented by LPS-RS. Finally, paclitaxel activates and sensitizes TRPV1 responses directly in dissociated human DRG neurons. In summary, TLR4 was activated by paclitaxel and led to sensitization of TRPV1. This mechanism could contribute to paclitaxel-induced acute pain and chronic painful neuropathy. Significance statement: In this original work, it is shown for the first time that paclitaxel activates peripheral sensory and spinal neurons directly and sensitizes these cells to transient receptor potential vanilloid subtype 1 (TRPV1)-mediated capsaicin responses via Toll-like receptor 4 (TLR4) in multiple species. A direct functional interaction between TLR4 and TRPV1 is shown in rat and human dorsal root ganglion neurons, TLR4/TRPV1-coexpressing HEK293 cells, and in both rat and mouse spinal cord slices. Moreover, this is the first study to show that this interaction plays an important role in the generation of behavioral hypersensitivity in paclitaxel-related neuropathy. The key translational implications are that TLR4 and TRPV1 antagonists may be useful in the prevention and treatment of chemotherapy-induced peripheral neuropathy in humans.
Collapse
|
93
|
Kim KH, Jelovac D, Armstrong DK, Schwartz B, Weil SC, Schweizer C, Alvarez RD. Phase 1b safety study of farletuzumab, carboplatin and pegylated liposomal doxorubicin in patients with platinum-sensitive epithelial ovarian cancer. Gynecol Oncol 2015; 140:210-4. [PMID: 26644263 PMCID: PMC4729193 DOI: 10.1016/j.ygyno.2015.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022]
Abstract
Objective Farletuzumab is a humanized monoclonal antibody that binds to folate receptor alpha, over-expressed in epithelial ovarian cancer (EOC) but largely absent in normal tissue. Previously, carboplatin plus pegylated liposomal doxorubicin showed superior progression-free survival and an improved therapeutic index compared with carboplatin/paclitaxel in relapsed platinum-sensitive EOC. This study assessed safety of farletuzumab/carboplatin/pegylated liposomal doxorubicin in women with platinum-sensitive recurrent EOC. Methods This multicenter, single-arm study enrolled patients with platinum-sensitive EOC in first or second relapse for treatment with weekly farletuzumab 2.5 mg/kg plus carboplatin AUC5–6 and pegylated liposomal doxorubicin 30 mg/m2 every 4 weeks for 6 cycles. Subsequently, maintenance with single-agent farletuzumab 2.5 mg/kg once weekly or farletuzumab 7.5 mg/kg once every three weeks continued until progression. The primary objective was to assess the safety of farletuzumab/carboplatin/pegylated liposomal doxorubicin. Results Fifteen patients received a median of 12.0 cycles (range, 3–26) of farletuzumab as combination therapy or maintenance, for a median of 45.0 weeks (range 9–95). Farletuzumab/carboplatin/pegylated liposomal doxorubicin was generally well tolerated, with no farletuzumab-related grades 3–4 adverse events. The most commonly reported adverse events were associated with combination chemotherapy: fatigue (73.3%), nausea (46.7%), and neutropenia (40%). Ten patients had grade ≥3 adverse events, most frequently neutropenia and fatigue. No cardiac toxicity was seen. Best overall responses (RECIST) were a complete response for one patient, partial responses for 10 patients, and stable disease for four patients. Conclusions Farletuzumab plus carboplatin/pegylated liposomal doxorubicin in women with platinum-sensitive EOC demonstrated a safety profile consistent with that of carboplatin plus pegylated liposomal doxorubicin.
Collapse
Affiliation(s)
- Kenneth H Kim
- University of North Carolina Health Care, Division of Gynecology Oncology, Chapel Hill, NC, United States
| | - Danijela Jelovac
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Deborah K Armstrong
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | | | | | | | | |
Collapse
|
94
|
Gonzalez-Nicolini V, Herter S, Lang S, Waldhauer I, Bacac M, Roemmele M, Bommer E, Freytag O, van Puijenbroek E, Umaña P, Gerdes CA. Premedication and Chemotherapy Agents do not Impair Imgatuzumab (GA201)-Mediated Antibody-Dependent Cellular Cytotoxicity and Combination Therapies Enhance Efficacy. Clin Cancer Res 2015; 22:2453-61. [PMID: 26581243 DOI: 10.1158/1078-0432.ccr-14-2579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/20/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Imgatuzumab (GA201) is a novel anti-EGFR mAb that is glycoengineered for enhanced antibody-dependent cellular cytotoxicity (ADCC). Future treatment schedules for imgatuzumab will likely involve the use of potentially immunosuppressive drugs, such as premedication therapies, to mitigate infusion reactions characteristic of mAb therapy and chemotherapy combination partners. Because of the strong immunologic component of mode of action of imgatuzumab, it is important to understand whether these drugs influence imgatuzumab-mediated ADCC and impact efficacy. EXPERIMENTAL DESIGN We performed a series of ADCC assays using human peripheral blood mononuclear cells that were first preincubated in physiologically relevant concentrations of commonly used premedication drugs and cancer chemotherapies. The ability of common chemotherapy agents to enhance the efficacy of imgatuzumab in vivo was then examined using orthotopic xenograft models of human cancer. RESULTS A majority of premedication and chemotherapy drugs investigated had no significant effect on the ADCC activity of imgatuzumab in vitro Furthermore, enhanced in vivo efficacy was seen with imgatuzumab combination regimens compared with single-agent imgatuzumab, single-agent chemotherapy, or cetuximab combinations. CONCLUSIONS These data indicate that medications currently coadministered with anti-EGFR therapies are unlikely to diminish the ADCC capabilities of imgatuzumab. Further studies using syngeneic models with functional adaptive T-cell responses are now required to fully understand how chemotherapy agents will influence a long-term response to imgatuzumab therapy. Thus, this study and future ones can provide a framework for designing imgatuzumab combination regimens with enhanced efficacy for investigation in phase II trials. Clin Cancer Res; 22(10); 2453-61. ©2015 AACR.
Collapse
Affiliation(s)
| | - Sylvia Herter
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Sabine Lang
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Inja Waldhauer
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marina Bacac
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Michaela Roemmele
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Esther Bommer
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Olivier Freytag
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Erwin van Puijenbroek
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian A Gerdes
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| |
Collapse
|
95
|
Leon-Ferre RA, Markovic SN. Nab-paclitaxel in patients with metastatic melanoma. Expert Rev Anticancer Ther 2015; 15:1371-7. [DOI: 10.1586/14737140.2015.1110024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
96
|
Lollo G, Vincent M, Ullio-Gamboa G, Lemaire L, Franconi F, Couez D, Benoit JP. Development of multifunctional lipid nanocapsules for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma. Int J Pharm 2015; 495:972-80. [PMID: 26428632 DOI: 10.1016/j.ijpharm.2015.09.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 12/18/2022]
Abstract
In this work, multifunctional lipid nanocapsules (M-LNC) were designed to combine the activity of the cytotoxic drug paclitaxel (PTX) with the immunostimulant CpG. This nanosystem, consisting of modified lipid nanocapsules coated with a cationic polymeric shell composed of chitosan (CS), was able to allocate the hydrophobic drug PTX in the inner oily core, and to associate onto the surface the genetic material CpG. The CS-coated LNC (CS-LNC), showed a narrow size distribution with an average size of 70 nm and a positive zeta potential (+25 mV). They encapsulated PTX in a high amount (98%), and, due to the cationic surface charge, were able to adsorb CpG without losing stability. As a preliminary in vitro study, the apoptotic effect on GL261 glioma cells was investigated. The drug-loaded CS-LNC exhibited the ability to interact with glioma cells and induce an important apoptotic effect in comparison with blank systems. Finally, the M-LNC made of CS-LNC loaded with both CpG and PTX were tested in vivo, injected via convention enhanced delivery (CED) in GL261-glioma-bearing mice. The results showed that the overall survival of mice treated with the M-LNC was significantly increased in comparison with the control, Taxol(®), or the separated injection of PTX-loaded LNC and CpG. This effect was also confirmed by magnetic resonance imaging (MRI) which revealed the reduction of tumor growth in the animals treated with CpG and PTX-loaded M-LNC. All these findings suggested that the developed M-LNC could potentiate both CpG immunopotency and PTX antitumor activity by enhancing its delivery into the tumor microenvironment.
Collapse
Affiliation(s)
- Giovanna Lollo
- LUNAM Université-Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 rue Larrey, F-49933 Angers Cedex 9, France
| | - Marie Vincent
- INSERM, UMR892, F-49933 Angers, France; CNRS, UMR 6299, F-49933 Angers, France
| | - Gabriela Ullio-Gamboa
- LUNAM Université-Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 rue Larrey, F-49933 Angers Cedex 9, France
| | - Laurent Lemaire
- LUNAM Université-Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 rue Larrey, F-49933 Angers Cedex 9, France
| | - Florence Franconi
- PRIMEX-CIFAB, Université d'Angers, LUNAM Université, IRIS-IBS, CHU Angers F-49933 Angers, France
| | - Dominique Couez
- INSERM, UMR892, F-49933 Angers, France; CNRS, UMR 6299, F-49933 Angers, France
| | - Jean-Pierre Benoit
- LUNAM Université-Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 rue Larrey, F-49933 Angers Cedex 9, France.
| |
Collapse
|
97
|
Martin K, Schreiner J, Zippelius A. Modulation of APC Function and Anti-Tumor Immunity by Anti-Cancer Drugs. Front Immunol 2015; 6:501. [PMID: 26483791 PMCID: PMC4586505 DOI: 10.3389/fimmu.2015.00501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Professional antigen-presenting cells (APCs), such as dendritic cells (DCs), are central to the initiation and regulation of anti-cancer immunity. However, in the immunosuppressive environment within a tumor APCs may antagonize anti-tumor immunity by inducing regulatory T cells (Tregs) or anergy of effector T cells due to lack of efficient costimulation. Hence, in an optimal setting, anti-cancer drugs have the power to reduce tumor size and thereby may induce the release of tumor antigens and, at the same time, modulate APC function toward efficient priming of antigen-specific effector T cells. Selected cytotoxic agents may revert APC dysfunction either by directly maturing DCs or through induction of immunogenic tumor cell death. Furthermore, specific cytotoxic agents may support adaptive immunity by selectively depleting regulatory subsets, such as Tregs or myeloid-derived suppressor cells. Perspectively, this will allow developing effective combination strategies with novel immunotherapies to exert complementary pressure on tumors via direct toxicity as well as immune activation. We, here, review our current knowledge on the capacity of anti-cancer drugs to modulate APC functions to promote durable anti-cancer immune responses.
Collapse
Affiliation(s)
- Kea Martin
- Department of Biomedicine, University Hospital Basel, University of Basel , Basel , Switzerland
| | - Jens Schreiner
- Department of Biomedicine, University Hospital Basel, University of Basel , Basel , Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital Basel, University of Basel , Basel , Switzerland ; Department of Medical Oncology, University Hospital Basel , Basel , Switzerland
| |
Collapse
|
98
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
99
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
100
|
Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:413076. [PMID: 26137480 PMCID: PMC4475536 DOI: 10.1155/2015/413076] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
Affiliation(s)
- Nirmala Chandralega Kampan
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
| | - Mutsa Tatenda Madondo
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| | - Orla M. McNally
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michael Quinn
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Magdalena Plebanski
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| |
Collapse
|