51
|
Alghananim A, Özalp Y, Mesut B, Serakinci N, Özsoy Y, Güngör S. A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies. Pharmaceuticals (Basel) 2020; 13:ph13080162. [PMID: 32722238 PMCID: PMC7465256 DOI: 10.3390/ph13080162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
The research work was designed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) of deferasirox (DFX). According to the solubility studies of DFX in different components, Peceol, Kolliphor EL, and Transcutol were selected as excipients. Pseudo-ternary phase diagrams were constructed, and then SNEDDS formation assessment studies and solubility of DFX in selected SNEDDSs formulations were performed. DFX loaded SNEDDS were prepared and characterized. The optimum DFX-SNEDDS formulations were developed. The relative safety of the optimized SNEDDS formulation was examined in a human immortalized myelogenous leukemia cell line, K562 cells, using the MTT cell viability test. Cytotoxicity studies revealed more cell viability (71.44%) of DFX loaded SNEDDS compared to pure DFX (3.99%) at 40 μM. The selected DFX-SNEDDS formulation was converted into S-SNEDDS by adsorbing into porous carriers, in order to study its dissolution behavior. The in vitro drug release studies indicated that DFX release (Q5%) from S-SNEDDS solidified with Neusilin UFL2 was significantly higher (93.6 ± 0.7% within 5 min) compared with the marketed product (81.65 ± 2.10%). The overall results indicated that the S-SNEDDS formulation of DFX could have the potential to enhance the solubility of DFX, which would in turn have the potential to improve its oral bioavailability as a safe novel delivery system.
Collapse
Affiliation(s)
- Alaa Alghananim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Near East University, Nicosia 99010, Cyprus; (A.A.); (Y.Ö.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, Jerash 26150, Jordan
| | - Yıldız Özalp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Near East University, Nicosia 99010, Cyprus; (A.A.); (Y.Ö.)
| | - Burcu Mesut
- Department of Pharmaceutical Technology, Istanbul University, Faculty of Pharmacy, Istanbul 34116, Turkey; (B.M.); (Y.Ö.)
| | - Nedime Serakinci
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia 99010, Cyprus;
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences Near East University, Nicosia 99010, Cyprus
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Istanbul University, Faculty of Pharmacy, Istanbul 34116, Turkey; (B.M.); (Y.Ö.)
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Istanbul University, Faculty of Pharmacy, Istanbul 34116, Turkey; (B.M.); (Y.Ö.)
- Correspondence: ; Tel.: +90-212-440-00-00 (ext. 13493)
| |
Collapse
|
52
|
Laffleur F, Keckeis V. Advances in drug delivery systems: Work in progress still needed? INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100050. [PMID: 32577616 PMCID: PMC7305387 DOI: 10.1016/j.ijpx.2020.100050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 01/10/2023]
Abstract
A new era of science and technology has emerged in pharmaceutical research with focus on developing novel drug delivery systems for oral administration. Conventional dosage forms like tablets and capsules are associated with a low bioavailability, frequent application, side effects and hence patient noncompliance. By developing novel strategies for drug delivery, researchers embraced an alternative to traditional drug delivery systems. Out of those, fast dissolving drug delivery systems are very eminent among pediatrics and geriatrics. Orally disintegrating films are superior over fast dissolving tablets as the latter are assigned with the risk of suffocation. Due to their ability of bypassing the dissolution and the first pass effect after oral administration, self-emulsifying formulations have also become increasingly popular in improving oral bioavailability of hydrophobic drugs. Osmotic devices enable a controlled drug delivery independent upon gastrointestinal conditions using osmosis as driving force. The advances in nanotechnology and the variety of possible materials and formulation factors enable a targeted delivery and triggered release. Vesicular systems can be easily modified as required and provide a controlled and sustained drug delivery to a specific site. This work provides an insight of the novel approaches in drug delivery covering the critical comparison between traditional and novel “advanced-designed” systems.
Collapse
Affiliation(s)
- Flavia Laffleur
- University of Innsbruck, Institute of Pharmacy, Department of Pharmaceutical Technology, Center for Molecular Biosciences Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Valérie Keckeis
- University of Innsbruck, Institute of Pharmacy, Department of Pharmaceutical Technology, Center for Molecular Biosciences Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
53
|
Investigating the Potential of Transmucosal Delivery of Febuxostat from Oral Lyophilized Tablets Loaded with a Self-Nanoemulsifying Delivery System. Pharmaceutics 2020; 12:pharmaceutics12060534. [PMID: 32531910 PMCID: PMC7356236 DOI: 10.3390/pharmaceutics12060534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Gout is the most familiar inflammatory arthritis condition caused by the elevation of uric acid in the bloodstream. Febuxostat (FBX) is the latest drug approved by the United States Food and Drug Administration (US FDA) for the treatment of gout and hyperuricemia. FBX is characterized by low solubility resulting in poor gastrointestinal bioavailability. This study aimed at improving the oral bioavailability of FBX by its incorporation into self-nanoemulsifying delivery systems (SNEDS) with minimum globule size and maximum stability index. The SNEDS-incorporated FBX was loaded into a carrier substrate with a large surface area and lyophilized with other excipients to produce a fluffy, porous-like structure tablet for the transmucosal delivery of FBX. The solubility of FBX was studied in various oils, surfactants, and cosurfactants. Extreme vertices design was utilized to optimize FBX-SNEDS, and subsequently loaded into lyophilized tablets along with suitable excipients. The percentages of the main tablet excipients were optimized using a Box–Behnken design to develop self-nanoemulsifying lyophilized tablets (SNELTs) with minimum disintegration time and maximum drug release. The pharmacokinetics parameters of the optimized FBX-SNELTs were tested in healthy human volunteers in comparison with the marketed FBX tablets. The results revealed that the optimized FBX-SNELTs increased the maximum plasma concentration (Cmax) and decreased the time to reach Cmax (Tmax) with a large area under the curve (AUC) as a result of the enhanced relative oral bioavailability of 146.4%. The significant enhancement of FBX bioavailability is expected to lead to reduced side effects and frequency of administration during the treatment of gout.
Collapse
|
54
|
Niu J, Xu Z, Li X, Wang Z, Li J, Yang Z, Khattak SU, Liu Y, Shi Y. Development and evaluation of rhubarb free anthraquinones loaded self-nanoemulsifying tablets. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
55
|
Yeo S, An J, Park C, Kim D, Lee J. Design and Characterization of Phosphatidylcholine-Based Solid Dispersions of Aprepitant for Enhanced Solubility and Dissolution. Pharmaceutics 2020; 12:pharmaceutics12050407. [PMID: 32365589 PMCID: PMC7285057 DOI: 10.3390/pharmaceutics12050407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.
Collapse
|
56
|
Mandić J, Pirnat V, Luštrik M, German Ilić I, Vrečer F, Gašperlin M, Zvonar Pobirk A. Solidification of SMEDDS by fluid bed granulation and manufacturing of fast drug release tablets. Int J Pharm 2020; 583:119377. [PMID: 32339633 DOI: 10.1016/j.ijpharm.2020.119377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
Solidification of self-microemulsifying drug delivery systems (SMEDDS) is a rising experimental field with important potential for pharmaceutical industry, however fluid-bed granulation with SMEDDS is yet an unexplored solidification technique. The aim of the study was to solidify carvedilol-loaded SMEDDS utilizing fluid bed granulation process and to investigate how the formulation variables (type of solid carrier, optimization of granulation dispersion) and fluid-bed granulation process variables can be optimized in order to achieve suitable agglomeration process, high drug loading and appropriate product characteristics. Obtained granulates exhibited complete drug release, comparable to liquid SMEDDS and superior to crystalline carvedilol, nevertheless compromise between large SMEDDS loading and appropriate flow properties of the granules has to be made. Representative granulates with highest drug loading were further compressed into tablets. It was shown that the optimal excipient selection of compression mixture and compression force can lead to fast carvedilol release even from the tablets. Selfmicroemulsifying properties were not impaired neither after the solidification process and nor after the compression of solid SMEDDS into tablets. This suggests that fluid-bed granulation with SMEDDS offers a perspective alternative for solidification of the SMEDDS, enabling preservation of self-microemulsifying properties, acceptable drug loading and complete drug release.
Collapse
Affiliation(s)
- Jelena Mandić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d., Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Vesna Pirnat
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matevž Luštrik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Ilija German Ilić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Franc Vrečer
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d., Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
57
|
Development of 20(S)-Protopanaxadiol-Loaded SNEDDS Preconcentrate Using Comprehensive Phase Diagram for the Enhanced Dissolution and Oral Bioavailability. Pharmaceutics 2020; 12:pharmaceutics12040362. [PMID: 32326560 PMCID: PMC7238006 DOI: 10.3390/pharmaceutics12040362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to develop a 20(S)-protopanaxadiol (PPD)-loaded self-nanoemulsifying drug delivery system (SNEDDS) preconcentrate (PSP) using comprehensive ternary phase diagrams for enhanced solubility, physical stability, dissolution, and bioavailability. Capmul MCM C8 and Capryol 90 were selected as the oil phase owing to the high solubility of PPD in these vehicles (>15%, w/w). Novel comprehensive ternary phase diagrams composed of selected oil, surfactant, and PPD were constructed, and the solubility of PPD and particle size of vehicle was indicated on them for the effective determination of PSP. PSPs were confirmed via particle size distribution, physical stability, and scanning electron microscope (SEM) with the dispersion of water. The optimized PSP (CAPRYOL90/Kolliphor EL/PPD = 54/36/10, weight%) obtained from the six possible comprehensive ternary phase diagrams showed a uniform nanoemulsion with the particle size of 125.07 ± 12.56 nm without any PPD precipitation. The PSP showed a dissolution rate of 94.69 ± 2.51% in 60 min at pH 1.2, whereas raw PPD showed negligible dissolution. In oral pharmacokinetic studies, the PSP group showed significantly higher Cmax and AUCinf values (by 1.94- and 1.81-fold, respectively) than the raw PPD group (p < 0.05). In conclusion, the PSP formulation with outstanding solubilization, dissolution, and in-vivo oral bioavailability could be suggested using effective and comprehensive ternary phase diagrams.
Collapse
|
58
|
Shrivastava S, Gidwani B, Kaur CD. Development of mebendazole loaded nanostructured lipid carriers for lymphatic targeting: Optimization, characterization, in-vitro and in-vivo evaluation. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2020.1750515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saurabh Shrivastava
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
| | - Bina Gidwani
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
- Columbia Institute of Pharmacy, Tekari, Raipur, India
| | - Chanchal Deep Kaur
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
| |
Collapse
|
59
|
Ghosh D, Singh SK, Khursheed R, Pandey NK, Kumar B, Kumar R, Kumari Y, Kaur G, Clarisse A, Awasthi A, Gulati M, Jain SK, Porwal O, Bayrakdar E, Sheet M, Gowthamarajan K, Gupta S, Corrie L, Gunjal P, Gupta RK, Singh TG, Sinha S. Impact of solidification on micromeritic properties and dissolution rate of self-nanoemulsifying delivery system loaded with docosahexaenoic acid. Drug Dev Ind Pharm 2020; 46:597-605. [DOI: 10.1080/03639045.2020.1742143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dipanjoy Ghosh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gurmandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ayinkamiye Clarisse
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Omji Porwal
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Esra Bayrakdar
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Muath Sheet
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - K. Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ooty, India
| | - Saurabh Gupta
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pradnya Gunjal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajneesh Kumar Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shibanand Sinha
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
60
|
Al-Nimry SS, Alkhamis KA, Altaani BM. Solid self-nanoemulsifying drug delivery system filled in enteric coated hard gelatin capsules for enhancing solubility and stability of omeprazole hydrochloride. Pharm Dev Technol 2020; 25:588-600. [PMID: 31976799 DOI: 10.1080/10837450.2020.1721536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Omeprazole has poor water solubility, low stability in acidic solutions, and is subject to first pass metabolism resulting in low bioavailability. The objective was to enhance the dissolution and stability by preparing a solid-self nanoemulsifying drug delivery system (SNEDDS) and filling it in enteric coated HGCs. Drug solubility in many oils, surfactants, and cosurfactants was studied. Different SNEDDS were prepared and ternary phase diagrams were constructed. The optimum SNEDDS was evaluated. It was converted into solid by adsorption onto Neusilin® US2, and evaluated. Emulsions formed using Capryol 90, Cremophor RH 40, and ethanol formed spontaneously and were clear. Droplet size was 19.11 ± 3.11 nm, PDI was 0.18 ± 0.05, and zeta potential was -3.9 ± 1.56 mV. Non-medicated SNEDDS was thermodynamically stable. Cloud point was 88 ± 2 °C. Encapsulation efficiency and drug loading of solid-SNEDDS were 98.56 ± 0.44 and 1.29 ± 0.01%, respectively. Flow properties were much enhanced. Crystalline drug was adsorbed/precipitated onto Neusilin® US2 in amorphous form. Dissolution rate was enhanced as compared to commercial products and unprocessed drug. The drug was unstable at the accelerated stability conditions. Accordingly, the traditional stability study at 25 °C should be conducted. In conclusion, the solid-SNEDDS filled in enteric coated HGCs enhanced the dissolution rate and stability in acidic pH.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Khouloud A Alkhamis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Bashar M Altaani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
61
|
Kumar R, Khursheed R, Kumar R, Awasthi A, Sharma N, Khurana S, Kapoor B, Khurana N, Singh SK, Gowthamarajan K, Wadhwani A. Self-nanoemulsifying drug delivery system of fisetin: Formulation, optimization, characterization and cytotoxicity assessment. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101252] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
62
|
Development and characterization of Solid-SNEDDS formulation of DHA using hydrophilic carrier with improved shelf life, oxidative stability and therapeutic activity. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
63
|
Aswathanarayan JB, Vittal RR. Nanoemulsions and Their Potential Applications in Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00095] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
64
|
Mehta CH, Narayan R, Aithal G, Pandiyan S, Bhat P, Dengale S, Shah A, Nayak UY, Garg S. Molecular simulation driven experiment for formulation of fixed dose combination of Darunavir and Ritonavir as anti-HIV nanosuspension. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
65
|
Kuncahyo I, Choiri S, Fudholi A, Rohman A, Martien R. Understanding the effect of lipid formulation loading and ethanol as a diluent on solidification of pitavastatin super-saturable SNEDDS using factorial design approach. Res Pharm Sci 2019; 14:378-390. [PMID: 31798654 PMCID: PMC6827189 DOI: 10.4103/1735-5362.268198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Solidification of a preconcentrate lipid formulation namely self-nano emulsifying drug delivery system (SNEDDS) is required to achieve feasibility, flexibility, and a new concept of “dry nano-emulsion”. The purpose of this study was to assess the effect of SNEDDS loading and ethanol as a diluent on the solidification of pitavastatin supersaturable SNEDDS (S-SNEDDS). A 22 full factorial design approach with a center point addition as a curvature was implemented to determine the effect of S-SNEDDS loading and ethanol on the physical characteristics, namely flowability, compactibility, and drug release behavior. Vibrational spectra, thermal behavior, and morphology of solid S-SNEDDS formulation were also evaluated. The results indicated that there was no interaction between S-SNEDDS and carrier, based on vibrational spectra. However, thermal behaviors (enthalpy and weight loss) were depending on SNEDDS loading. Thereafter, the ethanol as a diluent of preconcentrated formulation had no effect on the morphology of carrier structure. However, the S-SNEDDS loading altered the structure of carrier owing to either solubilization or abrasion processes. The statistical model suggested that ethanol as diluent reduced the flowability, compactibility, and drug releases. Meanwhile, the liquid SNEDDS loading affected the reducing of flowability and compactibility. Finally, solidification without diluent and 20% lipid formulation load was recommended. In addition, it was very useful because of ease on handling, flexibility for further formulation, and desired characteristics of final solid dosage form.
Collapse
Affiliation(s)
- Ilham Kuncahyo
- Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia.,Department of Pharmaceutical Science, Setia Budi University, Surakarta, Indonesia
| | - Syaiful Choiri
- Drug Delivery and Pharmaceutical Technology, Pharmaceutics Research Group, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, Indonesia
| | - Achmad Fudholi
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| | - Ronny Martien
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
66
|
Shevalkar G, Vavia P. Solidified nanostructured lipid carrier (S-NLC) for enhancing the oral bioavailability of ezetimibe. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
67
|
Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, Pottoo FH, Bolla SR. A novel self-nanoemulsifying drug delivery system for curcumin used in the treatment of wound healing and inflammation. 3 Biotech 2019; 9:360. [PMID: 31544014 DOI: 10.1007/s13205-019-1885-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
The main objective of this study was to develop and evaluate self-nanoemulsifying drug delivery system (SNEDDS) of curcumin (Cur) to enhance their solubility as well as improve skin permeation; and evaluate wound healing potential of Cur via SNEDDS in comparison with standards pure eucalyptus oil-SNEDDS (Euc-SNEDDS), pure curcumin suspension (Cur-S), and standard fusidic acid followed by their anti-inflammatory action. Curcumin-loaded different SNEDDS formulations were formulated through aqueous phase titration method and the zones of SNEDDS were recognized by the construction of phase diagrams. Eucalyptus oil, Tween 80 (surfactant), and Transcutol HP (co-surfactant) were selected on the basis of their solubility and highest nanoemulsion region. Characterization of thermodynamic stability for Cur-loaded SNEDDS was evaluated by its globule size, zeta potential, polydispersity index, viscosity, % transmittance, refractive index, and surface morphology. Cur-SNEDDS (Cur-SN4) was optimized and selected on the basis of their excellent physicochemical parameters for in vivo activity. The particle size (59.56 ± 0.94 nm), % transmittance (99.08 ± 0.07%), and PDI (0.207 ± 0.011 were observed for optimized Cur-SNEDDS. TEM and SEM showed their smooth and spherical shape of the morphological characterization with zeta potential (- 21.41 ± 0.89), refractive index (1.341 ± 0.06), and viscosity (11.64 ± 1.26 cp) for optimized Cur-SNEDDS. Finally, optimized Cur-SNEDDS was used to enhance skin permeation with improvement in the solubility of Cur. However, optimized Cur-SNEDDS showed significant wound healing activity as compared with pure eucalyptus oil and Cur-S on topical application. Optimized Cur-SNEDDS showed healing of wound as compared to standard fusidic acid. Optimized Cur-SNEDDS exhibited no signs of inflammatory cells on the histopathological studies of treated rats which were recommended the safety and non-toxicity of Cur-SNEDDS. Newly developed Cur-SNEDDS could be successfully used to enhance Cur-solubility and skin permeation, as well as suggested a potential role of Cur-SNEDDS for better improvement of wound healing activity followed by anti-inflammatory action of Cur via topical application.
Collapse
Affiliation(s)
- Niyaz Ahmad
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
- 2Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Rizwan Ahmad
- 3Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ali Al-Qudaihi
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Salman Edrees Alaseel
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ibrahim Zuhair Fita
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Mohammed Saifuddin Khalid
- 4Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Faheem Hyder Pottoo
- 4Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Srinivasa Rao Bolla
- 5Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
68
|
Kalamkar R, Wadher S. Formulation and Pharmacokinetic Evaluation of Phosal Based Zaltoprofen Solid Self-Nanoemulsifying Drug Delivery System. Pharm Nanotechnol 2019; 7:328-338. [PMID: 31376828 PMCID: PMC7040505 DOI: 10.2174/2211738507666190802141754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 07/24/2019] [Indexed: 11/28/2022]
Abstract
Abstract: Background: Phosal based excipients are liquid concentrates containing phospholipids. They are used to solubilize water-insoluble drug and also act as an emulsifier to get the smallest droplet size of the formed emulsion after administration. Objective: The aim is to prepare phosal based self nanoemulsifying drug delivery system (SNEDDS) for water insoluble drug zaltoprofen. Methods: The various parameters like solubility of drug in different vehicles, ternary phase diagram are considered to formulate the stable emulsion which is further characterized by Self emulsification time and globule size analysis to optimize liquid SNEDDS of Zaltoprofen. Optimized L-SNEDDS was converted into free-flowing powder Solid-SNEDDS (S-SNEDDS). S-SNEDDS was evaluated for Globule size analysis after reconstitution, in vitro dissolution study and in vivo pharmacokinetic study in rats. Results: Phosal 53 MCT with highest drug solubility was used as oil along with Tween 80 and PEG 400 as surfactant and cosurfactant respectively to prepare liquid SNEDDS. Neusilin us2 was used as an adsorbent to get free-flowing S-SNEDDS. S-SNEDDS showed improved dissolution profile of the drug as compared to pure drug. In vivo study demonstrated that there is a significant increase in Cmax and AUC of S-SNEDDS compared to zaltoprofen powder. Conclusion: Phosal based SNEDDS formation can be successfully used to improve the dissolution and oral bioavailability of poorly soluble drug zaltoprofen.
Collapse
Affiliation(s)
- Rajan Kalamkar
- School of Pharmacy, Swami Ramanand Teerth Marathwada University, Vishnupuri, Nanded, Maharashtra, India
| | - Shailesh Wadher
- School of Pharmacy, Swami Ramanand Teerth Marathwada University, Vishnupuri, Nanded, Maharashtra, India
| |
Collapse
|
69
|
Patel MH, Sawant KK. Self microemulsifying drug delivery system of lurasidone hydrochloride for enhanced oral bioavailability by lymphatic targeting: In vitro, Caco-2 cell line and in vivo evaluation. Eur J Pharm Sci 2019; 138:105027. [PMID: 31377133 DOI: 10.1016/j.ejps.2019.105027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
The global aim of this research was to develop and evaluate self-microemulsifying drug delivery system (SMEDDS) to improve oral bioavailability of Lurasidone Hydrochloride (LH). A chylomicron flow blocking approach was used to evaluate lymphatic drug transport. The developed LH-SMEDDS was composed of Capmul MCM C8 (oil), Cremophor EL (surfactant) and Transcutol HP (co-surfactant). Highest microemulsifying area was obtained at 3:1 ratio (surfactant:cosurfactant) and mean globule size was found to be 49.22 ± 1.60 nm. More than 98% drug release was obtained with LH-SMEDDS in phosphate buffer pH 6.8. Confocal microscopy and flow cytometry studies revealed higher fluorescence indicating deeper penetration across Caco-2 cells with Coumarin-6 SMEDDS as compared to Coumarin-6 solution. Mean Fluorescence Intensity (MFI) with Coumarin-6 loaded SMEDDS was increased 25.57 times with respect to Coumarin-6 solution. The permeability across Caco-2 cells was enhanced 3 times with LH-SMEDDS as compared to LH-suspension. Furthermore, Area Under Curve with LH-SMEDDS was found to be 2.92 times higher than that of LH suspension indicating improved bioavailability after formulating SMEDDS. Lymphatic transport in oral absorption of LH-SMEDDS was proved via lymphatic uptake study. All the findings suggest the effectiveness of lipid-based formulation i.e. SMEDDS of LH to augment the oral bioavailability via intestinal lymphatic pathway.
Collapse
Affiliation(s)
- Mitali H Patel
- Drug Delivery Research Laboratory, Shri G. H. Patel Pharmacy Building, Faculty of Pharmacy, The M. S. University of Baroda, Fatehgunj, Vadodara 390002, Gujarat, India
| | - Krutika K Sawant
- Drug Delivery Research Laboratory, Shri G. H. Patel Pharmacy Building, Faculty of Pharmacy, The M. S. University of Baroda, Fatehgunj, Vadodara 390002, Gujarat, India.
| |
Collapse
|
70
|
Rangaraj N, Shah S, A J M, Pailla SR, Cheruvu HS, D S, Sampathi S. Quality by Design Approach for the Development of Self-Emulsifying Systems for Oral Delivery of Febuxostat: Pharmacokinetic and Pharmacodynamic Evaluation. AAPS PharmSciTech 2019; 20:267. [PMID: 31346822 DOI: 10.1208/s12249-019-1476-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
The goal of the present investigation is to formulate febuxostat (FXT) self-nanoemulsifying delivery systems (liquid SNEDDS, solid SNEDDS, and pellet) to ameliorate the solubility and bioavailability. To determine the self-nanoemulsifying region, ternary plot was constructed utilizing Capmul MCM C8 NF® as an oil phase, Labrasol® as principal surfactant, and Transcutol HP® being the co-surfactant. Liquid SNEDDS (L-SNEDDS) were characterized by evaluating droplet size, zeta potential, % transmission, and for thermodynamic stability. In vitro dissolution study of FXT loaded L-SNEDDS (batch F7) showed increased dissolution (about 48.54 ± 0.43% in 0.1 N HCl while 86.44 ± 0.16% in phosphate buffer pH 7.4 within 30 min) compared to plain drug (19.65 ± 2.95% in 0.1 N HCl while about 17.61 ± 2.63% in phosphate buffer pH 7.4 within 30 min). Single pass intestinal permeability studies revealed fourfold increase in the intestinal permeability of F7 compared to plain drug. So, for commercial aspects, F7 was further transformed into solid SNEDDS (S-SNEDDS) as readily nanoemulsifying powder form (SNEP) as well as pellets prepared by application of extruder spheronizer. The developed formulation was found superior to pure FXT with enhanced oral bioavailability and anti-gout activity (with reduced uric acid levels), signifying a lipidic system being an efficacious substitute for gout treatment.
Collapse
|
71
|
Rashid M, Malik MY, Singh SK, Chaturvedi S, Gayen JR, Wahajuddin M. Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry. Curr Pharm Des 2019; 25:987-1020. [DOI: 10.2174/1381612825666190130110653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Bioavailability, one of the prime pharmacokinetic properties of a drug, is defined as the
fraction of an administered dose of unchanged drug that reaches the systemic circulation and is used to describe
the systemic availability of a drug. Bioavailability assessment is imperative in order to demonstrate whether the
drug attains the desirable systemic exposure for effective therapy. In recent years, bioavailability has become
the subject of importance in drug discovery and development studies.
Methods:
A systematic literature review in the field of bioavailability and the approaches towards its enhancement
have been comprehensively done, purely focusing upon recent papers. The data mining was performed
using databases like PubMed, Science Direct and general Google searches and the collected data was exhaustively
studied and summarized in a generalized manner.
Results:
The main prospect of this review was to generate a comprehensive one-stop summary of the numerous
available approaches and their pharmaceutical applications in improving the stability concerns, physicochemical
and mechanical properties of the poorly water-soluble drugs which directly or indirectly augment their bioavailability.
Conclusion:
The use of novel methods, including but not limited to, nano-based formulations, bio-enhancers,
solid dispersions, lipid-and polymer-based formulations which provide a wide range of applications not only
increases the solubility and permeability of the poorly bioavailable drugs but also improves their stability, and
targeting efficacy. Although, these methods have drastically changed the pharmaceutical industry demand for the
newer potential methods with better outcomes in the field of pharmaceutical science to formulate various dosage
forms with adequate systemic availability and improved patient compliance, further research is required.
Collapse
Affiliation(s)
- Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Mohd Yaseen Malik
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Sandeep K. Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | | |
Collapse
|
72
|
Adu-Frimpong M, Qiuyu W, Firempong CK, Mukhtar YM, Yang Q, Omari-Siaw E, Lijun Z, Xu X, Yu J. Novel cuminaldehyde self-emulsified nanoemulsion for enhanced antihepatotoxicity in carbon tetrachloride-treated mice. J Pharm Pharmacol 2019; 71:1324-1338. [DOI: 10.1111/jphp.13112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Objectives
Cuminaldehyde self-emulsified nanoemulsion (CuA-SEN) was prepared and optimised to improve its oral bioavailability and antihepatotoxicity.
Methods
Cuminaldehyde self-emulsified nanoemulsion was developed through the self-nanoemulsification method using Box–Behnken Design (BBD) tool while appropriate physicochemical indices were evaluated. The optimised CuA-SEN was characterised via droplet size (DS), morphology, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, in-vitro release, and pharmacokinetic studies while its antihepatotoxicity was evaluated.
Key findings
Cuminaldehyde self-emulsified nanoemulsion with acceptable characteristics (mean DS-48.83 ± 1.06 nm; PDI-0.232 ± 0.140; ZP-29.92 ± 1.66 mV; EE-91.51 ± 0.44%; and drug-loading capacity (DL)-9.77 ± 0.75%) was formulated. In-vitro drug release of CuA-SEN significantly increased with an oral relative bioavailability of 171.02%. Oral administration of CuA-SEN to CCl4-induced hepatotoxicity mice markedly increased the levels of superoxide dismutase, glutathione and catalase in serum. Also, CuA-SEN reduced the levels of tumour necrosis factor-alpha and interleukin-6 in both serum and liver tissues while aspartate aminotransferase, alanine aminotransferase and malonaldehyde levels were significantly decreased.
Conclusions
These findings showed that the improved bioavailability of cuminaldehyde via SEN provided an effective approach for enhancing antioxidation, anti-inflammation and antihepatotoxicity of the drug.
Collapse
Affiliation(s)
- Michael Adu-Frimpong
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
- Department of Basic and Biomedical Sciences, College of Health and Well-Being, Kintampo, Bono Region, Ghana
| | - Wei Qiuyu
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Caleb Kesse Firempong
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yusif Mohammed Mukhtar
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qiuxuan Yang
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutical Sciences, Kumasi Technical University, Kumasi, Ghana
| | - Zhen Lijun
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
73
|
Garg V, Kaur P, Gulati M, Singh SK, Kumar B, Pandey NK, Yadav AK, Kumar R, Kuppusamy G, De A, Puttappa N, Wadhwa S. Coadministration of Polypeptide-k and Curcumin Through Solid Self-Nanoemulsifying Drug Delivery System for Better Therapeutic Effect Against Diabetes Mellitus: Formulation, Optimization, Biopharmaceutical Characterization, and Pharmacodynamic Assessment. Assay Drug Dev Technol 2019; 17:201-221. [DOI: 10.1089/adt.2018.902] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Varun Garg
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Puneet Kaur
- Department of Pharmaceutical Sciences, Washington State University, College of Pharmacy, Spokane, Washington
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ankit Kumar Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed To Be University), Ootacamund, Tamilnadu, India
| | - Anindita De
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed To Be University), Ootacamund, Tamilnadu, India
| | - Nethravathi Puttappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed To Be University), Ootacamund, Tamilnadu, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
74
|
Desai J, Thakkar H. Enhanced oral bioavailability and brain uptake of Darunavir using lipid nanoemulsion formulation. Colloids Surf B Biointerfaces 2019; 175:143-149. [DOI: 10.1016/j.colsurfb.2018.11.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
|
75
|
Bindhani S, Mohapatra S, Kar R. Self Emulsifying Drug Delivery System: A Recent Approach. ACTA ACUST UNITED AC 2019. [DOI: 10.14233/ajchem.2019.21569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, nearly 40 % newer drugs compounds are hydrophobic in nature, which is a major challenge now-a-days for oral drug delivering due to low aqueous solubility. Lipid based drug delivery system is one of the favourable approach for poorly soluble compounds which can improve the drug absorption and oral bioavailability. Due to ion-pairing with appropriate surfactant and co-surfactant the macromolecular drug molecular oil droplet being found in the gut flow oral absorption which sufficiently stable towards lipase. Due to the formation of emulsified drug in micron level, it can efficiently endow the oral bioavailability. Several comprehensive papers have been published in the literature illustration diverse type of lipid based formulation with recent advancements. This article is based on an exhaustive and updated review on newer technology which out line an explicit discussion on its formulations and industrial scale up.
Collapse
Affiliation(s)
- Sabitri Bindhani
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Khandagiri, Bhubhaneswar- 751030, India
| | - S. Mohapatra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Khandagiri, Bhubhaneswar- 751030, India
| | - R.K. Kar
- Department of of Pharmaceutical Sciences, Dadhichi College of Pharmacy, Cuttack-754002, India
| |
Collapse
|
76
|
Abd-Elhakeem E, Teaima MHM, Abdelbary GA, El Mahrouk GM. Bioavailability enhanced clopidogrel -loaded solid SNEDDS: Development and in-vitro/in-vivo characterization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
77
|
Patel P, Pailla SR, Rangaraj N, Cheruvu HS, Dodoala S, Sampathi S. Quality by Design Approach for Developing Lipid-Based Nanoformulations of Gliclazide to Improve Oral Bioavailability and Anti-Diabetic Activity. AAPS PharmSciTech 2019; 20:45. [PMID: 30617566 DOI: 10.1208/s12249-018-1214-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/05/2018] [Indexed: 01/04/2023] Open
Abstract
The aim of the current investigation was to generate a self-nanoemulsifying drug delivery system (SNEDDS) of gliclazide (GCZ) to address the poor solubility and bioavailability. Ternary phase diagram was created with Capmul MCM C8 NF (oil), Cremophor RH 40 (surfactant), and Transcutol HP (co-surfactant) to distinguish the self-emulsifying region. A D-optimal design was employed with three variables, such as oil, surfactant, and co-surfactant, for further optimization of liquid (L)-SNEDDS. GCZ-loaded L-SNEDDs were analyzed for globule size, polydispersity index (PDI), and solubility. In vitro dissolution of optimized L-SNEDDS exhibited (F5) faster drug release (97.84%) within 30 min as compared to plain drug (15.99%). The optimized L-SNEDDS was converted to solid (S)-SNEDDS as a self-nanoemulsifying powder (SNEP) and pellets by extrusion-spheronization. Optimized S-SNEDDS were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). In vitro dissolution of SNEP (S3) and pellet were 90.54 and 73.76%, respectively, at 30 min. In vivo studies showed a twofold rise in bioavailability through SNEDDS with a significant decline in blood glucose levels compared to plain drug suspension suggesting a lipid-based system as an alternative approach for treating diabetes.
Collapse
|
78
|
Singh D, Tiwary AK, Bedi N. Self-microemulsifying Drug Delivery System for Problematic Molecules: An Update. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:92-113. [PMID: 31215381 DOI: 10.2174/1872210513666190619102521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The poor bioavailability of a problematic molecule is predominantly due to its high lipophilicity, low solubility in gastric fluids and/or high fist pass metabolism. Self microemulsifying drug delivery system (SMEDDS), a lipidic type IV nano-formulation has been of interest in the field of pharmaceutical research due to its potential for tailoring the physicochemical properties of pharmaceutical molecules. METHODS This review provides insights on various recent innovations and reports from the past seven years (2012-2019) of self-emulsifying formulations for the delivery of various types of poorly soluble drugs, phytoconstituents and high molecular peptides and gives exhaustive details of the outcome of the endeavors in this field. RESULTS Various types of innovative formulations have been molded from SMEDDS like selfemulsifying powders, granules, tablets, pellets, eutectic and cationic formulations. Till date, many research reports and patents have been filed on self-emulsifying dosage forms and many formulations have gained US-FDA approvals which are summarized in the review article. CONCLUSION This review content highlighted the increasing scope of SMEDDS in augmenting the physiochemical properties of an API, the variegated formulation types and the attributes of API that can be improved by SMEDD based formulations.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ashok K Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
79
|
Kim DH, Kim JY, Kim RM, Maharjan P, Ji YG, Jang DJ, Min KA, Koo TS, Cho KH. Orlistat-loaded solid SNEDDS for the enhanced solubility, dissolution, and in vivo performance. Int J Nanomedicine 2018; 13:7095-7106. [PMID: 30464461 PMCID: PMC6223334 DOI: 10.2147/ijn.s181175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The present study aimed to develop orlistat-loaded solid self-nanoemulsifying drug delivery system preconcentrate (SSP) with the minimum use of lipid excipients for the enhanced solubility, in vitro dissolution, lipase inhibition, and in vivo performance. Materials and methods In the screening of solubilizing vehicles, Solutol HS15 and Lauroglycol 90 were selected as the surfactant and oil phase, respectively. A pseudo-ternary phase diagram composed of Solutol HS15, Lauroglycol 90, and orlistat as an anti-obesity agent and lipid component was constructed, and the SSP regions were confirmed in terms of the particle size distribution in water, melting point by differential scanning calorimetry, and crystallinity by X-ray diffraction. Results Physicochemical interaction between Solutol HS15 and orlistat resulted in SSP with various melting points in the range of 26°~33°C. The representative maximum orlistat-loaded SSP (orlistat/Solutol HS15/Lauroglycol 90=55/40/5, weight ratio) showed the melting point of 32.23°C and constructed uniform nanoemulsion with the particle size of 141.7±1.1 nm dispersed in water. In the dissolution test at pH 1.2 without any detergent, the SSP reached 98.12%±0.83% until 45 minutes, whereas raw orlistat showed no significant dissolution rate. The dissolution samples containing SSP showed a lipase inhibition of 90.42%±1.58% within 45 minutes. In terms of the reduction level of fat absorption in rats, the intake group of SSP gave a significantly higher fat excretion into stool than the one observed in the raw orlistat group (P<0.05). Conclusion In conclusion, the suggested novel SSP formulation would be an effective and promising candidate for the treatment of obesity.
Collapse
Affiliation(s)
- Dae Hun Kim
- Department of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Republic of Korea,
| | - Jae Yeol Kim
- Department of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Republic of Korea,
| | - Rae Man Kim
- Department of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Republic of Korea,
| | - Pooja Maharjan
- Department of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Republic of Korea,
| | - Yu-Geun Ji
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea,
| | - Dong-Jin Jang
- Department of Pharmaceutical Engineering, Inje University, Gimhae, Republic of Korea
| | - Kyoung Ah Min
- Department of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Republic of Korea,
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea,
| | - Kwan Hyung Cho
- Department of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Republic of Korea,
| |
Collapse
|
80
|
Adu‐Frimpong M, Firempong CK, Omari‐Siaw E, Wang Q, Mukhtar YM, Deng W, Yu Q, Xu X, Yu J. Preparation, optimization, and pharmacokinetic study of nanoliposomes loaded with triacylglycerol‐bound punicic acid for increased antihepatotoxic activity. Drug Dev Res 2018; 80:230-245. [DOI: 10.1002/ddr.21485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Adu‐Frimpong
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
- Department of Biomedical and Basic SciencesCollege of Health and Well‐Being Kintampo Ghana
| | - Caleb Kesse Firempong
- Department of Biochemistry and Biotechnology, College of ScienceKwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Emmanuel Omari‐Siaw
- Department of Pharmaceutical SciencesKumasi Technical University Kumasi Ghana
| | - Qilong Wang
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Yusif Mohammed Mukhtar
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Wenwen Deng
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Qingtong Yu
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Ximing Xu
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| |
Collapse
|
81
|
Impact of solid carriers and spray drying on pre/post-compression properties, dissolution rate and bioavailability of solid self-nanoemulsifying drug delivery system loaded with simvastatin. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
82
|
Kala S, Watson B, Zhang JG, Papp E, Guzman Lenis M, Dennehy M, Cameron DW, Harrigan PR, Serghides L. Improving the clinical relevance of a mouse pregnancy model of antiretroviral toxicity; a pharmacokinetic dosing-optimization study of current HIV antiretroviral regimens. Antiviral Res 2018; 159:45-54. [PMID: 30236532 DOI: 10.1016/j.antiviral.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Animal models can be useful tools for the study of HIV antiretroviral (ARV) safety/toxicity in pregnancy and the mechanisms that underlie ARV-associated adverse events. The utility and translatability of animal model-based ARV safety/toxicity data is improved if ARVs are tested in clinically relevant concentrations. The objective of this work was to improve the clinical relevance of our mouse pregnancy model of ARV toxicity, by determining the doses of currently prescribed ARV regimens that would yield human therapeutic plasma concentrations. Pregnant mice were administered increasing doses of ARV combinations by oral gavage, followed by measurement of drug concentrations in the maternal plasma and amniotic fluid. Concentrations of ten different ARVs in maternal plasma and amniotic fluid samples of pregnant mice are presented, with dosing optimization to yield human pregnancy-relevant plasma drug concentrations. We have proposed optimal dosing for different regimen component drugs to achieve human therapeutic plasma levels, so that a clinically relevant standard dosing is established. A review of related ARV pharmacokinetic studies in (pregnant/non-pregnant) rodents and human pregnancy is also shown. We hope these data will inform and encourage the use of mouse pregnancy models in the study of ARV safety/toxicity.
Collapse
Affiliation(s)
- Smriti Kala
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada
| | - Birgit Watson
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Jeremy Guijun Zhang
- Clinical Investigation Unit at the Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa at the Ottawa Hospital / Research Institute, Ottawa, Canada
| | - Eszter Papp
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada
| | - Monica Guzman Lenis
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada
| | - Michelle Dennehy
- Clinical Investigation Unit at the Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa at the Ottawa Hospital / Research Institute, Ottawa, Canada
| | - D William Cameron
- Clinical Investigation Unit at the Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa at the Ottawa Hospital / Research Institute, Ottawa, Canada
| | - P Richard Harrigan
- Division of AIDS, Department of Medicine, University of British Columbia, Vancouver Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada; Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada; Women's College Research Institute, Women's College Hospital, Toronto, Canada.
| |
Collapse
|
83
|
Development of a fluvastatin-loaded self-nanoemulsifying system to maximize therapeutic efficacy in human colorectal carcinoma cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
84
|
Tong Y, Wang Y, Yang M, Yang J, Chen L, Chu X, Gao C, Jin Q, Gong W, Gao C. Systematic Development of Self-Nanoemulsifying Liquisolid Tablets to Improve the Dissolution and Oral Bioavailability of an Oily Drug, Vitamin K1. Pharmaceutics 2018; 10:pharmaceutics10030096. [PMID: 30021949 PMCID: PMC6160939 DOI: 10.3390/pharmaceutics10030096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study is to improve the dissolution and oral bioavailability of an oily drug, vitamin K1 (VK1) by combination of self-nanoemulsifying and liquisolid technologies. The optimal liquid self-nanoemulsifying drug delivery systems (SNEDDS) formulation including VK1 (oil), mixture of soybean lecithin and glycocholic acid (surfactant) and Transcutol HP (cosurfactant) was obtained according to ternary phase diagrams and a central composite design. Based on compatibility, adsorption capacity and dissolution profile, liquid SNEDDS was then solidified on Fujicalin® to form solid SNEDDS by liquisolid technology and compressed directly with excipients into self-nanoemulsifying liquisolid (SNE-L) tablets. Uniform nano-emulsion suspension was formed rapidly when the SNE-L tablets disintegrated in dissolution media and higher drug dissolution was observed compared with the conventional tablets. The results of pharmacokinetic study in beagle dogs showed that the mean Cmax and the area under the curve of SNE-L tablets were remarkably higher than those of conventional tablets, which were consistent with the results of the in vitro dissolution. The relative bioavailability of SNE-L tablets and conventional tablets was approximately 200%. In conclusion, this combination method showed promise to improve the dissolution and oral bioavailability of oily drug vitamin K1.
Collapse
Affiliation(s)
- Yongtao Tong
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yuli Wang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Meiyan Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Jiahui Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Lu Chen
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xiaoyang Chu
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunhong Gao
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Qian Jin
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Wei Gong
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunsheng Gao
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
85
|
AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. Self-emulsifying drug–delivery systems modulate P-glycoprotein activity: role of excipients and formulation aspects. Nanomedicine (Lond) 2018; 13:1813-1834. [DOI: 10.2217/nnm-2017-0354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Self-emulsifying drug–delivery systems (SEDDS) have been widely employed to ameliorate the oral bioavailability of P-glycoprotein (P-gp) substrate drugs and to overcome multidrug resistance in cancer cells. However, the role of formulation aspects in the reduced P-gp activity is not fully understood. In this review, we first explore the role of various SEDDS excipients in the reduced P-gp activity with the main emphasis on the effective excipient concentration range for excipient-mediated modulation of P-gp activity and then we discuss the synergistic effect of various formulation aspects on the excipient-mediated modulation of P-gp activity. This review provides an approach to develop a rationally designed SEDDS to overcome P-gp-mediated drug efflux.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ayat A Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed M El-Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
86
|
Palcsó B, Zelkó R. Different types, applications and limits of enabling excipients of pharmaceutical dosage forms. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:21-39. [PMID: 30103860 DOI: 10.1016/j.ddtec.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 01/10/2023]
Abstract
Along with the development of novel drug delivery systems the material science is also advancing. Conventional and novel synthetic or natural excipients provide opportunities to design dosage forms of the required features including their bioavailability. Emerging trends in the design and development of drug products indicate an increasing need for the functionality-related characterization of excipients. The purpose of this review is to provide an overview of different types of excipients in relation to their application possibilities in various dosage forms with special focus on the enabling excipients. The study also summarizes the applied excipient systems of research formulations and dosage forms available on the market.
Collapse
Affiliation(s)
- Barnabás Palcsó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hogyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hogyes E. Street 7-9, H-1092 Budapest, Hungary.
| |
Collapse
|
87
|
Rajesh SY, Singh SK, Pandey NK, Sharma P, Bawa P, Kumar B, Gulati M, Jain SK, Gowthamarajan K, Singh S. Impact of various solid carriers and spray drying on pre/post compression properties of solid SNEDDS loaded with glimepiride: in vitro-ex vivo evaluation and cytotoxicity assessment. Drug Dev Ind Pharm 2018; 44:1056-1069. [DOI: 10.1080/03639045.2018.1431656] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sarvi Yadav Rajesh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parth Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Palak Bawa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | | - Saurabh Singh
- School of Ayurvedic Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
88
|
Kumar B, Garg V, Singh S, Pandey NK, Bhatia A, Prakash T, Gulati M, Singh SK. Impact of spray drying over conventional surface adsorption technique for improvement in micromeritic and biopharmaceutical characteristics of self-nanoemulsifying powder loaded with two lipophilic as well as gastrointestinal labile drugs. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
89
|
Desai J, Thakkar H. Darunavir-Loaded Lipid Nanoparticles for Targeting to HIV Reservoirs. AAPS PharmSciTech 2018; 19:648-660. [PMID: 28948564 DOI: 10.1208/s12249-017-0876-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/06/2017] [Indexed: 01/20/2023] Open
Abstract
Darunavir has a low oral bioavailability (37%) due to its lipophilic nature, metabolism by cytochrome P450 enzymes and P-gp efflux. Lipid nanoparticles were prepared in order to overcome its low bioavailability and to increase the binding efficacy of delivery system to the lymphoid system. Darunavir-loaded lipid nanoparticles were prepared using high-pressure homogenization technique. Hydrogenated castor oil was used as lipid. Peptide, having affinity for CD4 receptors, was grafted onto the surface of nanoparticles. The nanoparticles were evaluated for various parameters. The nanoparticles showed size of less than 200 nm, zeta potential of - 35.45 mV, and a high drug entrapment efficiency (90%). 73.12% peptide was found conjugated to nanoparticles as studied using standard BSA calibration plot. Permeability of nanoparticles in Caco-2 cells was increased by 4-fold in comparison to plain drug suspension. Confocal microscopic study revealed that the nanoparticles showed higher uptake in HIV host cells (Molt-4 cells were taken as model containing CD4 receptors) as compared to non-CD4 receptor bearing Caco-2 cells. In vivo pharmacokinetic in rats showed 569% relative increase in bioavailability of darunavir as compared to plain drug suspension. The biodistribution study revealed that peptide-grafted nanoparticles showed higher uptake in various organs (also in HIV reservoir organs namely the spleen and brain) except the liver compared to non-peptide-grafted nanoparticles. The prepared nanoparticles resulted in increased binding with the HIV host cells and thus could be promising carrier in active targeting of the drugs to the HIV reservoir.
Collapse
|
90
|
Mandić J, Zvonar Pobirk A, Vrečer F, Gašperlin M. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. Int J Pharm 2017; 533:335-345. [DOI: 10.1016/j.ijpharm.2017.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
|
91
|
Kim KS, Yang ES, Kim DS, Kim DW, Yoo HH, Yong CS, Youn YS, Oh KT, Jee JP, Kim JO, Jin SG, Choi HG. A novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for improved stability and oral bioavailability of an oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol. Drug Deliv 2017; 24:1018-1025. [PMID: 28675315 PMCID: PMC8240999 DOI: 10.1080/10717544.2017.1344335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023] Open
Abstract
To develop a novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for a water-insoluble oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) with improved stability and oral bioavailability, numerous S-SNEDDS were prepared with surfactant, hydrophilic polymer, antioxidant, and calcium silicate (porous carrier) using the spray-drying method. Their physicochemical properties were evaluated using emulsion droplet size analysis, SEM and PXRD. Moreover, the solubility, dissolution, stability, and pharmacokinetics of the selected S-SNEDDS were assessed compared with the drug and a commercial soft capsule. Sodium lauryl sulfate (SLS) and hydroxypropyl methylcellulose (HPMC) with the highest drug solubility were selected as surfactant and hydrophilic polymer, respectively. Among the antioxidants tested, only butylated hydroxyanisole (BHA) could completely protect the drug from oxidative degradation. The S-SNEDDS composed of PLAG/SLS/HPMC/BHA/calcium silicate at a weight ratio of 1: 0.25: 0.1: 0.0002: 0.5 provided an emulsion droplet size of less than 300 nm. In this S-SNEDDS, the drug and other ingredients might exist in the pores of carrier and attach onto its surface. It considerably improved the drug stability (about 100 vs. 70%, 60 °C for 5 d) and dissolution (about 80 vs. 20% in 60 min) compared to the commercial soft capsule. Moreover, the S-SNEDDS gave higher AUC, Cmax, and Tmax values than the commercial soft capsule; in particular, the former improved the oral bioavailability of PLAG by about 3-fold. Our results suggested that this S-SNEDDS provided excellent stability and oral bioavailability of PLAG. Thus, this S-SNEDDS would be recommended as a powerful oral drug delivery system for an oily drug, PLAG.
Collapse
Affiliation(s)
- Kyeong Soo Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Eun Su Yang
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Dong Shik Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Dong Wuk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Hye Hyun Yoo
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Sung Giu Jin
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| | - Han Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| |
Collapse
|
92
|
Garg V, Kaur P, Singh SK, Kumar B, Bawa P, Gulati M, Yadav AK. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. Eur J Pharm Sci 2017; 109:297-315. [DOI: 10.1016/j.ejps.2017.08.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022]
|
93
|
Improving tadalafil dissolution via surfactant-enriched tablets approach: Statistical optimization, characterization, and pharmacokinetic assessment. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
94
|
Garg B, Beg S, Kaur R, Kumar R, Katare OP, Singh B. Long-chain triglycerides-based self-nanoemulsifying oily formulations (SNEOFs) of darunavir with improved lymphatic targeting potential. J Drug Target 2017; 26:252-266. [PMID: 28805469 DOI: 10.1080/1061186x.2017.1365875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current studies entail systematic development of SNEOFs containing long-chain triglycerides for improving lymphatic targeting of darunavir for complete inhibition of HIV progression. As per QbD-oriented approach for formulation development, the QTPP was defined and CQAs were earmarked. Preformulation equilibrium solubility and phase diagram studies, and risk assessment through FMEA studies identified Lauroglycol 90, Tween 80 and Transcutol HP as the lipid, emulgent and cosolvent, respectively, for formulating SNEOFs of darunavir. Systematic optimisation of SNEOFs was conducted using IV-optimal mixture design, and the optimised formulation was chosen through numerical desirability function. Characterisation of optimised SNEOFs exhibited globule size of 50 nm, >85% drug release within 15 min and >75% permeation within 45 min. In vivo lymph cannulation and in situ intestinal perfusion studies indicated significant improvement in the drug absorption parameters from SNEOFs via intestinal lymphatic pathways, owing primarily to the presence of long-chain triglycerides. Also, in vivo pharmacokinetic studies in rat corroborated significant improvement in rate and extent of drug absorption into plasma vis-à-vis pure drug. In a nutshell, these studies indicate significant improvement in the biopharmaceutical attributes of a robust and stable SNEOFs formulation of darunavir for holistic management of viral loads in lymph and blood.
Collapse
Affiliation(s)
- Babita Garg
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India
| | - Sarwar Beg
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India
| | - Ranjot Kaur
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India
| | - Rajendra Kumar
- b UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites in Biomedical Sciences , Panjab University , Chandigarh , India
| | - Om Prakash Katare
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India
| | - Bhupinder Singh
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India.,b UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites in Biomedical Sciences , Panjab University , Chandigarh , India
| |
Collapse
|
95
|
Self-micellizing solid dispersions enhance the properties and therapeutic potential of fenofibrate: Advantages, profiles and mechanisms. Int J Pharm 2017; 528:563-577. [DOI: 10.1016/j.ijpharm.2017.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/23/2022]
|
96
|
Local Application of Statins Significantly Reduced Hypertrophic Scarring in a Rabbit Ear Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1294. [PMID: 28740761 PMCID: PMC5505822 DOI: 10.1097/gox.0000000000001294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND We previously showed that intradermal injection of statins is a successful treatment for hypertrophic scarring. Topical application has many advantages over intradermal injection. In this study, we demonstrate the efficacy of topical statin treatment in reducing scar in our validated rabbit ear scar model. METHODS Twenty New Zealand White rabbits were divided into 2 study groups, with 6 rabbits receiving 10 μm pravastatin intradermally at postoperative days 15, 18, and 21, and 14 rabbits receiving 0.4%, 2%, and 10% simvastatin topical application at postoperative days 14-25. Four or 6 full-thickness circular dermal punches 7 mm in diameter were made on the ventral surface of the ear down to but not including the perichondrium. Specimens were collected at 28 days to evaluate the effects of statins on hypertrophic scarring. RESULTS Treatment with pravastatin intradermal administration significantly reduced scarring in terms of scar elevation index. Topical treatment with both medium- and high-dose simvastatin also significantly reduced scarring. High-dose simvastatin topical treatment showed a major effect in scar reduction but induced side effects of scaling, erythema, and epidermal hyperplasia, which were improved with coapplication of cholesterol. There is a dose response in scar reduction with low-, medium- and high-dose simvastatin topical treatment. High-dose simvastatin treatment significantly reduced the messenger ribonucleic acid (mRNA) expression of connective tissue growth factor, consistent with our previously published work on intradermally injected statins. More directly, high-dose simvastatin treatment also significantly reduced the mRNA expression of collagen 1A1. CONCLUSIONS Topical simvastatin significantly reduces scar formation. The mechanism of efficacy for statin treatment through interference with connective tissue growth factor mRNA expression was confirmed.
Collapse
|
97
|
Use of acidifier and solubilizer in tadalafil solid dispersion to enhance the in vitro dissolution and oral bioavailability in rats. Int J Pharm 2017; 526:77-87. [DOI: 10.1016/j.ijpharm.2017.04.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/05/2017] [Accepted: 04/22/2017] [Indexed: 11/23/2022]
|
98
|
Gamal W, Fahmy RH, Mohamed MI. Development of novel amisulpride-loaded solid self-nanoemulsifying tablets: preparation and pharmacokinetic evaluation in rabbits. Drug Dev Ind Pharm 2017; 43:1539-1547. [PMID: 28447882 DOI: 10.1080/03639045.2017.1322608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The current investigation is focused on the formulation and in vivo evaluation of optimized solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of amisulpride (AMS) for improving its oral dissolution and bioavailability. METHODS Liquid SNEDDS (L-SNEDDS) composed of Capryol™ 90 (oil), Cremophor® RH40 (surfactant), and Transcutol® HP (co-surfactant) were transformed to solid systems via physical adsorption onto magnesium aluminometasilicate (Neusilin US2). Micromeretic studies and solid-state characterization of formulated S-SNEDDS were carried out, followed by tableting, tablet evaluation, and pharmacokinetic studies in rabbits. RESULTS Micromeretic properties and solid-state characterization proved satisfactory flow properties with AMS present in a completely amorphous state. Formulated self-nanoemulsifying tablets revealed significant improvement in AMS dissolution compared with either directly compressed or commercial AMS tablets. In vivo pharmacokinetic study in rabbits emphasized significant improvements in tmax, AUC(0-12), and AUC(0-∞) at p < .05 with 1.26-folds improvement in relative bioavailability from the optimized self-nanoemulsifying tablets compared with the commercial product. CONCLUSIONS S-SNEDDS can be a very useful approach for providing patient acceptable dosage forms with improved oral dissolution and biovailability.
Collapse
Affiliation(s)
- Wael Gamal
- a Department of Pharmaceutics, Faculty of Pharmacy , Ahram Canadian University , 6th of October City , Cairo , Egypt
| | - Rania H Fahmy
- a Department of Pharmaceutics, Faculty of Pharmacy , Ahram Canadian University , 6th of October City , Cairo , Egypt.,b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Magdy I Mohamed
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| |
Collapse
|
99
|
Motawea A, Borg T, Tarshoby M, Abd El-Gawad AEGH. Nanoemulsifying drug delivery system to improve the bioavailability of piroxicam. Pharm Dev Technol 2016; 22:445-456. [PMID: 27583581 DOI: 10.1080/10837450.2016.1231810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The aim of this study is to develop and characterize self-nanoemulsifying drug delivery system (SNEDDS) of piroxicam in liquid and solid forms to improve its dissolution, absorption and therapeutic efficacy. MATERIALS AND METHODS The generation of liquid SNEDDS (L-SNEDDS) was composed of soybean or coconut oil/Tween 80/Transcutol HP (12/80/8%w/w) and it was selected as the optimized formulation based on the solubility study and pseudo-ternary phase diagram. Optimized L-SNEDDS and liquid supersaturatable SNEDDS (L-sSNEDDS) preparations were then adsorbed onto adsorbents and formulated as directly compressed tablets. RESULTS AND DISCUSSION The improved drug dissolution rate in the solid supersaturatable preparation (S-sSNEDDS) may be due to the formation of a nanoemulsion and the presence of drug in an amorphous state with hydrogen bond interaction between the drug and SNEDDS components. In vivo pharmacokinetic studies on eight healthy human volunteers showed a significant improvement in the oral bioavailability of piroxicam from S-sSNEDDS (F12) compared with both the pure drug (PP) and its commercial product (Feldene®) (commercial dosage form (CD)). The relative bioavailability of S-sSNEDDS (F12) relative to PP or CD was about 151.01 and 98.96%, respectively. CONCLUSION The obtained results ratify that S-sSNEDDS is a promising drug delivery system to enhance the oral bioavailability of piroxicam.
Collapse
Affiliation(s)
- Amira Motawea
- a Department of Pharmaceutics, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Thanaa Borg
- a Department of Pharmaceutics, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Manal Tarshoby
- b Department of Internal Medicine, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | | |
Collapse
|
100
|
Abo Enin HA, Abdel-Bar HM. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability. Expert Opin Drug Deliv 2016; 13:1513-1521. [DOI: 10.1080/17425247.2016.1224845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hadel A. Abo Enin
- Pharmaceutics Department, National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| | - Hend Mohamed Abdel-Bar
- Pharmaceutics Department, National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|