51
|
Li J, Zhang N, Sun Q, Bai Z, Zheng J. Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element. Talanta 2016; 159:379-386. [DOI: 10.1016/j.talanta.2016.06.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/18/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
52
|
Wang H, Yao S, Liu Y, Wei S, Su J, Hu G. Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs. Biosens Bioelectron 2016; 87:417-421. [PMID: 27589405 DOI: 10.1016/j.bios.2016.08.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/15/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
Abstract
A novel molecularly imprinted electrochemical sensor (MIECS) was proposed to determine olaquindox (OLA) using gold nanoparticles in molecularly imprinted polymer (AuNPs@MIP) and carboxylated multi-walled carbon nanotubes (cMWCNTs). Glassy carbon electrode (GCE) was modified with cMWCNTs (cMWCNTs/GCE), and AuNPs/cMWCNT/GCE was obtained by electrodeposition on cMWCNTs/GCE using chronoamperometry in HAuCl4. Then, the obtained MIP/AuNPs/cMWCNTs/GCE was electropolymerized using OLA as template and o-PD as monomer to determine OLA. Important experimental parameters, namely, scan cycles, mole ratio of template molecules to functional monomers, pH value, and incubation time were optimized. The novel MIP sensor can offer a 2.7nM of detection limit for OLA. In addition, a series of food and feedstuffs were analyzed to demonstrate the feasibility of MIECS.
Collapse
Affiliation(s)
- Hongwu Wang
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Su Yao
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Yanqing Liu
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Shoulian Wei
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Jiawen Su
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Gengxin Hu
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| |
Collapse
|
53
|
Molecularly Imprinted Polymers Based Electrochemical Sensor for 2,4-Dichlorophenol Determination. Polymers (Basel) 2016; 8:polym8080309. [PMID: 30974584 PMCID: PMC6432028 DOI: 10.3390/polym8080309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 11/25/2022] Open
Abstract
A molecularly imprinted polymers based electrochemical sensor was fabricated by electropolymerizing pyrrole on a Fe3O4 nanoparticle modified glassy carbon electrode. The sensor showed highly catalytic ability for the oxidation of 2,4-dichlorophenol (2,4-DCP). Square wave voltammetry was used for the determination of 2,4-DCP. The oxidation peak currents were proportional to the concentrations of 2,4-DCP in the range of 0.04 to 2.0 µM, with a detection limit of 0.01 µM. The proposed sensor was successfully applied for the determination of 2,4-DCP in water samples giving satisfactory recoveries.
Collapse
|
54
|
Dai Y, Li X, Fan L, Lu X, Kan X. "Sign-on/off" sensing interface design and fabrication for propyl gallate recognition and sensitive detection. Biosens Bioelectron 2016; 86:741-747. [PMID: 27476055 DOI: 10.1016/j.bios.2016.07.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 01/11/2023]
Abstract
A new strategy based on sign-on and sign-off was proposed for propyl gallate (PG) determination by an electrochemical sensor. The successively modified poly(thionine) (PTH) and molecular imprinted polymer (MIP) showed an obvious electrocatalysis and a good recognition toward PG, respectively. Furthermore, the rebound PG molecules in imprinted cavities not only were oxidized but also blocked the electron transmission channels for PTH redox. Thus, a sign-on from PG current and a sign-off from PTH current were combined as a dual-sign for PG detection. Meanwhile, the modified MIP endowed the sensor with recognition capacity. The electrochemical experimental results demonstrated that the prepared sensor possessed good selectivity and high sensitivity. A linear ranging from 5.0×10(-8) to 1.0×10(-4)mol/L for PG detection was obtained with a limit of detection of 2.4×10(-8)mol/L. And the sensor has been applied to analyze PG in real samples with satisfactory results. The simple, low cost, and effective strategy reported here can be further used to prepare electrochemical sensors for other compounds selective recognition and sensitive detection.
Collapse
Affiliation(s)
- Yunlong Dai
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China; The Key Laboratory of Functional Molecular Solids, Ministry of Education, PR China; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, PR China
| | - Xueyan Li
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China; The Key Laboratory of Functional Molecular Solids, Ministry of Education, PR China; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, PR China
| | - Limei Fan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China; The Key Laboratory of Functional Molecular Solids, Ministry of Education, PR China; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, PR China
| | - Xiaojing Lu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China; The Key Laboratory of Functional Molecular Solids, Ministry of Education, PR China; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, PR China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China; The Key Laboratory of Functional Molecular Solids, Ministry of Education, PR China; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, PR China.
| |
Collapse
|
55
|
Mahmoudian MR, Basirun WJ, Binti Alias Y. Sensitive Dopamine Biosensor Based on Polypyrrole-Coated Palladium Silver Nanospherical Composites. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Reza Mahmoudian
- Department
of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department
of Chemistry, Shahid Sherafat, University of Farhangian, 15916 Tehran, Iran
| | | | - Yatimah Binti Alias
- Department
of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- University
of Malaya Centre for Ionic Liquids (UMCiL), Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
56
|
Karimian N, Gholivand M, Malekzadeh G. Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
57
|
Nezhadali A, Mojarrab M. Computational design and multivariate optimization of an electrochemical metoprolol sensor based on molecular imprinting in combination with carbon nanotubes. Anal Chim Acta 2016; 924:86-98. [DOI: 10.1016/j.aca.2016.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
|
58
|
Aswini KK, Vinu Mohan AM, Biju VM. Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:116-25. [PMID: 27157734 DOI: 10.1016/j.msec.2016.03.098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 03/29/2016] [Indexed: 11/26/2022]
Abstract
Theophylline is an inexpensive drug employed in asthma and chronic obstructive pulmonary disorder medications and is toxic at higher concentration. The development of a molecularly imprinted polymer based theophylline electrochemical sensor on glassy carbon electrode by the electropolymerization of 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid is being discussed in this work. The MIP modification enhances the theophylline recognition ability and the electron transfer kinetics of the bare electrode. The parameters, controlling the performance of the imprinted polymer based sensor, like number of electropolymerization cycles, composition of the pre-polymerization mixture, pH and immersion time were investigated and optimized. The interaction energy and the most stable conformation of the template-monomer complex in the pre-polymerization mixture were determined computationally using ab initio calculations based on density functional theory. The amperometric measurements showed that the developed sensor has a method detection limit of 0.32μM for the dynamic range of 0.4 to 17μM, at optimized conditions. The transducer possesses appreciable selectivity in the presence of structurally similar interferents such as theobromine, caffeine and doxofylline. The developed sensor showed remarkable stability and reproducibility and was also successfully employed in theophylline detection from commercially available tablets.
Collapse
Affiliation(s)
- K K Aswini
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, TamilNadu 620 015, India.
| | - A M Vinu Mohan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, TamilNadu 620 015, India
| | - V M Biju
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, TamilNadu 620 015, India.
| |
Collapse
|
59
|
Kan X, Zhang T, Zhong M, Lu X. CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection. Biosens Bioelectron 2016; 77:638-43. [DOI: 10.1016/j.bios.2015.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 02/08/2023]
|
60
|
Electrochemical properties, optical modeling and electrocatalytic activity of pulse-electropolymerized ternary nanocomposite of poly (methylene blue) in aqueous solution. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
61
|
Nezhadali A, Senobari S, Mojarrab M. 1,4-dihydroxyanthraquinone electrochemical sensor based on molecularly imprinted polymer using multi-walled carbon nanotubes and multivariate optimization method. Talanta 2016; 146:525-32. [DOI: 10.1016/j.talanta.2015.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/06/2015] [Accepted: 09/07/2015] [Indexed: 01/22/2023]
|
62
|
Wang C, Wang Q, Zhong M, Kan X. Boronic acid based imprinted electrochemical sensor for rutin recognition and detection. Analyst 2016; 141:5792-5798. [DOI: 10.1039/c6an01294a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An electrochemical sensor based on boronic acid affinity and molecular imprinted polymer specific binding was developed for rutin dual-recognition and sensitive detection.
Collapse
Affiliation(s)
- Chunlei Wang
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing; The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Qi Wang
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing; The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Min Zhong
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing; The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| | - Xianwen Kan
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing; The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Anhui Normal University
| |
Collapse
|
63
|
Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens Bioelectron 2015; 78:308-314. [PMID: 26630285 DOI: 10.1016/j.bios.2015.11.063] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/10/2015] [Accepted: 11/22/2015] [Indexed: 11/23/2022]
Abstract
In this work, we developed a novel freestanding metallic microrod as working electrode for highly sensitive and selective electrochemical detection of trace dopamine (DA). The electrode was facilely fabricated via first dealloying smooth Au-Ag alloy microrod (AMR) into nanoporous Au-Ag alloy microrod (NPAMR) and further modifying with electro-polymerized molecularly imprinted polymer (MIP). Influencing factors during electro-polymerization process including pH value and molar ratio of monomer to template molecule were optimized. Under the optimal conditions, a linear range from 2 × 10(-13) to 2 × 10(-8)M for measuring DA was obtained with an ultralow detection limit of 7.63 × 10(-14)M (S/N=3). In addition, the MIP-modified electrode (MIP/NPAMR) was successfully employed to test DA in serum and brain samples.
Collapse
|
64
|
Li L, Wang X, Liu G, Wang Z, Wang F, Guo X, Wen Y, Yang H. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application. NANOTECHNOLOGY 2015; 26:445704. [PMID: 26469539 DOI: 10.1088/0957-4484/26/44/445704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core-shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H2O2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R(2) = 0.990). This sensor has been applied to detect the trace H2O2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility.
Collapse
Affiliation(s)
- Li Li
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
65
|
A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes. Biosens Bioelectron 2015; 73:214-220. [DOI: 10.1016/j.bios.2015.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/31/2022]
|
66
|
Teng Y, Fan L, Dai Y, Zhong M, Lu X, Kan X. Electrochemical sensor for paracetamol recognition and detection based on catalytic and imprinted composite film. Biosens Bioelectron 2015; 71:137-142. [DOI: 10.1016/j.bios.2015.04.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/13/2023]
|
67
|
Li Y, Zhao X, Li P, Huang Y, Wang J, Zhang J. Highly sensitive Fe 3 O 4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal Chim Acta 2015; 884:106-13. [DOI: 10.1016/j.aca.2015.05.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/26/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022]
|
68
|
Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol–gel film. Food Chem 2015; 177:37-42. [DOI: 10.1016/j.foodchem.2014.12.097] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022]
|
69
|
Nezhadali A, Mojarrab M. Fabrication of an electrochemical molecularly imprinted polymer triamterene sensor based on multivariate optimization using multi-walled carbon nanotubes. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
70
|
Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron 2015; 67:121-8. [DOI: 10.1016/j.bios.2014.07.053] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/13/2023]
|
71
|
Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens Bioelectron 2015; 66:490-6. [DOI: 10.1016/j.bios.2014.12.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023]
|
72
|
Zhou M, Deng Y, Liang K, Liu X, Wei B, Hu W. One-step route synthesis of active carbon@La2NiO4/NiO hybrid coatings as supercapacitor electrode materials: Significant improvements in electrochemical performance. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
73
|
Wu LN, Tan YL, Wang L, Sun SN, Qu ZY, Zhang JM, Fan YJ. Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1455-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Zhong M, Teng Y, Pang S, Yan L, Kan X. Pyrrole–phenylboronic acid: A novel monomer for dopamine recognition and detection based on imprinted electrochemical sensor. Biosens Bioelectron 2015; 64:212-8. [DOI: 10.1016/j.bios.2014.08.083] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
75
|
Yu GF, Pan W, Yu M, Han WP, Zhang JC, Zhang HD, Long YZ. Electrical conduction mechanism of an individual polypyrrole nanowire at low temperatures. NANOTECHNOLOGY 2015; 26:045703. [PMID: 25557116 DOI: 10.1088/0957-4484/26/4/045703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conducting polypyrrole (PPY) nanowires doped with p-toluene sulfonamide (PTSA) were synthesized by a template-free self-assembly method. Electrical transport characteristics, i.e. current-voltage (I-V) behavior, of an individual PPY/PTSA nanowire have been explored in a wide temperature range from 300 down to 40 K. The fitting results of I-V curves indicated that the electrical conduction mechanism can be explained by the space-charge-limited current (SCLC) theory from 300 down to 100 K. In this temperature range, traps play an important role for this non-crystalline system. The corresponding trap energy and trap concentration have also been calculated based on the SCLC theory. Interestingly, there is no trap at 160 K, different from other temperatures. The obtained carrier mobility for the polymer nanowires is 0.964 cm(2) V(-1) s(-1) on the basis of trap free SCLC theory. In the temperature range of 80-40 K, little current can flow through the nanowire especially at lower voltages, however, the current follows the equation I ∞ (V/Vt-1)(ζ) at higher bias, which could be attributed to Coulomb blockade effect. Additionally, the differential conductance dI/dV curves also show some clear Coulomb oscillations.
Collapse
Affiliation(s)
- Gui-Feng Yu
- Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071, People's Republic of China. College of Physics, Qingdao University, Qingdao 266071, People's Republic of China. College of Science and Information, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
76
|
Zhong M, Dai Y, Fan L, Lu X, Kan X. A novel substitution -sensing for hydroquinone and catechol based on a poly(3-aminophenylboronic acid)/MWCNTs modified electrode. Analyst 2015; 140:6047-53. [DOI: 10.1039/c5an01112d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel electrochemical sensor prepared by electropolymerized aminophenylboronic acid presented a dual-signal for sensitive and selective catechol detection.
Collapse
Affiliation(s)
- Min Zhong
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Yunlong Dai
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Limei Fan
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Xiaojing Lu
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Xianwen Kan
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P. R. China
| |
Collapse
|
77
|
Radi AE, Abd-Elaziz I. A halofuginone electrochemical sensor based on a molecularly imprinted polypyrrole coated glassy carbon electrode. ANALYTICAL METHODS 2015; 7:8152-8158. [DOI: 10.1039/c5ay01368b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this work, a novel and selective polypyrrole (PPy) electropolymerized molecularly imprinted electrochemical sensor (PPy-MIP) for halofuginone (HFG) determination was developed.
Collapse
Affiliation(s)
- Abd-Elgawad Radi
- Department of Chemistry
- Faculty of Science
- Dumyat University
- 34517 Dumyat
- Egypt
| | - Ismael Abd-Elaziz
- Department of Chemistry
- Faculty of Science
- Dumyat University
- 34517 Dumyat
- Egypt
| |
Collapse
|
78
|
Ghadimi H, Mahmoudian MR, Basirun WJ. A sensitive dopamine biosensor based on ultra-thin polypyrrole nanosheets decorated with Pt nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra03521j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Pt/UltraPPy modified glassy carbon electrode is a highly sensitive new sensor for the detection of dopamine.
Collapse
Affiliation(s)
- Hanieh Ghadimi
- Department of Chemistry
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - M. R. Mahmoudian
- Department of Chemistry
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Wan Jefrey Basirun
- Department of Chemistry
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| |
Collapse
|
79
|
Rezaei B, Khalili Boroujeni M, Ensafi AA. Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode. Biosens Bioelectron 2014; 60:77-83. [DOI: 10.1016/j.bios.2014.03.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
|
80
|
Radi AE, El-Naggar AE, Nassef HM. Molecularly imprinted polymer based electrochemical sensor for the determination of the anthelmintic drug oxfendazole. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
81
|
Huang D, Cheng Y, Xu H, Zhang H, Sheng L, Xu H, Liu Z, Wu H, Fan S. The determination of uric acid in human body fluid samples using glassy carbon electrode activated by a simple electrochemical method. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2614-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Kamalzadeh Z, Shahrokhian S. Electrochemical determination of atorvastatin on nano-scaled polypyrrole film. Bioelectrochemistry 2014; 98:1-10. [DOI: 10.1016/j.bioelechem.2014.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
|
83
|
Molecularly imprinted sensor based on o-aminophenol for the selective determination of norepinephrine in pharmaceutical and biological samples. Talanta 2014; 125:167-73. [DOI: 10.1016/j.talanta.2014.02.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/20/2022]
|
84
|
Wang Q, Paim LL, Zhang X, Wang S, Stradiotto NR. An Electrochemical Sensor for Reducing Sugars Based on a Glassy Carbon Electrode Modified with Electropolymerized Molecularly Imprinted Poly-o-phenylenediamine Film. ELECTROANAL 2014. [DOI: 10.1002/elan.201400114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
85
|
Qian T, Yu C, Zhou X, Ma P, Wu S, Xu L, Shen J. Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosens Bioelectron 2014; 58:237-41. [PMID: 24657643 DOI: 10.1016/j.bios.2014.02.081] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 11/29/2022]
Abstract
A novel electrochemical sensor using the molecularly imprinted (MIP) oxygen-containing polypyrrole (PPy) decorated carbon nanotubes (CNTs) composite was proposed for in vivo detection of dopamine (DA). The prepared sensor exhibits a remarkable sensitivity of (16.18μA/μM) with a linear range of 5.0×10(-11)-5.0×10(-6)M and limit of detection as low as 1.0×10(-11)M in the detection of DA, which might be due to the plenty cavities for binding DA through π-π stacking between aromatic rings and hydrogen bonds between amino groups of DA and oxygen-containing groups of the novel PPy.
Collapse
Affiliation(s)
- Tao Qian
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Chenfei Yu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Peipei Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shishan Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jian Shen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210046, China.
| |
Collapse
|
86
|
Liu R, Sha M, Jiang S, Luo J, Liu X. A facile approach for imprinting protein on the surface of multi-walled carbon nanotubes. Talanta 2014; 120:76-83. [DOI: 10.1016/j.talanta.2013.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 11/26/2022]
|
87
|
A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@sol-gel@gold nanoparticles/pencil graphite electrode. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.056] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
88
|
Jiang L, Gu S, Ding Y, Jiang F, Zhang Z. Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. NANOSCALE 2014; 6:207-214. [PMID: 24201458 DOI: 10.1039/c3nr03620k] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 μM for AC and 0.06 to 10 μM for PCT with high sensitivities of 54,295.82 μA mM(-1) cm(2) for AC and 21,344.66 μA mM(-1) cm(2) for PCT, respectively. Moreover, the practical applicability was validated to be reliable and desirable in pharmaceutical detections. The excellent results showed the promise of the proposed preparation strategy of EGR-transition metal oxide nanocomposite in the field of electroanalytical chemistry.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China.
| | | | | | | | | |
Collapse
|
89
|
Huang WR, Chen YL, Lee CY, Chiu HT. Fabrication of gold/polypyrrole core/shell nanowires on a flexible substrate for molecular imprinted electrochemical sensors. RSC Adv 2014. [DOI: 10.1039/c4ra11774c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gold/polypyrrole core/shell nanowires electrochemically grown on flexible substrates are used as molecular imprinted polymer biosensors for dopamine detection.
Collapse
Affiliation(s)
- Wei-Ren Huang
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Yu-Liang Chen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Chi-Young Lee
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu, Republic of China
| | - Hsin-Tien Chiu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| |
Collapse
|
90
|
Liu K, Pang H, Zhang J, Huang H, Liu Q, Chu Y. Synthesis and characterization of a highly stable poly (3,4-ethylenedioxythiophene)-gold nanoparticles composite film and its application to electrochemical dopamine sensors. RSC Adv 2014. [DOI: 10.1039/c3ra45859h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
91
|
Ajami N, Bahrami Panah N, Danaee I. Oxytetracycline nanosensor based on poly-ortho-aminophenol/multi-walled carbon nanotubes composite film. IRANIAN POLYMER JOURNAL 2013. [DOI: 10.1007/s13726-013-0207-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
92
|
Shekarchizadeh H, Ensafi AA, Kadivar M. Selective determination of sucrose based on electropolymerized molecularly imprinted polymer modified multiwall carbon nanotubes/glassy carbon electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3553-61. [DOI: 10.1016/j.msec.2013.04.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
93
|
Zhu A, Xu G, Li L, Yang L, Zhou H, Kan X. Sol-Gel Imprinted Polymers Based Electrochemical Sensor for Paracetamol Recognition and Detection. ANAL LETT 2013. [DOI: 10.1080/00032719.2012.753607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
94
|
Hong S, Lee LYS, So MH, Wong KY. A Dopamine Electrochemical Sensor Based on Molecularly Imprinted Poly(acrylamidophenylboronic acid) Film. ELECTROANAL 2013. [DOI: 10.1002/elan.201200631] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
95
|
Zeng Y, Zhou Y, Kong L, Zhou T, Shi G. A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens Bioelectron 2013; 45:25-33. [PMID: 23454339 DOI: 10.1016/j.bios.2013.01.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/12/2013] [Accepted: 01/21/2013] [Indexed: 11/19/2022]
Abstract
A novel imprinting route based on graphene oxide (GO) was proposed for preparing a composite of SiO2-coated GO and molecularly imprinted polymers (GO/SiO2-MIPs). In this route, SiO2-coated GO sheets were synthesized in a water-alcohol mixture with sol-gel technique. Prior to polymerization, the vinyl groups were introduced onto the surface of GO/SiO2 through chemical modification with γ-methacryloxypropyl trimethoxysilane (γ-MAPS), which can direct the selective polymerization on the GO/SiO2 surface. Then a novel composite of GO/SiO2-MIPs was successfully obtained by the copolymerization in presence of vinyl groups functionalized GO/SiO2, dopamine (DA), methacrylic acid and ethylene glycol dimethacrylate. The GO/SiO2-MIPs composite was characterized by FTIR, TGA, Raman spectroscopy, SEM and AFM. The properties such as special binding, adsorption dynamics and selective recognition ability using differential pulse voltammetry (DPV) were evaluated. The DPV current response of GO/SiO2-MIPs sensor was nearly 3.2 times that of the non-imprinted polymers (NIPs). In addition, the GO/SiO2-MIPs sensor could recognize DA from its relatively similar molecules of norepinephrine and epinephrine, while the sensors based on GO/SiO2-NIPs and vinyl groups functionalized GO/SiO2 did not have the ability. The GO/SiO2-MIPs sensor had a wide linear range over DA concentration from 5.0 × 10(-8) to 1.6 × 10(-4)M with a detection limit of 3.0 × 10(-8)M (S/N=3). The sensor based on this novel imprinted composite was applied to the determination of DA in injections and human urine samples with satisfactory results.
Collapse
Affiliation(s)
- Yanbo Zeng
- Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 500 Dongchuan Road Shanghai 200241, PR China
| | | | | | | | | |
Collapse
|
96
|
|
97
|
Gu L, Jiang X, Liang Y, Zhou T, Shi G. Double recognition of dopamine based on a boronic acid functionalized poly(aniline-co-anthranilic acid)–molecularly imprinted polymer composite. Analyst 2013; 138:5461-9. [DOI: 10.1039/c3an00845b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
98
|
Yuan J, Wen D, Gaponik N, Eychmüller A. Enzyme-Encapsulating Quantum Dot Hydrogels and Xerogels as Biosensors: Multifunctional Platforms for Both Biocatalysis and Fluorescent Probing. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
99
|
Yuan J, Wen D, Gaponik N, Eychmüller A. Enzyme-Encapsulating Quantum Dot Hydrogels and Xerogels as Biosensors: Multifunctional Platforms for Both Biocatalysis and Fluorescent Probing. Angew Chem Int Ed Engl 2012; 52:976-9. [DOI: 10.1002/anie.201205791] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/06/2012] [Indexed: 12/21/2022]
|
100
|
Li J, Li S, Wei X, Tao H, Pan H. Molecularly imprinted electrochemical luminescence sensor based on signal amplification for selective determination of trace gibberellin A3. Anal Chem 2012; 84:9951-5. [PMID: 23101695 DOI: 10.1021/ac302401s] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new molecularly imprinted electrochemical luminescence (MIP-ECL) sensor was developed for Gibberellin A3 (GA3) determination. This sensor is based on competitive binding between the GA3 and the Rhodamine B (RhB)-labeled GA3 (RhB-GA3) to the MIP film. After the competitive binding, the residual RhB-GA3 on the MIP was electro-oxidized to produce RhB oxide, which could greatly amplify the weak electrochemiluminescence (ECL) signal of luminol. The ECL intensity decreased when the RhB-GA3 was replaced by GA3 molecules in the samples. Accordingly, GA3 was determined in the concentration range from 1 × 10(-11) to 3 × 10(-9) mol/L with a detection limit of 3.45 × 10(-12) mol/L. The sensor shows high sensitivity and selectivity, wide response range, good accuracy, and fast response. Beer samples were assayed by using the sensors, and the recoveries ranging from 96.0% to 103.2% were obtained.
Collapse
Affiliation(s)
- Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China.
| | | | | | | | | |
Collapse
|