51
|
Honda R, Tachi C, Noguchi M, Yamamoto-Ikemoto R, Watanabe T. Fate and seasonal change of Escherichia coli resistant to different antibiotic classes at each stage of conventional activated sludge process. JOURNAL OF WATER AND HEALTH 2020; 18:879-889. [PMID: 33328360 DOI: 10.2166/wh.2020.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the impact of each treatment stage of the activated sludge process on the fate of antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs). Wastewater and sludge samples were collected monthly at each stage of a commercial-scale WWTP. After 20-25 strains of indicator Escherichia coli were isolated from each sample on Chromocult Coliform Agar, antibiotic resistance of the isolates to amoxicillin (AMX), ciprofloxacin (CIP), norfloxacin (NFX), kanamycin (KM), sulfamethoxazole/trimethoprim (ST) and tetracycline (TC) were tested with the Kirby-Bauer disk diffusion method. As a result, activated sludge in the aeration tank and return sludge had higher abundance of antibiotic resistant E. coli than influent wastewater and secondary treatment effluent. AMX resistant E. coli was enriched in return sludge at the secondary clarifier. Higher temperature was also likely to cause an increase of AMX resistant E. coli in sludge. The antibiotic resistance profile of E. coli in secondary treatment effluent was more dependent on activated sludge than influent wastewater. These results suggested that activated sludge in WWTP possibly serves as a reservoir of ARB, and that behavior of ARB in WWTP differs by antibiotic classes.
Collapse
Affiliation(s)
- Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan E-mail: ; Department of Civil and Environmental Engineering, University of California, Los Angeles, USA
| | - Chihiro Tachi
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Mana Noguchi
- Faculty of Agriculture, Ibaraki University, Inashiki, Japan
| | - Ryoko Yamamoto-Ikemoto
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan E-mail:
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| |
Collapse
|
52
|
Wu N, Xie S, Zeng M, Xu X, Li Y, Liu X, Wang X. Impacts of pile temperature on antibiotic resistance, metal resistance and microbial community during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140920. [PMID: 32711322 DOI: 10.1016/j.scitotenv.2020.140920] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/27/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The impact of pile temperature on the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs) and mobile genetic elements (MGEs) during aerobic composting was not fully explored. Here, three composting piles were tested with different maximum temperature control. A total of 211 ARGs, 9 MRGs and 44 MGEs were observed. After 42 days, the numbers and the total abundances of detected genes were generally decreased (3.8%-50.0% and 25.4%-66.0%, respectively) in three treatments, except for the total abundance of MRGs (increased by 82.2%-500.5%). Higher pile temperature substantially stimulated the attenuation of gene diversity, but had no significant impact on promoting the decline in total abundances. For certain gene subtypes, higher temperature remarkably promoted their removal or suppressed their rebounding during maturation phase. The erm(F), sul1 and floR were potential indicators of ARGs during composting. The MGEs IS26, int1, intl2, IncP_oriT and IncQ_oriT acted as crucial hubs for ARGs and MRGs. Genera Acinetobacter, Pseudomonas, Corynebacterium_1 and Proteiniphilum were major potential hosts for multiple genes. The ARG, MRG and MGE profiles were mainly driven by the joint effect of environmental factors and microbial community.
Collapse
Affiliation(s)
- Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Shiyu Xie
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Yan Li
- Tianjin Institute of Agricultural Resources and Environment, Tianjin 300192, PR China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|
53
|
Cui P, Bai Y, Li X, Peng Z, Chen D, Wu Z, Zhang P, Tan Z, Huang K, Chen Z, Liao H, Zhou S. Enhanced removal of antibiotic resistance genes and mobile genetic elements during sewage sludge composting covered with a semi-permeable membrane. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122738. [PMID: 32361132 DOI: 10.1016/j.jhazmat.2020.122738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Transmission of antibiotic resistance genes (ARGs) via air media, such as particulate matter, has been intensively investigated due to human exposure through inhalation. However, whether particulate matter originating from the atmospheric environment of composting plants can impact ARG abundance during composting is unknown. Here, we investigated the effects of the atmospheric environment of composting plants on ARG abundance during sewage sludge composting using semi-permeable membrane-covered thermophilic composting (smTC) and conventional thermophilic composting (cTC). After smTC treatment, the total abundances of ARGs and mobile genetic elements (MGEs) decreased by 42.1 % and 38.1 % compared with those of the initial phase, respectively, but they increased by 4.5- and 1.6-fold after cTC, respectively. This result suggested that smTC was more efficient at decreasing ARGs and MGEs than cTC, mainly due to a significant reduction in bacterial contamination from the atmospheric environment of composting plants that accelerated the resurgence of ARGs and MGEs. Furthermore, culture experiments demonstrated that the abundance and diversity of antibiotic-resistant bacteria during the mature phase of smTC were also significantly (P < 0.05) lower than those in the cTC treatment. Thus, covering composting with a semi-permeable membrane could decrease the risk of ARGs spreading.
Collapse
Affiliation(s)
- Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yudan Bai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Peng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Donghua Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhubiao Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peijie Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihan Tan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kailong Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
54
|
Chen YR, Guo XP, Niu ZS, Lu DP, Sun XL, Zhao S, Hou LJ, Liu M, Yang Y. Antibiotic resistance genes (ARGs) and their associated environmental factors in the Yangtze Estuary, China: From inlet to outlet. MARINE POLLUTION BULLETIN 2020; 158:111360. [PMID: 32573452 DOI: 10.1016/j.marpolbul.2020.111360] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of antibiotic resistance genes (ARGs) and their associated environmental factors in estuaries are poorly understood. In this study, we comprehensively analyzed ARGs in both water and sediments from inlet to outlet of the Yangtze Estuary, China. The relative abundances of ARGs were higher in the turbidity maximum zone (TMZ) than other sites, implying that suspended particulate matter (SPM) was the major reservoir for ARGs in water. ARGs showed an increasing trend from inlet to outlet in sediments. Positively correlation between intI1 and sul1 in both water and sediments indicated that sul1 may be regulated by intI1. Correlation analysis and redundancy analysis showed that the spatial variations of estuarine ARGs were positively correlated with sample properties (e.g., temperature, SPM, pH) and chemical pollutants (e.g., heavy metals and antibiotic residues), among which chemical pollutants were the major drivers for the ARG distribution in both water and sediments.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xing-Pan Guo
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Da-Pei Lu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiao-Li Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Sai Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
55
|
Lian F, Yu W, Zhou Q, Gu S, Wang Z, Xing B. Size Matters: Nano-Biochar Triggers Decomposition and Transformation Inhibition of Antibiotic Resistance Genes in Aqueous Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8821-8829. [PMID: 32558563 DOI: 10.1021/acs.est.0c02227] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) are considered to be a type of emerging contaminant; their interaction with biochar (BC) could affect their dissemination and fate in the environment. Although adsorption of ARGs onto bulk-BC has been reported, the interaction with nanosized BC (nano-BC) is largely unknown. In this study, the interactions of a model extracellular DNA (eDNA, calf thymus DNA) and two typical ARGs (ampC and ermB) extracted from a natural river with bulk- and nano-BCs from two pyrolysis temperatures (400 and 700 °C) were investigated. Only adsorption was observed on bulk-BCs, while not only adsorption but also fragmentation of these eDNA molecules was found to occur on nano-BCs. Also, their replication was greatly inhibited by nano-BCs. The electron paramagnetic resonance results indicated that hydroxyl radicals produced from persistent free radicals (PFRs) on nano-BCs played a major role in the damage of eDNA. Moreover, the direct contact with nonradical reacting sites and PFRs on nano-BCs also contributed to the decay of eDNA. Comparatively, PFRs in bulk-BCs were difficult to be reached by eDNA because of steric hindrance and played a negligible role in destroying eDNA. These findings highlight the importance of the size effect in evaluating the reactivity and related environmental risks of PFRs on BC and improve our understanding on the interaction between ARGs and BC.
Collapse
Affiliation(s)
- Fei Lian
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wenchao Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Qixing Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shiguo Gu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
56
|
Major N, Schierstaedt J, Jechalke S, Nesme J, Ban SG, Černe M, Sørensen SJ, Ban D, Schikora A. Composted Sewage Sludge Influences the Microbiome and Persistence of Human Pathogens in Soil. Microorganisms 2020; 8:microorganisms8071020. [PMID: 32660164 PMCID: PMC7409118 DOI: 10.3390/microorganisms8071020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/03/2022] Open
Abstract
Composted sewage sludge (CSS) gained attention as a potential fertilizer in agriculture. Application of CSS increases soil microbial activity and microbial biomass, however, it can also lead to increased chemical and microbiological risks. In this study, we performed microcosm experiments to assess how CSS reshapes the microbial community of diluvial sand (DS) soil. Further, we assessed the potential of CSS to increase the persistence of human pathogens in DS soil and the colonization of Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt). The results revealed that CSS substantially altered the prokaryotic community composition. Moreover, addition of CSS increased the persistence of Salmonella enterica serovar Typhimurium strain 14028s and S.enterica serovar Senftenberg in DS soil. However, the enhanced persistence in soil had no impact on the colonization rate of B.rapa grown on soil inoculated with Salmonella. We detected Salmonella in leaves of 1.9% to 3.6% of plants. Addition of CSS had no impact on the plant colonization rate. The use of sewage sludge composts is an interesting option. However, safety measures should be applied in order to avoid contamination of crop plants by human pathogens.
Collapse
Affiliation(s)
- Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
- Correspondence: (N.M.); (A.S.)
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany;
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany;
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (J.N.); (S.J.S.)
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
| | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
| | - Søren J. Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (J.N.); (S.J.S.)
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
- Correspondence: (N.M.); (A.S.)
| |
Collapse
|
57
|
Wang L, Wang J, Wang J, Zhu L, Conkle JL, Yang R. Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122334. [PMID: 32092657 DOI: 10.1016/j.jhazmat.2020.122334] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Composted livestock and poultry manure, which may contain antibiotic resistance genes (ARGs), is widely used as natural fertilizer in China. But the influence of soil types on ARGs is not well characterized, particularly at greenhouse sites with long-term manure application. We investigated the distribution of ARGs in the cinnamon, fluvo-aquic and saline-alkali soils in greenhouse of Yellow River Delta region, China. A total of 193 ARGs subtypes were detected, with multidrug and aminoglycoside resistance genes as the most universal ARGs subtypes. Soil types influenced the ARGs distribution, where higher levels of diversity and relative abundance of ARGs in the fluvo-aquic and saline-alkali soils compared with those in the cinnamon soils. Among abiotic factors, sand, pH and Zn contributed more to the pattern of ARGs in the cinnamon soils, whereas sand and Cd, clay and Pb contributed the most in the fluvo-aquic and saline-alkali soils respectively. Furthermore, positive correlations between the relative abundances of ARGs and mobile genetic elements (MGEs) in the fluvo-aquic soils, suggesting higher dissemination potential of ARGs in this type of soil. Overall, MGEs played a positive primary role in the ARGs distribution in greenhouse soil than heavy metal co-selection and soil physicochemical properties.
Collapse
Affiliation(s)
- Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jeremy L Conkle
- Department of Physical & Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, United States.
| | - Rui Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
58
|
Du L, Zhao Y, Wang C, Zhang H, Chen Q, Zhang X, Zhang L, Wu J, Wu Z, Zhou Q. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137765. [PMID: 32172121 DOI: 10.1016/j.scitotenv.2020.137765] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in swine wastewater have an irreversible impact on the surrounding water and soil ecosystems. Herein, integrated vertical-flow constructed wetlands (IVCWs) were constructed to assess the effects of zeolite and plants on the removal of sulfonamides (SMs), tetracyclines (TCs), and related ARGs (tetW, tetO, tetM, sul I, sul II, and sul III) from digested swine wastewater. The microorganism community structure was also investigated. Results showed that IVCWs with a zeolite substrate and plant system (ZP) exhibited a favorable removal performance for N, antibiotics, and ARGs at 97.9%, 95.0%, and 95.1%, respectively. Moreover, zeolite systems showed higher adsorption of SMs, lower adsorption of TCs. The higher removal rate of antibiotics in ZP systems might be due to the enhanced microbial degradation with the enrichment of Pseudomonas, Acinetobacter, and Bacillus in zeolite. Furthermore, Arundo donax had limited impact on antibiotics removal and was not conducive to the removal of ARGs. The absolute abundances of sul(I), sul(II), sul(III), tet(M), and tet(O) were significantly positively correlated with the absolute abundance of 16S rDNA. However, no significant correlation was found between the concentration of antibiotics and the abundance of related ARGs in the effluent.
Collapse
Affiliation(s)
- Lu Du
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yuqing Zhao
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Chuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hongpei Zhang
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qianru Chen
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Xia Zhang
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Liping Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Junmei Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
59
|
Lu W, Wang M, Wu J, Jiang Q, Jin J, Jin Q, Yang W, Chen J, Wang Y, Xiao M. Spread of chloramphenicol and tetracycline resistance genes by plasmid mobilization in agricultural soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113998. [PMID: 31991360 DOI: 10.1016/j.envpol.2020.113998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Spread of antibiotic resistance genes (ARGs) poses a worldwide threat to public health and food safety. However, ARG spread by plasmid mobilization, a broad host range transfer system, in agricultural soil has received little attention. Here, we investigated the spread of chloramphenicol resistance gene (CRG) and tetracycline resistance gene (TRG) in agricultural soil by mobilization of pSUP106 under different conditions, including different concentrations of nutrients, temperatures, soil depths, rhizosphere soils, and soil types. The number of resistant bacteria isolated in non-sterilized soil from the experiments was approximately 104 to 107 per gram of soil, belonging to 5-10 species from four genera, including nonpathogen, opportunistic pathogen, pathogen bacteria, and gram-positive and gram-negative bacteria, depending on the experiment conditions. In sterilized soil, higher levels of nutrients and higher temperatures promoted plasmid mobilization and ARG expression. Topsoil and deep soil might not support the spread of antibiotic resistance, while ARG dissemination by plasmid mobilization was better supported by maize rhizosphere and loam soils. All these factors might change bacterial growth and the activity of bacteria and lead to the above influence. Introduction of only the donor and helper, or the donor alone also resulted in the transfer of ARGs and large numbers of antibiotic resistant bacteria (ARB), indicating that some indigenous bacteria contain the elements necessary for plasmid mobilization. Our results showed that plasmid mobilization facilitated dissemination of ARGs and ARB in soil, which led to the disturbance of indigenous bacterial communities. It is important to clear ARG dissemination routes and inhibit the spread of ARGs.
Collapse
Affiliation(s)
- Wenwei Lu
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Min Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Qiuyan Jiang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jieren Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qing Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenwu Yang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Chen
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yujing Wang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ming Xiao
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 200240, China.
| |
Collapse
|
60
|
Song M, Peng K, Jiang L, Zhang D, Song D, Chen G, Xu H, Li Y, Luo C. Alleviated Antibiotic-Resistant Genes in the Rhizosphere of Agricultural Soils with Low Antibiotic Concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2457-2466. [PMID: 31995379 DOI: 10.1021/acs.jafc.9b06634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The influence of the rhizosphere on the abundance and diversity of antibiotic resistance genes (ARGs) has been recognized but there is a lack of consensus because of broad ranges of plant species and antibiotic concentrations across different habitats and the elusive underlying mechanisms. Here, we profiled antibiotic concentrations and resistomes in the rhizosphere and bulk soils by cultivating 10 types of crops in manure-amended agricultural soils. Rhizosphere effects altered the antibiotic resistome structure, significantly increased the absolute abundance of the antibiotic resistome, and decreased their relative abundance, contrasting previous studies. Such plantation-driven variation in ARGs resulted from the boost of bacterial lineages with negative relationships with ARGs and the constraint of the potential ARG-hosts in the rhizosphere of plants cultivated in soils with low antibiotic concentrations as the selective pressure. This mechanism is not reported previously and deepens our understanding about the rhizosphere effects on ARGs.
Collapse
Affiliation(s)
- Mengke Song
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Ke Peng
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Dandan Song
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Guoen Chen
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Huijuan Xu
- The College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Yongtao Li
- Joint Institute for Environmental Research and Education , South China Agricultural University , Guangzhou 510642 , China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- Joint Institute for Environmental Research and Education , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
61
|
Liao H, Zhao Q, Cui P, Chen Z, Yu Z, Geisen S, Friman VP, Zhou S. Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting. ENVIRONMENT INTERNATIONAL 2019; 133:105203. [PMID: 31665678 DOI: 10.1016/j.envint.2019.105203] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Insufficient removal of antibiotics and antibiotic resistance genes (ARGs) from waste products can increase the risk of selection for antibiotic resistance in non-clinical environments. While composting is an efficient way to reduce ARGs, most conventional methods are ineffective at processing highly contaminated antibiotic fermentation waste. Here we explored the efficacy and underlying mechanisms of hyperthermophilic composting at removing tylosin antibiotic fermentation residues (TFR) and associated ARGs and mobile genetic elements (MGEs; plasmids, integrons and transposon). Hyperthermophilic composting removed 95.0% of TFR, 75.8% of ARGs and 98.5% of MGEs and this reduction mainly occurred after extended exposure to temperatures above 60 °C for at least 6 days. Based on sequencing and culture-dependent experiments, reduction in ARGs and MGEs was strongly associated with a decrease in the number of bacterial taxa that were initially associated with ARGs and MGEs. Moreover, we found 94.1% reduction in plasmid genes abundances (ISCR1 and IncQ-oriV) that significantly correlated with reduced ARGs during the composting, which suggests that plasmids were the main carriers for ARGs. We verified this using direct culturing to show that ARGs were more often found in plasmids during the early phase of composting. Together these results suggest that hyperthermophilic composting is efficient at removing ARGs and associated resistance genes from antibiotic fermentation waste by decreasing the abundance of antibiotic resistance plasmids and associated host bacteria.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, YO10 5DD York, UK
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
62
|
Zhang J, Lu T, Wang Z, Wang Y, Zhong H, Shen P, Wei Y. Effects of magnetite on anaerobic digestion of swine manure: Attention to methane production and fate of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2019; 291:121847. [PMID: 31357044 DOI: 10.1016/j.biortech.2019.121847] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Effects of magnetite on methane production and fate of antibiotic resistance genes (ARGs) during anaerobic digestion (AD) of swine manure were investigated. Results showed that methane production was increased by maximum 16.1%, and magnetite could enhance the acetoclastic methanogenesis not hydrogenotrophic methanogenesis reflected by the functional gene quantification and microbial community analysis. The propionate degradation rate was improved, and it was syntrophic oxidized into H+/e-/CO2 for direct interspecies electron transfer (DIET) and acetate, where DIET was further enhanced by magnetite and the acetate was transformed into methane through syntrophic acetate oxidation (SAO) pathway. Magnetite mainly influenced the ARGs at the interim period of AD, where ARGs especially ermF were significantly enriched. Magnetite did not influence the total ARGs abundance at the end, although the tetM was enriched and mefA was reduced finally. Statistical analysis indicated that magnetite influenced the ARGs fate mainly through the changes of microbial community.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiedong Lu
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Ziyue Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yawei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
63
|
Xu M, Stedtfeld RD, Wang F, Hashsham SA, Song Y, Chuang Y, Fan J, Li H, Jiang X, Tiedje JM. Composting increased persistence of manure-borne antibiotic resistance genes in soils with different fertilization history. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1172-1180. [PMID: 31466157 DOI: 10.1016/j.scitotenv.2019.06.376] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Different long-term fertilization regimes may change indigenous microorganism diversity in the arable soil and thus might influence the persistence and transmission of manure-born antibiotic resistance genes (ARGs). Different manure origins and composting techniques might affect the fate of introduced ARGs in farmland. A four-month microcosm experiment was performed using two soils, which originated from the same field and applied with the same chemical fertilizer or swine manure for 26 years, to investigate the dynamics of ARGs in soil amended with manure or compost from the farm and an agro-technology company. High throughput qPCR and sequencing were applied to quantify ARGs using 144 primer sets and microorganism in soil. Fertilization history had little effect on dynamics of manure-borne ARGs in soil regardless of manure origin or composting. Very different half-lives of ARGs and mobile genetic elements from farm manure and commercial manure were observed in both soils. Composting decreased abundance of most ARGs in manure, but increased the persistence of manure-introduced ARGs in soil irrespective of fertilization history, especially for those from farm manure. These findings help understanding the fate of ARGs in manured soil and may inform techniques to mitigate ARGs transmission.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Chuang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| | - Jianbo Fan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA
| |
Collapse
|
64
|
Pu C, Yu Y, Diao J, Gong X, Li J, Sun Y. Exploring the persistence and spreading of antibiotic resistance from manure to biocompost, soils and vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:262-269. [PMID: 31229823 DOI: 10.1016/j.scitotenv.2019.06.081] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
The main avenue in which antibiotic resistance enters soils is through the application of livestock manure. However, whether antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) persist and spread to vegetables with the application of manure and manure products is still unclear. This study assessed seven kinds of cultured ARB, 221 ARGs subtypes and three transposon genes in the vegetable production chain (from manure to biocompost, soils and vegetables). Results showed that at least 80% of ARB, ARGs and transposon genes were removed after aerobic composting. However, aerobic composting did not reduce the diversity of ARGs in pig and chicken manure. A total of 19 ARGs subtypes still persisted during aerobic composting. Compared to the temperature-thermophilic stage, the number of bacteria resistant to erythromycin, the relative abundance of ARGs and IS613 increased 1.7-4.9 times at the temperature-decreasing stage. Direct application of biocompost introduced 11 ARGs subtypes to pakchoi, but these ARGs did not present in biocompost-amended soil. A transposon gene tnpA was also detected in the biocompost-amended soil, but surprisingly was found in the control vegetable. This demonstrated that the transposon gene is intrinsic in pakchoi. Bacterial community analysis and network analysis revealed that a specific genus Terrisporobacter carrying tetO, tetW ermB and tnpA persisted in the vegetable production chain, which may generate a potential risk in the following production. Our study illuminates the persistence and spreading of antibiotic resistance in the vegetable production chain which could help manage the ecological risks arising from antibiotic resistance in manure sources.
Collapse
Affiliation(s)
- Chengjun Pu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jianxiong Diao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Gong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ji Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
65
|
Chen Y, Li P, Huang Y, Yu K, Chen H, Cui K, Huang Q, Zhang J, Yew-Hoong Gin K, He Y. Environmental media exert a bottleneck in driving the dynamics of antibiotic resistance genes in modern aquatic environment. WATER RESEARCH 2019; 162:127-138. [PMID: 31260828 DOI: 10.1016/j.watres.2019.06.047] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 05/26/2023]
Abstract
With the rapid construction of dams worldwide, reservoir system has become a representation of modern aquatic environment. However, the profiles of antibiotic resistance genes (ARGs) and associated factor influencing their dynamics in modern aquatic environment (e.g., water phase, sediment phase, and soil phase) are largely unknown. Here, we comprehensively characterized the diversity, abundance, distribution of ARGs in a large drinking water reservoir using high-throughput quantitative PCR, as well as ranked the factors (e.g., mobile genetic elements (MGEs), bacteria community, bacterial biomass, antibiotics, and basic properties) influencing the profiles of ARGs on the basis of structural equation models (SEMs). Water phase was prone to harbor more diverse ARGs as compared to sediment phase and soil phase, and soil phase in drawdown area was a potential reservoir and hotspot for ARGs. Environmental media partially affected the ARG diversity in modern aquatic environment, while it observably influenced the distributions of ARGs and MGEs and their co-occurrence patterns. The pathways for the proliferation and spread of ARGs in water phase were both the horizontal gene transfer (HGT) and vertical gene transfer (VGT), while the dominant pathways in sediment phase and soil phase were the HGT and VGT, respectively. The SEMs demonstrated that MGEs contributed the most to drive the ARG dynamics in both water phase and sediment phase, while the most dominant factor for this in soil phase was bacterial community. Overall, environmental media exerted a bottleneck in driving the dynamics of ARGs in modern aquatic environment probably via diversifying the MGEs, bacterial community, bacterial biomass, antibiotics and basic properties.
Collapse
Affiliation(s)
- Yihan Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuansheng Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore, 117576, Singapore
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qianli Huang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore, 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
66
|
Zhu YG, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok YS, Capon A, Banwart S. Soil biota, antimicrobial resistance and planetary health. ENVIRONMENT INTERNATIONAL 2019; 131:105059. [PMID: 31374443 DOI: 10.1016/j.envint.2019.105059] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 05/07/2023]
Abstract
The concept of planetary health acknowledges the links between ecosystems, biodiversity and human health and well-being. Soil, the critical component of the interconnected ecosystem, is the most biodiverse habitat on Earth, and soil microbiomes play a major role in human health and well-being through ecosystem services such as nutrient cycling, pollutant remediation and synthesis of bioactive compounds such as antimicrobials. Soil is also a natural source of antimicrobial resistance, which is often termed intrinsic resistance. However, increasing use and misuse of antimicrobials in humans and animals in recent decades has increased both the diversity and prevalence of antimicrobial resistance in soils, particularly in areas affected by human and animal wastes, such as organic manures and reclaimed wastewater, and also by air transmission. Antimicrobials and antimicrobial resistance are two sides of the sword, while antimicrobials are essential in health care; globally, antimicrobial resistance is jeopardizing the effectiveness of antimicrobial drugs, thus threatening human health. Soil is a crucial pathway through which humans are exposed to antimicrobial resistance determinants, including those harbored by human pathogens. In this review, we use the nexus of antimicrobials and antimicrobial resistance as a focus to discuss the role of soil in planetary health and illustrate the impacts of soil microbiomes on human health and well-being. This review examines the sources and dynamics of antimicrobial resistance in soils and uses the perspective of planetary health to track the movement of antimicrobial-resistance genes between environmental compartments, including soil, water, food and air.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi Zhao
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, DK-1871 Frederiksberg C, Denmark
| | - Dong Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Michael Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Josep Penuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Yong Sik Ok
- Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Anthony Capon
- Planetary Health Platform, University of Sydney, Sydney, NSW, Australia
| | - Steve Banwart
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
67
|
Chen Y, Huang H, Zheng X. Fate of sulfonamide resistance genes during sludge anaerobic fermentation: Roles of sludge components and fermentation pHs. BIORESOURCE TECHNOLOGY 2019; 289:121636. [PMID: 31226672 DOI: 10.1016/j.biortech.2019.121636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
This study assessed potential effects of two neglected factors (sludge components and pH values) on the fate of sulfonamide (sul) resistance genes during sludge anaerobic fermentation. It was found that sludge with different contents of protein, carbohydrate and humic acid caused no significant changes in the abundances of sul genes. Nevertheless, sul genes were sensitive to pHs (4-10), and the maximum attenuations (0.8-1.1 log unit) were obtained at pH 10. Mechanism exploration indicated that pHs drove the community evolution of sulfonamide resistant bacteria (SRB), most of which were affiliated to the pH-enriched phyla but not the pH-enriched dominant genera. In addition, the relative abundances of SRB were decreased under both acidic and alkaline conditions. Furthermore, the abundances of intI 1 as well as the sul-carrying abilities of plasmid and extracellular DNA were all reduced at test pHs, indicating that the potential of horizontal gene transfer among bacteria was restricted.
Collapse
Affiliation(s)
- Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
68
|
Duan M, Gu J, Wang X, Li Y, Zhang R, Hu T, Zhou B. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:114-122. [PMID: 31078018 DOI: 10.1016/j.ecoenv.2019.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 05/21/2023]
Abstract
Livestock manure is generally dumped directly onto open soil or used to enhance the soil fertility. However, there are growing concerns regarding the impact of these practices on the development and dissemination of antibiotic resistance genes (ARGs) in soil. In this study, we sampled soils treated with manure from 10 large-scale farms (pig, beef cattle, and chicken farms) and those from farmland without manure. The results showed that the abundance of ARGs was more than 2.62 times higher in the soil samples treated with livestock manure than the farmland soil without manure. The abundances of ARGs and intI1 in all samples were in the following order: pig farms > chicken farms > beef cattle farms. tetX, sul1, sul2, and tetG were the dominant ARGs in farm soil. The concentrations of tetracycline antibiotics and sulfonamide antibiotics were 0.15-4.76 mg/kg and 0-2.62 mg/kg, respectively, in the soils treated with manure, which were higher than those in farmland soils without manure. Redundancy analysis (P < 0.05) and network analysis (P < 0.01, R > 0.80) demonstrated that copper, zinc, actinomycetes, and tetracycline antibiotics were the main factors that affected the distribution of ARGs in soils treated with livestock manure.
Collapse
Affiliation(s)
- Manli Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Ranran Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Beibei Zhou
- State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
69
|
Zhang J, Sui Q, Lu T, Zhong H, Shen P, Wei Y. Sludge bio-drying followed by land application could control the spread of antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2019; 130:104906. [PMID: 31203029 DOI: 10.1016/j.envint.2019.104906] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The process of sludge bio-drying has been adopted in response to the increasing amount of residual sewage sludge. It has been demonstrated that sludge bio-drying effectively reduces both antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), whereas ermF, tetX, and sulII become enriched in response to the dynamic development of the microbial community. The present study further demonstrated that the land application of sludge bio-drying products under current application rate did not cause an increase in the abundance of quantified ARGs in the soil but the persistence of ARB should be paid attention. Although land application introduced ermF, tetX, and tetG into the soil, these soon decreased to control levels. Furthermore, the decay rate varied between soil types, with red soil being the most persistent based on kinetics modeling. The fate of ARGs could also be attributed to the dynamics of the microbial community during land application, and the genus Parasegetibacter, which can degrade extracellular DNA, might play a key role in the control of ARGs. In summary, sludge bio-drying following land application could constitute an effective means of controlling the spread of ARGs, and microbial community changes contributed the most to the fate of the ARGs during the entire treatment chain (residual sewage sludge → bio-drying process → land application).
Collapse
Affiliation(s)
- Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Tiedong Lu
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
70
|
Shi T, Tan L, Fu H, Wang J. Application of molecular imprinting polymer anchored on CdTe quantum dots for the detection of sulfadiazine in seawater. MARINE POLLUTION BULLETIN 2019; 146:591-597. [PMID: 31426197 DOI: 10.1016/j.marpolbul.2019.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 05/08/2023]
Abstract
A molecularly imprinted polymer (MIP) anchored on the surface of CdTe quantum dots (QDs) was fabricated and used as a fluorescent probe for sulfadiazine (SDZ) detection in seawater. CdTe QDs was used as photoluminescent material, SDZ as the template, 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethyl orthosilicate (TEOS) as the cross-linking agent. Characterizations of MIP-QDs were analyzed by Fourier transform infrared (FT-IR), Transmission electron microscopy (TEM) and Scanning electron microscope (SEM). The conditions were optimized for the detection of MIP-QDs to SDZ. The mechanism of fluorescence quenching was studied by UV-Vis absorption spectroscopy and fluorescence spectroscopy. Under optimal conditions, the fluorescence intensity of MIP-QDs decreased linearly between 4- and 20 μM SDZ with a good correlation coefficient of 0.995. The limit of detection is 0.67 μM and the recovery is between 91.8 and 109.4% with RSD lower than 3.9%. These results indicated that MIP-QDs for SDZ detection in seawater was developed successfully.
Collapse
Affiliation(s)
- Tian Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liju Tan
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Hailu Fu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
71
|
Lu T, Zhang J, Wei Y, Shen P. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2019; 287:121393. [PMID: 31100564 DOI: 10.1016/j.biortech.2019.121393] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 05/16/2023]
Abstract
Iron-based materials have been suggested as environmentally-friendly additives that can enhance methane production during anaerobic digestion (AD). In this study, the effects of ferric oxide (Fe2O3) addition on methane production were investigated during swine manure AD. In addition, the effects of Fe2O3 addition on the AD ternary pH buffer system and microbial community were evaluated. Fe2O3 could improve the accumulative methane production by maximum 11.06% when adding 75 mmol of Fe2O3. Higher methane production could be attributed to the enhancement of direct interspecies electron transfer (DIET) and the formation of Fe-S precipitates, but not the addition of Fe2O3 as a nutrient. Furthermore, Fe2O3 addition enhanced methanogenesis rather than acetogenesis, as evinced by analysis of functional genes. Nevertheless, high-throughput sequence analysis of microbial community composition revealed the lack of a significant influence by Fe2O3 addition, and Fe2O3 addition did not significantly affect the ternary pH buffer system.
Collapse
Affiliation(s)
- Tiedong Lu
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China.
| |
Collapse
|
72
|
Zhu L, Zhao Y, Yang K, Chen J, Zhou H, Chen X, Liu Q, Wei Z. Host bacterial community of MGEs determines the risk of horizontal gene transfer during composting of different animal manures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:166-174. [PMID: 30995570 DOI: 10.1016/j.envpol.2019.04.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 05/12/2023]
Abstract
Mobile genetic elements (MGEs) play critical roles in transferring antibiotic resistance genes (ARGs) among different microorganisms in the environment. This study aimed to explore the fate of MGEs during chicken manure (CM) and bovine manure (BM) composting to assess horizontal transfer risks of ARGs. The results showed that the removal efficiency of MGEs during CM composting was significantly higher than that during BM composting, because the potential host bacteria of MGEs were eliminated largely during CM composting. Meanwhile, these potential host bacterial communities are significantly influenced by pH, NH4+, NO3- and total N, which can be used to regulate host bacterial communities to remove MGEs during composting. Projection pursuit regression further confirmed that composting can effectively reduce the horizontal transfer risk of ARGs, especially for CM composting. These results identified the critical roles of host bacterial communities in MGEs removal during composting of different animal manures.
Collapse
Affiliation(s)
- Longji Zhu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Kangjie Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Chen
- Beijing Tongzhou Agriculture Products Quality Inspection & Testing Center, Beijing, 101149, China
| | - Haixuan Zhou
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaomeng Chen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
73
|
Lin H, Chapman SJ, Freitag TE, Kyle C, Ma J, Yang Y, Zhang Z. Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:39-46. [PMID: 30513413 DOI: 10.1016/j.ecoenv.2018.11.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
This study provided an assessment of the environmental fate of antibiotic resistance genes (ARGs) in a Scottish grassland field repeatedly treated with different organic fertilizers. The impacts of manure, biosolids and municipal food-derived compost on the relative abundances of tetracycline ARGs (tetA, tetB, tetC, tetG and tetW), sulfonamide ARGs (sul1 and sul2) and class 1 integron-integrase gene (IntI1) in soils were investigated, with inorganic fertilizer (NPK) as a comparison. The background soil with a history of low intensity farming showed a higher total relative abundance of tet ARGs over sul ARGs, with tetracycline efflux genes occurring in a higher frequency. In all treatments, the relative abundances of most ARGs detected in soils decreased over time, especially IntI1 and tet ARGs. This general attenuation of soil ARGs is a reflection of changes in the soil microbial community, which is supported by the result that almost all the soils at the end of the experiment had different bacterial communities from the untreated soil at the beginning of the experiment. Multiple applications of organic fertilizers to some extent counteracted the decreasing trend of soil ARGs relative abundances, which resulted in higher ARGs relative abundances in comparison to NPK, either by a lesser decrease of IntI1 and tet ARGs or an increase of sul ARGs. The enhancement of existing soil ARG prevalence by organic fertilizers was strongly dependent on the organic fertilizer type and the particular ARG. Compost contained the lowest relative abundance of inherent ARGs and had the least effect on the soil ARG decrease after application. The relative increase of tet ARGs caused by biosolids was larger than that of sul ARGs, while manure caused the opposite effect. Fertilization practices did not exert effective impacts on the soil bacterial community, although it caused significant changes in the profile of the ARG pool. Organic fertilization may thus accelerate the dissemination of ARGs in soil mainly through horizontal gene transfer (HGT), consistent with the enrichment of IntI1 in organic fertilized soils.
Collapse
Affiliation(s)
- Hui Lin
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Stephen J Chapman
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, UK
| | - Thomas E Freitag
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, UK
| | - Carol Kyle
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, UK
| | - Junwei Ma
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, UK.
| |
Collapse
|
74
|
Zhang J, Wang Z, Lu T, Liu J, Wang Y, Shen P, Wei Y. Response and mechanisms of the performance and fate of antibiotic resistance genes to nano-magnetite during anaerobic digestion of swine manure. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:192-201. [PMID: 30528589 DOI: 10.1016/j.jhazmat.2018.11.106] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Swine manure is an important reservoir of environmental antibiotic resistance genes (ARGs), and anaerobic digestion (AD) is a commonly used method for swine manure treatment. In this study, the optimized dosage of nano-magnetite to enhance methane production was figured out, the changes of the fate of ARGs response to nano-magnetite were investigated, and the microbial mechanisms were deciphered through the microbial community analysis and key functional genes quantification. Results showed that nano-magnetite could improve the methane production by maximum 6.0%, the maximum daily methane production could be increased by 47.8%, and the AD time could be shortened by above 20.0% at the addition of 75 mmol. The improved performance could be associated with the enhancement of direct interspecies electron transfer (DIET) and the inhibition release due to the formation of Fe-S precipitation not the nutrition elements role of nano-magnetite, and nano-magnetite did not significantly influence the dynamics of microbial community. Nano-magnetite could enhance the methanogenesis instead of the acetogenesis reflected by the functional genes analysis, and the limited effects of nano-magnetite on the fate of ARGs could be associated with its limited influence on the microbial community which determined the fate of ARGs during AD of swine manure.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziyue Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Tiedong Lu
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
75
|
Impact of Wuyiencin Application on the Soil Microbial Community and Fate of Typical Antibiotic Resistance Genes. Sci Rep 2019; 9:4016. [PMID: 30850695 PMCID: PMC6408571 DOI: 10.1038/s41598-019-40389-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/11/2019] [Indexed: 11/08/2022] Open
Abstract
Antibiotic resistance genes (ARGs) have raised numerous concerns in recent years as emerging environmental contaminants. At present, research on environmental contamination by antibiotics focuses on medical, animal husbandry, and aquaculture fields, with few studies on environmental contamination by agricultural antibiotics in the field of plant protection. Wuyiencin is a low toxicity, high efficiency, and broad-spectrum agricultural antibiotic. It has been widely used in agricultural production and it effectively controls crop fungal diseases. In the present study, pot experiments with four soil treatments (A, B, C and D) were set up in a greenhouse to investigate the effect of the application of wuyiencin on the fate of typical ARGs and microbial community. Eight typical ARGs were detected by real-time PCR and the microbial communities were analyzed using high-throughput sequencing. The results showed that wuyiencin neither significantly influenced ARG abundance and absolute gene copy numbers, nor significantly varied microbial community among treatments. Since it only was short-term results, and the detection number of ARGs was limited, whether wuyiencin is safe or not to ecological environment when using for long-term will need further deep research.
Collapse
|
76
|
Sui Q, Zhang J, Chen M, Wang R, Wang Y, Wei Y. Fate of microbial pollutants and evolution of antibiotic resistance in three types of soil amended with swine slurry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:353-362. [PMID: 30448505 DOI: 10.1016/j.envpol.2018.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Swine waste is a reservoir of microbial pollutants, including pathogens, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB); therefore, soil fertilized with swine waste is an essential pathway for the dissemination of microbial pollutants from concentrated swine farms to the public. To rationalize the intervals of swine wastes application and investigate the effects of soil type on the occurrences of microbial pollutants and antibiotic resistance, pot experiments were conducted with three typical soils, humic acrisol, calcaric cambisols and histosols, being collected from south, northwest and northeast China (soil-R, soil-Y and soil-B, respectively). The soils were amended with swine slurry, digestate and chemical fertilizers and then conducted for 172 days. The influence of microbial pollutants and antibiotic resistance in soil posed by digestate application was similar to that of the chemical fertilizers, while swine slurry posed high risks to the soil. Soil-B which had the highest organic matter and neutral pH was least influenced by the swine slurry amendment. tetG, tetM and ermF were persistent ARGs in the slurry treated soil, and their decay rates fitted to first-order kinetics in the order soil-B> soil-Y > soil-R. Putative pathogens showed strong correlations with ARGs, suggesting a risk of dissemination. The initial 43-82 days was the active phase of microbial pollution in slurry treated soil, during which time heavy metals, moisture content, total organic carbon and the microbial community were key factors contributing to changes in antibiotic resistance. Fertilization intervals of livestock wastes should be lengthened over the ARG active phase.
Collapse
Affiliation(s)
- Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
77
|
Tong J, Tang A, Wang H, Liu X, Huang Z, Wang Z, Zhang J, Wei Y, Su Y, Zhang Y. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes. BIORESOURCE TECHNOLOGY 2019; 272:489-500. [PMID: 30391842 DOI: 10.1016/j.biortech.2018.10.079] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 05/08/2023]
Abstract
The evolution of microbial community and the fate of ARGs along different full-scale wastewater treatment processes (i.e., Anaerobic-Anoxic-Oxic, Oxidation Ditch, and Cyclic Activated Sludge System) were investigated in this study. We found that the sludges of bioreactors treating similar influent showed the similar microbial communities, independent of the treatment technologies. The horizontal gene transfer (HGT) mainly occurred in aeration tank rather that anaerobic/anoxic tank. More co-occurrence of potential pathogens and ARGs was found in wastewater than in sludge. Microbial biomass was the key driver for the fate of ARGs in wastewater, while mobile genetic elements (MGEs) was the key factor for the fate of ARGs in sludge. Combination of wastewater characteristics, microbial diversity, microbial biomass, and MGEs contributed to the variation of ARGs. Finally, it was found that enhanced nutrients removal process and tertiary treatment would benefit ARGs removal.
Collapse
Affiliation(s)
- Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anping Tang
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyan Wang
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingxin Liu
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhaohua Huang
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziyue Wang
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yanyan Su
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, Copenhagen Lyngby 2800, Denmark
| |
Collapse
|
78
|
Tong J, Lu X, Zhang J, Angelidaki I, Wei Y. Factors influencing the fate of antibiotic resistance genes during thermochemical pretreatment and anaerobic digestion of pharmaceutical waste sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1403-1413. [PMID: 30278414 DOI: 10.1016/j.envpol.2018.09.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 05/16/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in waste sludge, especially for the pharmaceutical waste sludge, presents great potential risks to human health. Although ARGs and factors affecting their spreading are of major importance for human health, the factors influencing the fate of ARGs during sludge treatment, especially for pharmaceutical sludge treatment are not yet well understood. In order to be able to minimize ARGs spreading, it is important to find what is influencing their spreading. Therefore, certain factors, such as the sludge characteristics, bacterial diversity and community composition, and mobile genetic elements (MGEs) during the advanced AD of pharmaceutical sludge with different pretreatments were studied, and their affinity with ARGs was elucidated by Spearman correlation analysis. Furthermore, multiple linear regression was introduced to evaluate the importance of the various factors. Results showed that 59.7%-88.3% of the variations in individual ARGs and total ARGs can be explained by the corresponding factors. Bacterial diversity rather than specific bacterial community composition affected the fate of ARGs, whereas alkalinity was the most important factor on ARGs among all sludge characteristics investigated in this study. Besides, 66.4% of variation of total ARGs was driven by the changes of MGEs. Multiple linear regression models also reveal the collective effect of these factors on ARGs, and the contributions of each factor impact on ARGs. This study provides more comprehension about the factors impact on the fate of ARGs during pharmaceutical sludge treatment, and offers an approach to evaluate the importance of each factor, which method could be introduced for evaluation of factors influencing ARGs during other types of sludge or wastewater treatment.
Collapse
Affiliation(s)
- Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xueting Lu
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Copenhagen Lyngby, 2800, Denmark
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|