51
|
Bai H, He LY, Gao FZ, Wu DL, Yao KS, Zhang M, Jia WL, He LX, Zou HY, Yao MS, Ying GG. Airborne antibiotic resistome and human health risk in railway stations during COVID-19 pandemic. ENVIRONMENT INTERNATIONAL 2023; 172:107784. [PMID: 36731187 PMCID: PMC9884615 DOI: 10.1016/j.envint.2023.107784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial resistance is recognized as one of the greatest public health concerns. It is becoming an increasingly threat during the COVID-19 pandemic due to increasing usage of antimicrobials, such as antibiotics and disinfectants, in healthcare facilities or public spaces. To explore the characteristics of airborne antibiotic resistome in public transport systems, we assessed distribution and health risks of airborne antibiotic resistome and microbiome in railway stations before and after the pandemic outbreak by culture-independent and culture-dependent metagenomic analysis. Results showed that the diversity of airborne antibiotic resistance genes (ARGs) decreased following the pandemic, while the relative abundance of core ARGs increased. A total of 159 horizontally acquired ARGs, predominantly confering resistance to macrolides and aminoglycosides, were identified in the airborne bacteria and dust samples. Meanwhile, the abundance of horizontally acquired ARGs hosted by pathogens increased during the pandemic. A bloom of clinically important antibiotic (tigecycline and meropenem) resistant bacteria was found following the pandemic outbreak. 251 high-quality metagenome-assembled genomes (MAGs) were recovered from 27 metagenomes, and 86 genera and 125 species were classified. Relative abundance of ARG-carrying MAGs, taxonomically assigned to genus of Bacillus, Pseudomonas, Acinetobacter, and Staphylococcus, was found increased during the pandemic. Bayesian source tracking estimated that human skin and anthropogenic activities were presumptive resistome sources for the public transit air. Moreover, risk assessment based on resistome and microbiome data revealed elevated airborne health risks during the pandemic.
Collapse
Affiliation(s)
- Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Kai-Sheng Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Mao-Sheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
52
|
Wang Y, Li H, Li Y, Guo H, Zhou J, Wang T. Metagenomic analysis revealed sources, transmission, and health risk of antibiotic resistance genes in confluence of Fenhe, Weihe, and Yellow Rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159913. [PMID: 36343807 DOI: 10.1016/j.scitotenv.2022.159913] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Rivers are important vectors and reservoirs of antibiotics resistance genes (ARGs). Information regarding transmission and health risk of ARGs in river confluence is still lacking. In this study, metagenomics was used to distinguish contributions of human activities on ARGs and human pathogenic bacteria (HPB) in confluence of Fenhe, Weihe, and Yellow Rivers. Bacitracin resistance gene and bacA were the highest in all rivers, with 1.86 × 10-2-7.26 × 10-2 and 1.79 × 10-2-9.12 × 10-2 copies/16S rRNA copies, respectively. River confluence significantly increased the abundance of ARGs, especially at the confluence of three rivers with the highest 1.53 × 10-1 copies/16S rRNA copies. Antibiotic efflux and antibiotic target alteration were the dominant resistant mechanisms in three rivers. ARGs profiles were influenced by multiple factors, with the contributions of various factors ranked as microbial communities > physicochemical factors > human activities > mobile genetic elements (MGEs). Notably, human activities and animal feces were important potential contributors of ARGs in the Weihe River and Yellow River. Transposons, as the main MGEs in three rivers, played important roles in ARGs transfer. The confluence of three rivers had the highest abundance of MGEs with the greatest transfer potentials, and therefore exhibiting the largest exposure risk of ARGs with 232.4 copies/cap·d. Furthermore, correlations of ARGs, MGEs, and HPB in different rivers were constructed via co-occurrence modes to systematically illustrate the health risks of ARGs. This study firstly unveiled the transmission and health risk of ARGs in river confluence, providing supports for ARGs control in watershed.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hu Li
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern, China; Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Yingwei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
53
|
Dos Santos IC, Barbosa LN, Grossi GD, de Paula Ferreira LR, Ono JM, Martins LA, Alberton LR, Gonçalves DD. Presence of Staphylococcus spp. carriers of the mecA gene in the nasal cavity of piglets in the nursery phase. Res Vet Sci 2023; 155:51-55. [PMID: 36634542 DOI: 10.1016/j.rvsc.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The presence of Staphylococcus spp. resistant to methicillin in the nasal cavity of swine has been previously reported. Considering the possible occurrence of bacterial resistance and presence of resistance genes in intensive swine breeding and the known transmissibility and dispersion potential of such genes, this study aimed to investigate the prevalence of resistance to different antibiotics and the presence of the mecA resistance gene in Staphylococcus spp. from piglets recently housed in a nursery. For this, 60 nasal swabs were collected from piglets at the time of their housing in the nursery, and then Staphylococcus spp. were isolated and identified in coagulase-positive (CoPS) and coagulase-negative (CoNS) isolates. These isolates were subjected to the disk-diffusion test to evaluate the bacterial resistance profile and then subjected to molecular identification of Staphylococcus aureus and analyses of the mecA gene through polymerase chain reaction. Of the 60 samples collected, 60 Staphylococcus spp. were isolated, of which 38 (63.33%) were classified as CoNS and 22 (36.67%) as CoPS. Of these, ten (45.45%) were identified as Staphylococcus aureus. The resistance profile of these isolates showed high resistance to different antibiotics, with 100% of the isolates resistant to chloramphenicol, clindamycin, and erythromycin, 98.33% resistant to doxycycline, 95% resistant to oxacillin, and 85% resistant to cefoxitin. Regarding the mecA gene, 27 (45%) samples were positive for the presence of this gene, and three (11.11%) were phenotypically sensitive to oxacillin and cefoxitin. This finding highlights the importance of researching the phenotypic profile of resistance to different antimicrobials and resistance genes in the different phases of pig rearing to identify the real risk of these isolates from a One Health perspective. The present study revealed the presence of samples resistant to different antibiotics in recently weaned production animal that had not been markedly exposed to antimicrobials as growth promoters or even as prophylactics. This information highlights the need for more research on the possible sharing of bacteria between sows and piglets, the environmental pressure within production environments, and the exposure of handlers during their transport, especially considering the community, hospital, and political importance of the presence of circulating resistant strains.
Collapse
Affiliation(s)
- Isabela Carvalho Dos Santos
- Bolsista PROSUP/CAPES - Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lidiane Nunes Barbosa
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Giovana Dantas Grossi
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | | | - Jacqueline Midori Ono
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lisiane Almeida Martins
- Faculdade de Ensino Superior Santa Bárbara (FAESB), Rua Onze de Agosto, 2900, Jardim Lucila, 18277-000 Tatuí, SP, Brazil
| | - Luiz Rômulo Alberton
- Propig soluções Ltda, Estrada Linha Andreis - Cerro Azul, SN, Zona Rural - Bom Sucesso do Sul, PR, Brazil
| | - Daniela Dib Gonçalves
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil.
| |
Collapse
|
54
|
Zhao B, van Bodegom PM, Trimbos KB. Antibiotic Resistance Genes in Interconnected Surface Waters as Affected by Agricultural Activities. Biomolecules 2023; 13:biom13020231. [PMID: 36830600 PMCID: PMC9953135 DOI: 10.3390/biom13020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Pastures have become one of the most important sources of antibiotic resistance genes (ARGs) pollution, bringing risks to human health through the environment and the food that is grown there. Another significant source of food production is greenhouse horticulture, which is typically located near pastures. Through waterways, pasture-originated ARGs may transfer to the food in greenhouses. However, how these pasture-originated ARGs spread to nearby waterways and greenhouses has been much less investigated, while this may pose risks to humans through agricultural products. We analyzed 29 ARGs related to the most used antibiotics in livestock in the Netherlands at 16 locations in an agricultural area, representing pastures, greenhouses and lakes. We found that ARGs were prevalent in all surface waters surrounding pastures and greenhouses and showed a similar composition, with sulfonamide ARGs being dominant. This indicates that both pastures and greenhouses cause antibiotic resistance pressures on neighboring waters. However, lower pressures were found in relatively larger and isolated lakes, suggesting that a larger water body or a non-agricultural green buffer zone could help reducing ARG impacts from agricultural areas. We also observed a positive relationship between the concentrations of the class 1 integron (intl1 gene)-used as a proxy for horizontal gene transfer-and ARG concentration and composition. This supports that horizontal gene transfer might play a role in dispersing ARGs through landscapes. In contrast, none of the measured four abiotic factors (phosphate, nitrate, pH and dissolved oxygen) showed any impact on ARG concentrations. ARGs from different classes co-occurred, suggesting simultaneous use of different antibiotics. Our findings help to understand the spatial patterns of ARGs, specifically the impacts of ARGs from pastures and greenhouses on each other and on nearby waterways. In this way, this study guides management aiming at reducing ARGs' risk to human health from agricultural products.
Collapse
|
55
|
Hu J, Li Z, Li L, Sun Y, Shi L, Li W, Zhang J, Wu Y, Xu H, Wang M. Detection of multidrug resistant pathogenic bacteria and novel complex class 1 integrons in campus atmospheric particulate matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158976. [PMID: 36155039 DOI: 10.1016/j.scitotenv.2022.158976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Recent advances provided overwhelming evidence that atmospheric particulate matters carry a substantial amount of antibiotic resistance genes (ARGs). It has also been documented that polluted air facilitates transmission of bacterial pathogenesis and antimicrobial resistance (AMR). These investigations generally used culture-independent approaches which reveal sophisticated microbiomic and resistomic compositions in particulate matters, while culture-dependent methods directly demonstrating presence of live, functional bacteria has not been fully applied. In recent years, efforts undertaken worldwide managed to reduce air particulate matter pollution, leading to cleaner air in many parts of world, including China. Whether atmospheric particulate matters may still function as vehicles for pathogenic bacteria and AMR in improving air conditions is turning into an interesting question to address. In attempt to answer this question, a culture-dependent approach is used to find out the putative role of atmospheric particulate matters in relatively 'clean' air to transmit pathogenic bacteria and AMR in this work. By harvesting particulate matters in an unindustrialized and less-polluted university campus, culturing and identifying bacteria in particulate matters, and characterizing pathogenesis and AMR properties of these bacteria, interesting findings were made that even in relatively 'clean' air, antibiotic-resistant pathogenic bacteria are prevalent; and that mobile genetic elements including integrons are widespread. In particular, in air samples collected, multidrug-resistant hemolytic Bacillus strains that may pose significant health threat could be identified. Complex class 1 integrons, two of which carry novel antibiotic resistant gene cassette arrays, were also found for the first time in airborne bacteria, suggesting the danger of horizontal transfer of AMR in air. In conclusion, using culture-dependent methods, this work shows that atmospheric particulate matters are viable vehicles for the transmission of bacterial pathogenesis and AMR, and that even in relatively 'clean' air, the threat of airborne antibiotic-resistant pathogens is significant.
Collapse
Affiliation(s)
- Jiamin Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ziyun Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuqing Sun
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lulu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Weiwei Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jian Zhang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.
| |
Collapse
|
56
|
Zhou XY, Li H, Zhou SYD, Zhang YS, Su JQ. City-scale distribution of airborne antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159176. [PMID: 36191698 DOI: 10.1016/j.scitotenv.2022.159176] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Concerns around urban air quality have been increasing worldwide due to large-scale urbanization. A large volume of work has been focused on the chemical pollutants in the air and their impacts on human health. However, the profile of airborne microbial contaminants, especially antibiotic resistance genes (ARGs), is largely understudied. Here, high-throughput quantitative PCR (HT-qPCR) was employed to explore the temporal and spatial distribution of airborne ARGs from 11 sites with various functional zones and different urbanization levels within Xiamen, China. A total of 104 unique ARGs and 23 mobile genetic elements (MGEs) were detected across all samples. Temporal shift was observed in the distribution of ARG profiles, with significantly higher relative abundance of ARGs detected in summer than that in spring. Temperature is the key predictor of the total relative abundance of ARGs and MGEs in summer, while PM2.5 and PM10 were the two most important factors affecting the abundance in spring. Our findings suggest that urban aerosols accommodate rich and dynamic ARGs and MGEs, and emphasize the role of temperature, air quality and anthropogenic activities in shaping the profile of ARGs.
Collapse
Affiliation(s)
- Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yu-Sen Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
57
|
Wang Y, Li Y, Li H, Zhou J, Wang T. Seasonal dissemination of antibiotic resistome from livestock farms to surrounding soil and air: Bacterial hosts and risks for human exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116638. [PMID: 36335698 DOI: 10.1016/j.jenvman.2022.116638] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Feces in livestock farms is a reservoir of antibiotic resistance genes (ARGs), which can disseminate into surrounding soil and air, bringing risks to human health. In this study, seasonal dissemination of ARGs in a livestock farm and implications for human exposure was explored. The experimental results showed that ARGs abundance basically ranked as feces > soil > air, and significant seasonal dependence was observed. The total ARGs in pig feces was relatively higher in autumn (109.7 copies g-1) and winter (1010.0 copies g-1), and lower in summer (105.0 copies g-1). Similarly, the lowest total ARGs in soil and air were also observed in summer. There were correlations among ARGs, integron intI1, and bacterial community. Total organic carbon was an important factor affecting ARGs distribution in the feces, and pH and moisture content significantly affected soil ARGs. The daily intakes of integron intI1 and ARGs from air were 10°.5 copies h-1 and 102.3 copies h-1 for human exposure, respectively. Pseudomonas was a potential pathogenic host of blaTEM-1 in feces, Pseudomonas and Acinetobacter were potential pathogenic hosts of multiple ARGs in soil, while ARGs in air did not migrate into pathogens.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yingwei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hu Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
58
|
Xin H, Qiu T, Guo Y, Gao H, Zhang L, Gao M. Aerosolization behavior of antimicrobial resistance in animal farms: a field study from feces to fine particulate matter. Front Microbiol 2023; 14:1175265. [PMID: 37152737 PMCID: PMC10157163 DOI: 10.3389/fmicb.2023.1175265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in animal feces can be released into the atmosphere via aerosolization, posing a high health risk to farm workers. So far, little attention has been paid to the characterization of the aerosolization process. In this study, fecal and fine particulate matter (PM2.5) samples were collected from 20 animal farms involving swine, cattle, layers, and broilers, and the ARGs, ARB, and human pathogenic bacteria (HPB) were loaded in these two media. The results showed that approximately 70% of ARGs, 60% of ARBs, and 43% of HPBs were found to be preferential aerosolization. The bioaerosolization index (BI) of target 30 ARGs varied from 0.04 to 460.07, and the highest value was detected from tetW. The highest BI values of erythromycin- and tetracycline-resistant bacteria were for Kocuria (13119) and Staphylococcus (24746), respectively, and the distribution of BI in the two types of dominant ARB was similar. Regarding the bioaerosolization behavior of HPB, Clostridium saccharolyticum WM1 was the most easily aerosolized pathogen in swine and broiler farms, and Brucella abortus strain CNM 20040339 had the highest value in cattle and layer farms. Notably, the highest BI values for ARGs, ARB, and HPB were universally detected on chicken farms. Most ARGs, ARB, and HPB positively correlated with animal age, stocking density, and breeding area. Temperature and relative humidity have significant effects on the aerosolization behavior of targets, and the effects of these two parameters on the same target are usually opposite. The results of this study provide a basis for a better understanding of the contribution of animal feces to airborne ARGs and HPBs in farms, as well as for controlling the transport of the fecal microbiome to the environment through the aerosolization pathway.
Collapse
Affiliation(s)
- Huibo Xin
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, China
- *Correspondence: Liqiu Zhang
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Min Gao
| |
Collapse
|
59
|
Holcomb DA, Quist AJL, Engel LS. Exposure to industrial hog and poultry operations and urinary tract infections in North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158749. [PMID: 36108846 PMCID: PMC9613609 DOI: 10.1016/j.scitotenv.2022.158749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
An increasing share of urinary tract infections (UTIs) are caused by extraintestinal pathogenic Escherichia coli (ExPEC) lineages that have also been identified in poultry and hogs with high genetic similarity to human clinical isolates. We investigated industrial food animal production as a source of uropathogen transmission by examining relationships of hog and poultry density with emergency department (ED) visits for UTIs in North Carolina (NC). ED visits for UTI in 2016-2019 were identified by ICD-10 code from NC's ZIP code-level syndromic surveillance system and livestock counts were obtained from permit data and aerial imagery. We calculated separate hog and poultry spatial densities (animals/km2) by Census block with a 5 km buffer on the block perimeter and weighted by block population to estimate mean ZIP code densities. Associations between livestock density and UTI incidence were estimated using a reparameterized Besag-York-Mollié (BYM2) model with ZIP code population offsets to account for spatial autocorrelation. We excluded metropolitan and offshore ZIP codes and assessed effect measure modification by calendar year, ZIP code rurality, and patient sex, age, race/ethnicity, and health insurance status. In single-animal models, hog exposure was associated with increased UTI incidence (rate ratio [RR]: 1.21, 95 % CI: 1.07-1.37 in the highest hog-density tertile), but poultry exposure was associated with reduced UTI rates (RR: 0.86, 95 % CI: 0.81-0.91). However, the reference group for single-animal poultry models included ZIP codes with only hogs, which had some of the highest UTI rates; when compared with ZIP codes without any hogs or poultry, there was no association between poultry exposure and UTI incidence. Hog exposure was associated with increased UTI incidence in areas that also had medium to high poultry density, but not in areas with low poultry density, suggesting that intense hog production may contribute to increased UTI incidence in neighboring communities.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arbor J L Quist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
60
|
Xin H, Gao M, Wang X, Qiu T, Guo Y, Zhang L. Animal farms are hot spots for airborne antimicrobial resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158050. [PMID: 35985594 DOI: 10.1016/j.scitotenv.2022.158050] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Animal farms are known reservoirs for environmental antimicrobial resistance (AMR). However, knowledge of AMR burden in the air around animal farms remains disproportionately limited. In this study, we characterized the airborne AMR based on the quantitative information of 30 antimicrobial resistance genes (ARGs), four mobile genetic elements (MGEs), and four human pathogenic bacteria (HPBs) involving four animal species from 20 farms. By comparing these genes with those in animal feces, the distinguishing features of airborne AMR were revealed, which included high enrichment of ARGs and their potential mobility to host HPBs. We found that depending on the antimicrobial class, the mean concentration of airborne ARGs in the animal farms ranged from 102 to 104 copies/m3 and was accompanied by a considerable intensity of MGEs and HPBs (approximately 103 copies/m3). Although significant correlations were observed between the ARGs and bacterial communities of air and fecal samples, the abundance of target genes was generally high in fine inhalable particles (PM2.5), with an enrichment ratio of up to 102 in swine and cattle farms. The potential transferability of airborne ARGs was universally strengthened, embodied by a pronounced co-occurrence of ARGs-MGEs in air compared with that in feces. Exposure analysis showed that animal farmworkers may inhale approximately 104 copies of human pathogenic bacteria-associated genera per day potentially carrying highly transferable ARGs, including multidrug resistant Staphylococcus aureus. Moreover, PM2.5 inhalation posed higher human daily intake burdens of some ARGs than those associated with drinking water intake. Overall, our findings highlight the severity of animal-related airborne AMR and the subsequent inhalation exposure, thus improving our understanding of the airborne flow of AMR genes from animals to humans. These findings could help develop strategies to mitigate the human exposure and dissemination of ARGs across different media.
Collapse
Affiliation(s)
- Huibo Xin
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
61
|
Pharmaceuticals and Personal Care Products in the Environment with Emphasis on Horizontal Transfer of Antibiotic Resistance Genes. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2022. [DOI: 10.2478/cdem-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Pharmaceuticals and personal care products (PPCPs) discharged into environment has several adverse impacts. PPCPs are widely utilised for veterinary as well as cosmetic and personal health reasons. These are members of the expanding class of substances known as Contaminants of Emerging Concern (CECs). Antibiotic resistance in the environment and garbage generated by PPCP endanger life. The World Health Organisation (WHO) now recognises antibiotic resistance as a significant global health problem due to the expected increase in mortality caused by it. In the past ten years, mounting data has led experts to believe that the environment has a significant impact on the development of resistance. For human diseases, the external environment serves as a source of resistance genes. It also serves as a major pathway for the spread of resistant bacteria among various habitats and human populations. Large-scale DNA sequencing methods are employed in this thesis to better comprehend the dangers posed by environmental antibiotic resistance. The quantification of the number is an important step in this process. Metagenomic measurement of the number of antibiotic resistance genes in various contexts is a crucial step in this process. However, it’s also crucial to put this data into a broader context by integrating things like taxonomic information, antibiotic concentrations, and the genomic locations of found resistance genes.
Collapse
|
62
|
Xu X, Zhou W, Xie C, Zhu Y, Tang W, Zhou X, Xiao H. Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157420. [PMID: 35850323 DOI: 10.1016/j.scitotenv.2022.157420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The accelerating occurrence and environmental dissemination of bacteria, gas pollutants and antibiotic resistance genes (ARGs) in aerosols of poultry farms have become emerging environmental issues due to their potential threat to animals, workers, and the communities located near such farms. Here, aerosol samples were gathered from inside and outside of the chicken house in winter with a transportable high-flow bioaerosol sampler. Then, 16S rRNA gene amplicon sequencing was used to categorize the bacteria in air samples, and the abundance of 12 ARG subtypes was researched via the real-time quantitative polymerase chain reaction (qPCR). Results indicated that the bacterial richness and diversity and total absolute abundance of ARGs were similar in the bioaerosols from indoor and downwind site of the poultry farm. The zoonotic pathogens, Staphylococcus and Corynebacterium, were detected both inside and outside of the chicken house, and the four most abundant target genes were blaTEM, tetQ, ermB and sul1 in aerosols. Moreover, the correlation between the bacterial communities and environmental factors, such as NH3 and H2S concentrations, wind speed, temperature and relative humidity, was analyzed. The result revealed that the indoor bacteria community was positively associated with temperature and concentrations of air pollutants (NH3 and H2S), and could spread from confinement buildings to the ambient atmosphere through wind. In addition, the network analysis result showed that the airborne bacteria might significantly contribute in shaping the ARGs' profiles in bioaerosol from inside and outside of the poultry house. Overall, our results revealed the airborne bacterial communities and their associated influencing factors in the micro-environment (inside of the chicken house and nearby the boundary of the farm), and brought a new perspective for studying the gas pollutants and bioaerosol from poultry farms in winter.
Collapse
Affiliation(s)
- Xing Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weidong Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chuanqi Xie
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wensheng Tang
- Institute of Animal Husbandry and Veterinary Science, Huangyan Bureau of Agriculture and Rural Affairs, Taizhou 318020, China
| | - Xin Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
63
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|
64
|
Tian Y, Lu X, Hou J, Xu J, Zhu L, Lin D. Application of α-Fe 2O 3 nanoparticles in controlling antibiotic resistance gene transport and interception in porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155271. [PMID: 35447184 DOI: 10.1016/j.scitotenv.2022.155271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Metal oxide nanoparticles (MONPs) with a large specific surface area are expected to bind with antibiotic resistance genes (ARGs), thereby controlling ARGs' contamination by reducing their concentration and mobilization. Here, adsorption experiments were carried out and it was found that α-Fe2O3 NPs could chemically bind with ARGs (tetM-carrying plasmids) in water with an adsorption rate of 0.04 min-1 and an adsorption capacity of 7.88 g/kg. Mixing α-Fe2O3 NPs into quartz sand column markedly increased the interceptive removal of ARGs from inflow water. The interception rate of 1.0 μg/mL ARGs in ultrapure water (25 mL, 5 pore volumes) through the sand column (plexiglass, length 8 cm, internal diameter 1.4 cm) with 1 g/kg α-Fe2O3 NPs was 1.73 times of that through the pure sand column; the interception rate overall increased with increasing addition of α-Fe2O3 NPs, reaching 68.8% with 20 g/kg α-Fe2O3 NPs. Coexisting Na+ (20 mM), Ca2+ (20 mM), and acidic condition (pH 4.0) could further increase the interception rate of ARGs by 1 g/kg α-Fe2O3 NPs from 21.1% to 86.2%, 90.7%, and 96.2%, respectively. The presence of PO43- and humic acid at environmentally relevant concentrations would not significantly affect the interception of ARGs. In the treatment groups with PO43- and humic acid, the removal rate decreased by only 1.8% and 0.1%, respectively. In addition, the interceptive removal of ARGs by α-Fe2O3 NPs-incorporated sand column was even better in actual surface water samples (87.2%) than that in the ultrapure water (21.1%). The findings provide a promising approach to treat ARGs-polluted water.
Collapse
Affiliation(s)
- Yiyang Tian
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xinye Lu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
65
|
George PBL, Rossi F, St-Germain MW, Amato P, Badard T, Bergeron MG, Boissinot M, Charette SJ, Coleman BL, Corbeil J, Culley AI, Gaucher ML, Girard M, Godbout S, Kirychuk SP, Marette A, McGeer A, O’Shaughnessy PT, Parmley EJ, Simard S, Reid-Smith RJ, Topp E, Trudel L, Yao M, Brassard P, Delort AM, Larios AD, Létourneau V, Paquet VE, Pedneau MH, Pic É, Thompson B, Veillette M, Thaler M, Scapino I, Lebeuf M, Baghdadi M, Castillo Toro A, Cayouette AB, Dubois MJ, Durocher AF, Girard SB, Diaz AKC, Khalloufi A, Leclerc S, Lemieux J, Maldonado MP, Pilon G, Murphy CP, Notling CA, Ofori-Darko D, Provencher J, Richer-Fortin A, Turgeon N, Duchaine C. Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antibiotics (Basel) 2022; 11:974. [PMID: 35884228 PMCID: PMC9312183 DOI: 10.3390/antibiotics11070974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.
Collapse
Affiliation(s)
- Paul B. L. George
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada; (P.B.L.G.); (J.C.); (I.S.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
| | - Florent Rossi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont-Auvergne, 63178 Clermont-Ferrand, France; (P.A.); (A.-M.D.)
| | - Magali-Wen St-Germain
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont-Auvergne, 63178 Clermont-Ferrand, France; (P.A.); (A.-M.D.)
| | - Thierry Badard
- Centre de Recherche en Données et Intelligence Géospatiales (CRDIG), Quebec City, QC G1V 0A6, Canada;
| | - Michel G. Bergeron
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Maurice Boissinot
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Steve J. Charette
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Brenda L. Coleman
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (B.L.C.); (A.M.)
| | - Jacques Corbeil
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada; (P.B.L.G.); (J.C.); (I.S.)
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Alexander I. Culley
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Stéphane Godbout
- Institut de Recherche et de Développement en Agroenvironnement (IRDA), Quebec City, QC G1P 3W8, Canada; (S.G.); (A.D.L.); (A.K.C.D.)
- Département des Sols et de Génie Agroalimentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Shelley P. Kirychuk
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - André Marette
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Allison McGeer
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (B.L.C.); (A.M.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Patrick T. O’Shaughnessy
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52246, USA;
| | - E. Jane Parmley
- Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.J.R.-S.); (M.P.M.)
| | - Serge Simard
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Richard J. Reid-Smith
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.J.R.-S.); (M.P.M.)
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada; (C.P.M.); (D.O.-D.)
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada;
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Luc Trudel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China;
| | - Patrick Brassard
- Département des Sols et de Génie Agroalimentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Anne-Marie Delort
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont-Auvergne, 63178 Clermont-Ferrand, France; (P.A.); (A.-M.D.)
| | - Araceli D. Larios
- Institut de Recherche et de Développement en Agroenvironnement (IRDA), Quebec City, QC G1P 3W8, Canada; (S.G.); (A.D.L.); (A.K.C.D.)
- Tecnológico Nacional de México/ITS de Perote, Perote 91270, Mexico
| | - Valérie Létourneau
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Valérie E. Paquet
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Hélène Pedneau
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Émilie Pic
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Brooke Thompson
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - Marc Veillette
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Mary Thaler
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Ilaria Scapino
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada; (P.B.L.G.); (J.C.); (I.S.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Maria Lebeuf
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Mahsa Baghdadi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Alejandra Castillo Toro
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - Amélia Bélanger Cayouette
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Marie-Julie Dubois
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Alicia F. Durocher
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah B. Girard
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Andrea Katherín Carranza Diaz
- Institut de Recherche et de Développement en Agroenvironnement (IRDA), Quebec City, QC G1P 3W8, Canada; (S.G.); (A.D.L.); (A.K.C.D.)
- Département des Sols et de Génie Agroalimentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Asmaâ Khalloufi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Samantha Leclerc
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Joanie Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Manuel Pérez Maldonado
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.J.R.-S.); (M.P.M.)
| | - Geneviève Pilon
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Colleen P. Murphy
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada; (C.P.M.); (D.O.-D.)
| | - Charly A. Notling
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - Daniel Ofori-Darko
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada; (C.P.M.); (D.O.-D.)
| | - Juliette Provencher
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Annabelle Richer-Fortin
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Nathalie Turgeon
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Caroline Duchaine
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| |
Collapse
|
66
|
Xu C, Kong L, Gao H, Cheng X, Wang X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front Microbiol 2022; 13:822689. [PMID: 35633728 PMCID: PMC9133924 DOI: 10.3389/fmicb.2022.822689] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms.
Collapse
Affiliation(s)
- Chunming Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Lingqiang Kong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hanfang Gao
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
67
|
Šantl-Temkiv T, Amato P, Casamayor EO, Lee PKH, Pointing SB. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6524182. [PMID: 35137064 PMCID: PMC9249623 DOI: 10.1093/femsre/fuac009] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
The atmosphere connects habitats across multiple spatial scales via airborne dispersal of microbial cells, propagules and biomolecules. Atmospheric microorganisms have been implicated in a variety of biochemical and biophysical transformations. Here, we review ecological aspects of airborne microorganisms with respect to their dispersal, activity and contribution to climatic processes. Latest studies utilizing metagenomic approaches demonstrate that airborne microbial communities exhibit pronounced biogeography, driven by a combination of biotic and abiotic factors. We quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal. Recent advances have established that these processes may be relevant for macroecological outcomes in terrestrial and marine habitats. We evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms and discuss clouds as hotspots of microbial metabolic activity in the atmosphere. Furthermore, we emphasize the role of microorganisms as ice nucleating particles and their relevance for the water cycle via formation of clouds and precipitation. Finally, potential impacts of anthropogenic forcing on the natural atmospheric microbiota via emission of particulate matter, greenhouse gases and microorganisms are discussed.
Collapse
Affiliation(s)
- Tina Šantl-Temkiv
- Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus, Denmark
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont Auvergne, 63178, Clermont-Ferrand, France
| | - Emilio O Casamayor
- Centre for Advanced Studies of Blanes, Spanish Council for Research (CSIC), 17300, Blanes, Spain
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Stephen B Pointing
- Corresponding author: Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527. Tel: +65 6601 1000; E-mail:
| |
Collapse
|