51
|
Liu J, Yin M, Xiao T, Zhang C, Tsang DCW, Bao Z, Zhou Y, Chen Y, Luo X, Yuan W, Wang J. Thallium isotopic fractionation in industrial process of pyrite smelting and environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121378. [PMID: 31606707 DOI: 10.1016/j.jhazmat.2019.121378] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Thallium (Tl) is typical rare element with severe toxicity comparable to Hg and Pb. To track Tl pollution, isotopic fractionation of Tl was evaluated during pyrite smelting for sulfuric acid production. Large variations in Tl isotope compositions were observed among the pyrite ore (PO) and its four different smelting wastes. The starting raw PO had an ε205Tl value of +1.28. The fluidized-bed furnace slag generated by high-temperature smelting had the heaviest ε205Tl (+16.24) in the system. Meanwhile, the boiler fly ash (ε205Tl = +8.34), cyclone fly ash (ε205Tl = +2.17), and electrostatic precipitation fly ash (ε205Tl = -1.10), with decreasing grain sizes during the treatment processes, were characterized by elevated levels of Tl contents and substantial enrichment in the light Tl isotopes relative to the furnace slag. Further calculation and high-resolution transmission electron microscopy indicated that Tl isotope fractionation could be governed by both Rayleigh-type fractionation and adsorption of volatilized Tl by particles of various grain sizes. According to the substantial differences in the PO from its smelting wastes and the measurement precision of isotopic fractionation, it is suggested that Tl isotopes can serve as a new tool for tracing pollution of Tl.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Meiling Yin
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chaosheng Zhang
- International Network for Environment and Health, School of Geography and Archaeology & Ryan Institute, National University of Ireland, Galway, Ireland
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhi'an Bao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Yuting Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongheng Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xuwen Luo
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenhuan Yuan
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
52
|
Liu J, Wei X, Zhou Y, Tsang DCW, Bao Z, Yin M, Lippold H, Yuan W, Wang J, Feng Y, Chen D. Thallium contamination, health risk assessment and source apportionment in common vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135547. [PMID: 31761365 DOI: 10.1016/j.scitotenv.2019.135547] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
As an element with well-known toxicity, excessive thallium (Tl) in farmland soils, may threaten food security and induce extreme risks to human health. Identification of key contamination sources is prerequisite for remediation technologies. This study aims to examine the contamination level, health risks and source apportionment of Tl in common vegetables from typical farmlands distributed over a densely populated residential area in a pyrite mine city, which has been exploiting Tl-bearing pyrite minerals over 50 years. Results showed excessive Tl levels were exhibited in most of the vegetables (0.16-20.33 mg/kg) and alarming health risks may induce from the vegetables via the food chain. Source apportionment of Tl contamination in vegetables was then evaluated by using Pb isotope fingerprinting technique. Both vegetables and soils were characterized with overall low 206Pb/207Pb. This indicated that a significant contribution may be ascribed to the anthropogenic activities involving pyrite deposit exploitation, whose raw material and salgs were featured with lower 206Pb/207Pb. Further calculation by binary mixing model suggested that pyrite mining and smelting activities contributed 54-88% to the thallium contamination in vegetables. The results highlighted that Pb isotope tracing is a suitable technique for source apportionment of Tl contamination in vegetables and prime contamination from pyrite mining/smelting activities urges authorities to initiate proper practices of remediation.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xudong Wei
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Yuting Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhi'an Bao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
| | - Meiling Yin
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Holger Lippold
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ressourcenökologie, 04318 Leipzig, Germany
| | - Wenhuan Yuan
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Jin Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China.
| | - Yuexing Feng
- School of Earth and Environmental Sciences, The University of Queensland, QLD 4072, Australia
| | - Diyun Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| |
Collapse
|
53
|
Tang J, Zhang L, Zhang J, Ren L, Zhou Y, Zheng Y, Luo L, Yang Y, Huang H, Chen A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134751. [PMID: 31710903 DOI: 10.1016/j.scitotenv.2019.134751] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 05/28/2023]
Abstract
Biochar and compost have been widely used for pollution remediation of heavy metals in soil. However, little research was conducted to explore the efficiency of biochar, compost and their combination to reduce heavy metals availability, and the effects of their additive on soil biological properties are often neglected. Therefore, this study investigated the effects of biochar, compost and their combination on availability of heavy metals, physicochemical features and enzyme activities in soil. Results showed that adding amendments to polluted soil significantly altered soil properties. Compared to the separate addition of biochar or compost, their combined application was more effective to improve soil pH, organic matter (OM), organic carbon (TOC) and available potassium (AK). All amendments significantly decreased the availability of Cd and Zn, but slightly activated As and Cu. In addition, soil enzyme activities were activated by compost and inhibited by biochar, but exhibited highly variable responses to their combinations. Pearson correlation analysis indicated that electrical conductivity (EC) and AK were the most important environmental factors affecting metal availability and soil enzyme activities including dehydrogenase, catalase, β-glucosidase, urease, acid and alkaline phosphatase, arylsulfatase except for protease and invertase. Availability of As, Cu, Cd and Zn affected dehydrogenase, catalase and urease activities. These results indicated that biochar, compost and their combination have significant effects on physicochemical features, metals availability and enzyme activities in heavy metal-polluted soil.
Collapse
Affiliation(s)
- Jiayi Tang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Yuanyuan Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
54
|
Rasool A, Nasim W, Xiao T, Ali W, Shafeeque M, Sultana SR, Fahad S, Munis MFH, Chaudhary HJ. Microbial diversity response in thallium polluted riverbank soils of the Lanmuchang. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109854. [PMID: 31678700 DOI: 10.1016/j.ecoenv.2019.109854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Thallium (Tl) is a toxic element, but little is known about microbial communities' response to TI mobilization and sequestration. Here, we characterize the microbial communities and their feedbacks to Tl-pollution in riverbank soils to understand the distribution of microbial metal tolerance. These soils have been affected by pollution sourced from a Tl-rich mineralized area in Lanmuchang, Guizhou, China. In all studied soil samples, Proteobacteria, Acidobacteria, and Actinobacteria were revealed relatively in higher abundance at the phylum level. The results indicated that a number of microbial communities including Gemmatimonadetes, and Actinobacteria were correlated with total Tl, suggesting potential roles of these microbes to Tl tolerance. The patterns of phylogenetic beta-diversity in studied samples showed a high diversity of the microbial community in soils with high Tl concentrations. Sequence analysis of microbial community indicated that most of the environmental parameters in soils were associated with the major phylogenetic groups such as Gemmobacteria, Bryobacteria, Proteobacteria, Actinobacteria, Firmicutes, and Rhodobacteria. Some species of microbes, Nocardioides (genus), Actinomycetales (Order), Ralstonia (phyla) and Sphingomonas (genus) might are tolerant of Tl. These results provide direction to the microbial communities in the presence of elevated Tl concentration in Lanmuchang and shed light on bioremediation of Tl polluted locations.
Collapse
Affiliation(s)
- Atta Rasool
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Environmental Sciences, COMSATS University, Islamabad (CUI), Vehari, 61100, Pakistan
| | - Wajid Nasim
- Department of Environmental Sciences, COMSATS University, Islamabad (CUI), Vehari, 61100, Pakistan; CIHEAM-Institut Agronomique Méditerranéen de Montpellier (IAMM), 3191Route de Mende, Montpellier, France; CSIRO Sustainable Ecosystems, National Research Flagship, Towoomba, QLD, 4350, Australia; Department of Agronomy, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur (IUB), Bahawalpur, Pakistan
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Shafeeque
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Lab of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Syeda Refat Sultana
- Department of Environmental Sciences, COMSATS University, Islamabad (CUI), Vehari, 61100, Pakistan
| | - Shah Fahad
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa (KPK), Pakistan
| | | | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
55
|
Lin J, Yin M, Wang J, Liu J, Tsang DCW, Wang Y, Lin M, Li H, Zhou Y, Song G, Chen Y. Geochemical fractionation of thallium in contaminated soils near a large-scale Hg-Tl mineralised area. CHEMOSPHERE 2020; 239:124775. [PMID: 31521931 DOI: 10.1016/j.chemosphere.2019.124775] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/09/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Enriched levels of thallium (Tl) in the environment are not only derived from anthropogenic sources but also have potential natural origins owing to Tl-rich sulphide mineralization. However, little is known regarding the geochemical fractionations of Tl in contaminated soils from geogenic sources. This study aims to reveal the Tl geochemical fractionations in different types of soils from a large-scale independent Tl mine in southwestern China, via a modified Institute for Reference Materials and Measurement (IRMM) sequential extraction (four-step) scheme. The results revealed that a large percentage of Tl was related to the labile portions (including reducible, weak-acid-exchangeable, and oxidizable fraction) of the soils (68.8-367 mg kg-1). Further analyses by Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometer (STEM-EDS) found that Tl mainly existed in the Fe-containing minerals (such as jarosite and hematite) with fine particles (∼1 μm). These results highlight that, apart from the anthropogenically induced Tl pollution, the naturally occurring Tl contamination in soils may also pose significant risks to human health and ecological safety. Owing to the relatively high mobility and bioavailability of Tl in the labile fractions, it is important to understand geochemical fractionations of this element for alleviating Tl pollution and effective management of naturally occurring Tl contaminated soils.
Collapse
Affiliation(s)
- Jingfen Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuxuan Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mao Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongchun Li
- Department of Geosciences, National Taiwan University, Taipei, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Gang Song
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongheng Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
56
|
Hou D, Zhang P, Zhang J, Zhou Y, Yang Y, Mao Q, Tsang DCW, Núñez-Delgado A, Luo L. Spatial variation of sediment bacterial community in an acid mine drainage contaminated area and surrounding river basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109542. [PMID: 31569024 DOI: 10.1016/j.jenvman.2019.109542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Microbial community is sensitive to the variations of environment, and it plays an important role in biogeochemical cycling in acid mine drainage (AMD). In this study, an integrated high-throughput absolute abundance quantification (iHAAQ) method was applied to study the dynamics of microbial community and the characteristics of microorganism. The results showed a significant difference in bacterial community with diversity being higher in watershed area. The main influential factors for bacterial communities in watershed were physicochemical properties (e.g., pH and potassium), while in mining areas the main driving factors were metals/metalloids (e.g., As, Zn, and Pb). Notably, the major functions of microbial community were transporter and ABC transporter in mining area, while two-component system was more abundant in watershed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis (level 3). In particular, Phyllobacterium, Bacteroides, and Sulfurovum were demonstrated to be potentially useful bacterial species for bioremediation, which should be a good choice for future studies. These results could facilitate our understanding of microbial diversity in different sediments of mining areas and identify microbial communities for bioremediation projects.
Collapse
Affiliation(s)
- Dongmei Hou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Pan Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Qiming Mao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, Universidade de Santiago de Compostela, Galicia, Spain
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China.
| |
Collapse
|
57
|
Gao X, Peng Y, Zhou Y, Adeel M, Chen Q. Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109610. [PMID: 31585274 DOI: 10.1016/j.jenvman.2019.109610] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Biochar (BC) and magnesium ferrite (MF) have been used in effective adsorption of cadmium (Cd) in aqueous environment, whereas little is known about the effect of their composite on Cd adsorption and Cd-contaminated soil remediation. In this study, biochar (BC), magnesium ferrite (MF) and biochar assembled with magnesium ferrite (MB) were prepared for Cd adsorption and then applied in soils (1-2% w/w) to investigate their effects on Cd passivation by performing leaching experiments and early stage seeding growth test for packoi (Brassica chinensis L.). Compared with the BC and MF, the MB showed greater adsorption property for Cd at aqueous solution (31.3 mg/g) and amended soils (1.85 mg/g at 2% applied rate) based on the isotherms studies. Besides, the MB performed the better passivation ability in reduction of the bioavailable Cd and seeding growth experiment. Solid state analysis of the materials before and after leaching indicated that the passivation mechanism may be dominated by ion exchange and surface complexation. Principal component analysis revealed that the soil pH and adsorption capacity had the strong correlation with the contents of bioavailable-Cd and seedling growth. These results indicated that MB could be used as an efficient amendment in Cd contaminated soil for reducing bioavailable Cd concentrations and improving plant growth.
Collapse
Affiliation(s)
- Xing Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yutao Peng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
58
|
Liu J, Ren S, Zhou Y, Tsang DCW, Lippold H, Wang J, Yin M, Xiao T, Luo X, Chen Y. High contamination risks of thallium and associated metal(loid)s in fluvial sediments from a steel-making area and implications for environmental management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109513. [PMID: 31521041 DOI: 10.1016/j.jenvman.2019.109513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Thallium (Tl) is an uncommon toxic element, with an even greater toxicity than that of As, Hg and Cd. Steel-making industry has been identified as an emerging new significant source of Tl contamination in China. This paper presents a pilot investigation of the contamination and geochemical transfer of Tl and associated metal(loid)s in river sediments affected by long-term waste discharge from the steel-making industry. The results uncovered an overall Tl contamination (1.96 ± 0.42 mg/kg) across a sediment profile of approximately 1.5 m in length, even 10 km downstream the steel plant. Highly elevated contents of Pb, Cu, Cd, Zn and Sb were found in the fluvial sediments, displaying strong positive correlations with Tl contents. Elevated levels of geochemically mobile Tl as well as Cd, Zn, Cu and Pb occurred in the fluvial sediments, signifying anthropogenic imprints from steel production activities at high temperature. Levels of contamination and ecological risk were calculated to be moderate to considerable for Tl, Cu, Zn and high to very high for Cd, Pb, Sb. The results highlight that there is a great challenge in view of potentially considerable Tl pollution due to continuous massive steel production in many other parts of China. It is high time to initiate process-based management of Tl contamination control for the ambient aquifer system in the steel-making area.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Environmental Research At Greater Bay, Innovation Center and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Shixing Ren
- Institute of Environmental Research At Greater Bay, Innovation Center and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuting Zhou
- Institute of Environmental Research At Greater Bay, Innovation Center and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Holger Lippold
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ressourcenökologie, 04318, Leipzig, Germany
| | - Jin Wang
- Institute of Environmental Research At Greater Bay, Innovation Center and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Meiling Yin
- Institute of Environmental Research At Greater Bay, Innovation Center and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Institute of Environmental Research At Greater Bay, Innovation Center and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xuwen Luo
- Institute of Environmental Research At Greater Bay, Innovation Center and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongheng Chen
- Institute of Environmental Research At Greater Bay, Innovation Center and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
59
|
Chen H, Yan L, Zhao J, Yang B, Huang G, Shi W, Hou L, Zha J, Luo Y, Mu J, Dong W, Ying GG, Xie L. The role of the freshwater oligochaete Limnodrilus hoffmeisteri in the distribution of Se in a water/sediment microcosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1098-1106. [PMID: 31412447 DOI: 10.1016/j.scitotenv.2019.06.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Selenite(IV) and selenate(VI) are the major species of Se in the seleniferous aquatic ecosystem. The redistribution of Se in the water/sediment microcosm by bioturbation remains largely unknown. In this study, the redistribution of Se in the water/sediment microcosm by the benthic oligochaete Limnodrilus hoffmeisteri was assessed. The worms were exposed to 2-40 μg/g dry weight of Se(IV) or Se(VI) in the sediment (diet) for 2 months. The changes in the Se levels in different compartments of the microcosm (sediment, overlying water, and worms) were quantified after 2 weeks and 2 months. The subcellular distribution of Se in the worms were also evaluated. Finally, the volatilization of Se from the two Se sources was estimated. The results showed that Se concentration in the overlying water and Se bioaccumulation in the worms were increased with Se levels in the sediments. Approximately 1.6-9.8% of Se was volatilized in the absence of the worms and was intensified in the presence of the worms (2.1-25.7%). The subcellular distribution witnessed high levels of Se in the cell debris (>60%). Se(IV) and Se(VI) differ in their bioaccumulation, redistribution and the effects on the growth of the worms. Our results suggest that the bioturbation by benthos play an essential role in the redistribution of Se in the water/sediment microcosm.
Collapse
Affiliation(s)
- Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianliang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Guoyong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Wenjun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| | - Jingli Mu
- Institute of Oceanography, Minjiang University, Fuzhou 50108, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China; Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
60
|
Liu B, Su G, Yang Y, Yao Y, Huang Y, Hu L, Zhong H, He Z. Vertical distribution of microbial communities in chromium-contaminated soil and isolation of Cr(Ⅵ)-Reducing strains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:242-251. [PMID: 31100590 DOI: 10.1016/j.ecoenv.2019.05.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Soil ecosystems surrounding chromium slag undergo continuous harsh physicochemical conditions due to multiple heavy metals contamination. Previous studies of soil microbial communities mainly focused on surface soil layer, while little was known about the depth-related distributions of the microbial communities in chromium (Cr)-contaminated soil. In this study, a comprehensive analysis of depth-related distributions of microbial communities in Cr-contaminated soil was carried out by Illumina sequencing of 16s rRNA genes. The results revealed that bacterial diversities at 0 cm depth layer were significantly higher than those below 20 cm depths. And there was a remarkable difference in bacterial compositions along with the sampling depths especially for the dominant phyla of Proteobacteria, Actinobacteria, Chloroflexi and Fimicutes (p < 0.05). While the archaea accounted for a relatively low proportion of the microbes and showed stability in the compositions with the predominant phyla of Thaumarchaeota and Euryarchaeota. The linear discriminate analysis (LDA) and effect size (LEfSe) analysis showed that there were thirty-seven kinds of biomarker microbes existing in the five soil layers with LDA threshold of 4.0, and each layer showed distinct microbial divisions, indicating that microbes with different biological functions might survive along with the sampling depths. The environmental variables including total chromium (Cr), Cr(Ⅵ), Mn, Ni, and Zn had considerable influences on microbial community composition in the contaminated soil. A total of 25 Cr(Ⅵ)-reducing strains were further isolated and identified, which were phylogenetically affiliated to Proteobacteria, Actinobacteria and Firmicutes. Among the isolated Cr(Ⅵ)-reducing strains, Bacillus stratosphericus was the first time to be reported with Cr(Ⅵ) reducing capacity.
Collapse
Affiliation(s)
- Bang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Guirong Su
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yiran Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yang Yao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yongji Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
61
|
Hussain MM, Asiri AM, Arshad MN, Rahman MM. A Thallium Ion Sensor Development Based on the Synthesized (E)‐N′‐(Methoxybenzylidene)‐4‐ Methylbenzenesulfonohydrazide Derivatives: Environmental Sample Analysis. ChemistrySelect 2019. [DOI: 10.1002/slct.201902193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Department of PharmacyFaculty of Life and Earth SciencesJagannath University Dhaka- 1100, Bangladesh
| | - Abdullah M. Asiri
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Muhammad Nadeem Arshad
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
62
|
Huang YH, Liu Y, Du PP, Zeng LJ, Mo CH, Li YW, Lü H, Cai QY. Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:170-180. [PMID: 30903891 DOI: 10.1016/j.scitotenv.2019.03.168] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Urban rivers in some countries have been heavily polluted and the water became black and odor. Nevertheless, only few studies reported the occurrence of antibiotics and their corresponding antibiotic resistant genes (ARGs) in urban rivers with black-odor water with and without remediation. In this study, nine antibiotics (belonging to sulfonamides, tetracyclines, quinolones, and macrolides) and their corresponding ARGs in water and sediments of six urban rivers in Guangzhou, South China were analyzed to investigate their spatial distribution and the influence of water remediation. The concentrations of individual antibiotics varied from ND (not detectable) to 2702 ng/L and ND to 449 μg/kg in surface water and sediments, respectively. Norfloxacin displayed the highest average concentrations, followed by ciprofloxacin. The relative abundance of quinolone-resistance gene qnrA (~103 ARGs/16S rRNA) was the highest, followed by tetracyclines-resistance genes tetC (~10-2 ARGs/16S rRNA). The antibiotics and ARGs in sediments from various rivers exhibited distinct spatial distribution with large variation from upstream to downstream. Generally, levels of antibiotics and tetracyclines-resistance genes (tetA, tetC and tetM) in urban rivers with black-odor water (affected by industrial and domestic sewage) were higher than those in remediated urban rivers. Significant positive correlations were observed only between the relative abundances of tetA (or tetC) with the concentrations of some antibiotics (e.g., ciprofloxacin and norfloxacin). TetA was also significantly positively correlated with the concentrations of Ni, Cr, and As in sediments. This study found that urban rivers remediated with dredging might lower antibiotic levels in sediment, but high relative abundance of certain ARGs (e.g., tetB, qnrA) may still exist.
Collapse
Affiliation(s)
- Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yue Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Pei-Pei Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Juan Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|