51
|
Barkoski J, Bennett D, Tancredi D, Barr DB, Elms W, Hertz-Picciotto I. Variability of urinary pesticide metabolite concentrations during pregnancy in the MARBLES Study. ENVIRONMENTAL RESEARCH 2018; 165:400-409. [PMID: 29860212 PMCID: PMC6579749 DOI: 10.1016/j.envres.2018.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Variability of short-lived urinary pesticide metabolites during pregnancy raises challenges for exposure assessment. OBJECTIVES For urinary metabolite concentrations 3-phenoxybenzoic acid (3-PBA) and 3,5,6-trichloro-2-pyridinol (TCPy), we assessed: (1) temporal variability; (2) variation of two urine specimens within a trimester; (3) reliability for pesticide concentrations from a single urine specimen to classify participants into exposure tertiles; and (4) seasonal or year variations. METHODS Pregnant mothers (N = 166) in the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) Study provided urine specimens (n = 528). First morning void (FMV), pooled, and 24-h specimens were analyzed for 3-PBA and TCPy. For 9 mothers (n = 88 specimens), each urine specimen was analyzed separately (not pooled) to estimate within- and between-person variance components expressed as intraclass correlation coefficients (ICC). Pesticide concentrations from two specimens within a trimester were also assessed using ICC's. Agreement for exposure classifications was assessed with weighted Cohen's kappa statistics. Longitudinal mixed effect models were used to assess seasonal or year variations. RESULTS Urinary pesticide metabolites were detected in ≥ 93% of specimens analyzed. The highest ICC from repeated individual specimens was from specific gravity-corrected FMV specimens for 3-PBA (ICC=0.13). Despite high within-person variability, the median concentrations did not differ across trimesters. Concentrations from pooled specimens had substantial agreement predicting exposure categories for TCPy (K = 0.67, 95% CI (0.59, 0.76)) and moderate agreement for 3-PBA (K = 0.59, 95% CI (0.49, 0.69)). TCPy concentrations significantly decreased from 2007 to 2014. CONCLUSIONS Pooled specimens may improve exposure classification and reduce laboratory costs for compounds with short biological half-lives in epidemiological studies.
Collapse
Affiliation(s)
- Jacqueline Barkoski
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA.
| | - Deborah Bennett
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA.
| | - Daniel Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, USA.
| | - Dana Boyd Barr
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - William Elms
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA.
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA; MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA.
| |
Collapse
|
52
|
Bonvallot N, Canlet C, Blas-Y-Estrada F, Gautier R, Tremblay-Franco M, Chevolleau S, Cordier S, Cravedi JP. Metabolome disruption of pregnant rats and their offspring resulting from repeated exposure to a pesticide mixture representative of environmental contamination in Brittany. PLoS One 2018; 13:e0198448. [PMID: 29924815 PMCID: PMC6010212 DOI: 10.1371/journal.pone.0198448] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
The use of pesticides exposes humans to numerous harmful molecules. Exposure in early-life may be responsible for adverse effects in later life. This study aimed to assess the metabolic modifications induced in pregnant rats and their offspring by a pesticide mixture representative of human exposure. Ten pregnant rats were exposed to a mixture of eight pesticides: acetochlor (246 μg/kg bw/d) + bromoxynil (12 μg/kg bw/d) + carbofuran (22.5 μg/kg bw/d) + chlormequat (35 μg/kg bw/d) + ethephon (22.5 μg/kg bw/d) + fenpropimorph (15.5 μg/kg bw/d) + glyphosate (12 μg/kg bw/d) + imidacloprid (12.5 μg/kg bw/d) representing the main environmental pesticide exposure in Brittany (France) in 2004. Another group of 10 pregnant rats served as controls. Females were fed ad libitum from early pregnancy, which is from gestational day (GD) 4 to GD 21. Urine samples were collected at GD 15. At the end of the exposure, mothers and pups were euthanized and blood, liver, and brain samples collected. 1H NMR-based metabolomics and GC-FID analyses were performed and PCA and PLS-DA used to discriminate between control and exposed groups. Metabolites for which the levels were significantly modified were then identified using the Kruskal-Wallis test, and p-values were adjusted for multiple testing correction using the False Discovery Rate. The metabolomics analysis revealed many differences between dams of the two groups, especially in the plasma, liver and brain. The modified metabolites are involved in TCA cycle, energy production and storage, lipid and carbohydrate metabolism, and amino-acid metabolism. These modifications suggest that the pesticide mixture may induce oxidative stress associated with mitochondrial dysfunction and the impairment of glucose and lipid metabolism. These observations may reflect liver dysfunction with increased relative liver weight and total lipid content. Similar findings were observed for glucose and energy metabolism in the liver of the offspring, and oxidative stress was also suggested in the brains of male offspring.
Collapse
Affiliation(s)
- Nathalie Bonvallot
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Cécile Canlet
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Florence Blas-Y-Estrada
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Roselyne Gautier
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Marie Tremblay-Franco
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Sylvie Chevolleau
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| | - Sylvaine Cordier
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | - Jean-Pierre Cravedi
- INRA UMR 1331 Toxalim, University of Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toulouse, France
| |
Collapse
|
53
|
Lewis RC, Meeker JD, Basu N, Gauthier AM, Cantoral A, Mercado-García A, Peterson KE, Téllez-Rojo MM, Watkins DJ. Urinary metal concentrations among mothers and children in a Mexico City birth cohort study. Int J Hyg Environ Health 2018; 221:609-615. [PMID: 29703512 PMCID: PMC6197859 DOI: 10.1016/j.ijheh.2018.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Personal care product use is a potential source of metals exposure among children, but studies have been limited. We measured urinary concentrations of 10 metals (aluminum, arsenic [As], barium [Ba], cadmium, cobalt [Co], lead [Pb], manganese [Mn], molybdenum [Mo], nickel, and zinc [Zn]) in third trimester pregnant women (n = 212) and their children at 8-14 years of age (n = 250). Demographic factors (child sex, age, socioeconomic status, and maternal education), body mass index (BMI) z-score, and child personal care product use in the 24 h prior to urine collection were examined as predictors of urinary metal concentrations. Metals were detected in 80-100% of urine samples, with significant differences in maternal versus childhood levels. However, metal concentrations were not strongly correlated within or between time points. In linear regression models including all demographic characteristics, BMI z-score, and specific gravity, age was associated with higher Co (6% [95% CI: 2, 10]), while BMI z-score was associated with lower Mo (-6% [95% CI: -11, -1). In addition, significantly higher metal concentrations were observed among users of colored cosmetics (Mo: 42% [95% CI: 1, 99]), deodorant (Ba: 28% [3, 58]), hair spray/hair gel (Mn: 22% [3, 45]), and other toiletries (As: 50% [9, 108]), as well as with an increasing number of personal care products used (As: 7% [3, 11]) after adjustment for child sex, age, total number of products used, and specific gravity. However, significantly lower metal concentrations were noted for users of hair cream (As and Zn: -20% [-36, -2] and -21% [-35, -2], respectively), shampoo (Pb: -40% [-62, -7]), and other hair products (Pb: -44% [-65, -9]). We found that personal care product use may be a predictor of exposure to multiple metals among children. Further research is recommended to inform product-specific exposure source identification and related child health risk assessment efforts.
Collapse
Affiliation(s)
- Ryan C Lewis
- Center for Health Sciences, Exponent, Inc., Oakland, CA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | | | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, MOR, Mexico
| | - Adriana Mercado-García
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, MOR, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, MOR, Mexico
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
54
|
Eskenazi B, An S, Rauch SA, Coker ES, Maphula A, Obida M, Crause M, Kogut KR, Bornman R, Chevrier J. Prenatal Exposure to DDT and Pyrethroids for Malaria Control and Child Neurodevelopment: The VHEMBE Cohort, South Africa. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047004. [PMID: 29648420 PMCID: PMC6071803 DOI: 10.1289/ehp2129] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Although indoor residual spraying (IRS) with dichlorodiphenyltrichloroethane (DDT) and pyrethroids effectively controls malaria, it potentially increases human exposure to these insecticides. Previous studies suggest that prenatal exposure to these insecticides may impact human neurodevelopment. OBJECTIVES We aimed to estimate the effects of maternal insecticide exposure and neurodevelopment of toddlers living in a malaria-endemic region currently using IRS. METHODS The Venda Health Examination of Mothers, Babies and their Environment (VHEMBE) is a birth cohort of 752 mother-child pairs in Limpopo, South Africa. We measured maternal exposure to DDT and its breakdown product, dichlorodiphenyldichloroethylene (DDE), in maternal serum, and measured pyrethroid metabolites in maternal urine. We assessed children's neurodevelopment at 1 and 2 y of age using the Bayley Scales of Infant Development, third edition (BSID-III), and examined associations with maternal exposure. RESULTS DDT and DDE were not associated with significantly lower scores for any BSID-III scale. In contrast, each 10-fold increase in cis-DCCA, trans-DCCA, and 3-phenoxybenzoic acid were associated, respectively, with a -0.63 (95% CI: -1.14, -0.12), -0.48 (95% CI: -0.92, -0.05), and -0.58 (-1.11, -0.06) decrement in Social-Emotional scores at 1 y of age. In addition, each 10-fold increase in maternal cis-DBCA levels was associated with significant decrements at 2 y of age in Language Composite scores and Expressive Communication scores [β=-1.74 (95% CI: -3.34, -0.13) and β=-0.40 (95% CI: -0.77, -0.04), respectively, for a 10-fold increase]. Significant differences by sex were estimated for pyrethroid metabolites and motor function scores at 2 y of age, with higher scores for boys and lower scores for girls. CONCLUSIONS Prenatal exposure to pyrethroids may be associated at 1 y of age with poorer social-emotional development. At 2 y of age, poorer language development was observed with higher prenatal pyrethroid levels. Considering the widespread use of pyrethroids, these findings deserve further investigation. https://doi.org/10.1289/EHP2129.
Collapse
Affiliation(s)
- Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Sookee An
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Stephen A Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Eric S Coker
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Angelina Maphula
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Madelein Crause
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Katherine R Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Department of Urology, University of Pretoria, Pretoria, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
55
|
Associations of maternal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-D with birth outcomes and anogenital distance at 3 months in the Odense Child Cohort. Reprod Toxicol 2018; 76:53-62. [DOI: 10.1016/j.reprotox.2017.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022]
|
56
|
Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D. Pyrethroid pesticide residues in the global environment: An overview. CHEMOSPHERE 2018; 191:990-1007. [PMID: 29145144 DOI: 10.1016/j.chemosphere.2017.10.115] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 05/07/2023]
Abstract
Pyrethroids are synthetic organic insecticides with low mammalian toxicity that are widely used in both rural and urban areas worldwide. After entering the natural environment, pyrethroids circulate among the three phases of solid, liquid, and gas and enter organisms through food chains, resulting in substantial health risks. This review summarized the available studies on pyrethroid residues since 1986 in different media at the global scale and indicated that pyrethroids have been widely detected in a range of environments (including soils, water, sediments, and indoors) and in organisms. The concentrations and detection rates of agricultural pyrethroids, which always contain α-cyanogroup (α-CN), such as cypermethrin and fenvalerate, decline in the order of crops > sediments > soils > water. Urban pyrethroids (not contain α-CN), such as permethrin, have been detected at high levels in the indoor environment, and 3-phenoxybenzoic acid, a common pyrethroid metabolite in human urine, is frequently detected in the human body. Pyrethroid pesticides accumulate in sediments, which are a source of pyrethroid residues in aquatic products.
Collapse
Affiliation(s)
- Wangxin Tang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Di Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiaqi Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhengwen Wu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Mingli Huang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shaohui Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dongyun Yan
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
57
|
Khemiri R, Côté J, Fetoui H, Bouchard M. Documenting the kinetic time course of lambda-cyhalothrin metabolites in orally exposed volunteers for the interpretation of biomonitoring data. Toxicol Lett 2017; 276:115-121. [DOI: 10.1016/j.toxlet.2017.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
58
|
Navarrete-Meneses MP, Salas-Labadía C, Sanabrais-Jiménez M, Santana-Hernández J, Serrano-Cuevas A, Juárez-Velázquez R, Olaya-Vargas A, Pérez-Vera P. "Exposure to the insecticides permethrin and malathion induces leukemia and lymphoma-associated gene aberrations in vitro". Toxicol In Vitro 2017. [PMID: 28624474 DOI: 10.1016/j.tiv.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Epidemiological studies have associated the exposure to permethrin and malathion with increased risk of leukemia and lymphoma. The aim of this study was to evaluate whether in vitro exposure to permethrin and malathion induces aberrations in genes involved in the etiology of these hematological malignancies. Genetic abnormalities in the IGH, KMT2A (MLL), ETV6 and RUNX1 genes, and aneuploidy induced by the in vitro exposure to permethrin and malathion (200μM, 24h), were analyzed by FISH in peripheral blood mononuclear cells (PBMCs). The gene fusions IGH-BCL2, KMT2A-AFF1 and ETV6-RUNX1 were further analyzed with nested RT-PCR in PBMCs, and in K562 cells exposed to acute and chronic treatments (0.1μM, 24h or every third day for two weeks) of insecticides. FISH analysis revealed that permethrin induces aneuploidy and structural alterations in IGH and KMT2A genes, and malathion induces breaks in KMT2A. RT-PCR detected ETV6-RUNX1 fusion in PBMCs acutely exposed to permethrin. Permethrin also induced ETV6-RUNX1 and IGH-BCL2 fusions in K562 cells, and malathion induced KMT2A-AFF1 and ETV6-RUNX1 fusions. Overall, we identified that both insecticides induce breaks and fusions in the studied genes, and permethrin induces aneuploidy. This study presents evidence of damage in cancer genes caused by these insecticides.
Collapse
Affiliation(s)
- M P Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C. Delegación Coyoacán, CP 04530 Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| | - C Salas-Labadía
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C. Delegación Coyoacán, CP 04530 Ciudad de México, Mexico
| | - M Sanabrais-Jiménez
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C. Delegación Coyoacán, CP 04530 Ciudad de México, Mexico
| | - J Santana-Hernández
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C. Delegación Coyoacán, CP 04530 Ciudad de México, Mexico
| | - A Serrano-Cuevas
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C. Delegación Coyoacán, CP 04530 Ciudad de México, Mexico
| | - R Juárez-Velázquez
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C. Delegación Coyoacán, CP 04530 Ciudad de México, Mexico
| | - A Olaya-Vargas
- Unidad de Trasplante de Células Progenitoras Hematopoyéticas, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C. Delegación Coyoacán, CP 04530 Ciudad de México, Mexico
| | - P Pérez-Vera
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C. Delegación Coyoacán, CP 04530 Ciudad de México, Mexico.
| |
Collapse
|