51
|
Dipteran Carboxymethyl Chitosan as an Inexhaustible Derivative with a Potential Antiproliferative Activity in Hepatocellular Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4396305. [PMID: 33062011 PMCID: PMC7539079 DOI: 10.1155/2020/4396305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022]
Abstract
Traditional folk therapies indicate that insects have diverse medicinal potentials. However, the therapeutic application of insect chitosan and its derivatives has not been explored. To investigate the application of chitosan and its derivatives, the carboxymethyl derivative of chitosan (CM-Ch) was extracted from two dipteran larvae species, Chrysomya albiceps and Sarcophaga aegyptiaca. The degree of deacetylation (DD) and CM-Ch functional groups were validated using Fourier-transform infrared (FTIR) spectroscopy analysis and proton nuclear magnetic resonance spectroscopy (1H NMR), respectively. The molecular weight was estimated using MALDI-TOF MS analysis. The effect of CM-Ch on the morphology and proliferation of human liver HepG2 cancer cells was assessed. IC50 of CM-Ch induced significant growth-inhibitory effects in HepG2 cells. CM-Ch treatment altered the morphology of HepG2 in a dose-dependent manner and induced apoptosis in a caspase-dependent manner. CM-Ch treatment showed no signs of toxicity, and no alterations in liver and kidney biochemical markers were observed in albino rats. A CM-Ch derivative from commercial crustacean chitosan was used to assess the efficacy of the insect-derived CM-Ch. The data presented here introduce insect CM-Ch as a promising, inexhaustible, safe derivative of chitosan with antitumor potential in liver cancer. This is the first report highlighting the anticancer activity of insect CM-Ch in hepatocellular carcinoma cells.
Collapse
|
52
|
Wang D, Zhang N, Meng G, He J, Wu F. The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing. Colloids Surf B Biointerfaces 2020; 194:111191. [DOI: 10.1016/j.colsurfb.2020.111191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
|
53
|
Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv Healthc Mater 2020; 9:e2000905. [PMID: 32940025 DOI: 10.1002/adhm.202000905] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Broad interest in developing new hemostatic technologies arises from unmet needs in mitigating uncontrolled hemorrhage in emergency, surgical, and battlefield settings. Although a variety of hemostats, sealants, and adhesives are available, development of ideal hemostatic compositions that offer a range of remarkable properties including capability to effectively and immediately manage bleeding, excellent mechanical properties, biocompatibility, biodegradability, antibacterial effect, and strong tissue adhesion properties, under wet and dynamic conditions, still remains a challenge. Benefiting from tunable mechanical properties, high porosity, biocompatibility, injectability and ease of handling, polymeric hydrogels with outstanding hemostatic properties have been receiving increasing attention over the past several years. In this review, after shedding light on hemostasis and wound healing processes, the most recent progresses in hydrogel systems engineered from natural and synthetic polymers for hemostatic applications are discussed based on a comprehensive literature review. Most studies described used in vivo models with accessible and compressible wounds to assess the hemostatic performance of hydrogels. The challenges that need to be tackled to accelerate the translation of these novel hemostatic hydrogel systems to clinical practice are emphasized and future directions for research in the field are presented.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ehsan Zeimaran
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nurshen Mutlu
- FunGlass – Centre for Functional and Surface Functionalized Glass Alexander Dubcek University of Trencin Trencin 911 50 Slovakia
| | - Aldo R. Boccaccini
- Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen‐Nuremberg Erlangen 91058 Germany
| |
Collapse
|
54
|
Rondon EP, Benabdoun HA, Vallières F, Segalla Petrônio M, Tiera MJ, Benderdour M, Fernandes JC. Evidence Supporting the Safety of Pegylated Diethylaminoethyl-Chitosan Polymer as a Nanovector for Gene Therapy Applications. Int J Nanomedicine 2020; 15:6183-6200. [PMID: 32922001 PMCID: PMC7450204 DOI: 10.2147/ijn.s252397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Diethylaminoethyl-chitosan (DEAE-CH) is a derivative with excellent potential as a delivery vector for gene therapy applications. The aim of this study is to evaluate its toxicological profile for potential future clinical applications. METHODS An endotoxin-free chitosan (CH) modified with DEAE, folic acid (FA) and polyethylene glycol (PEG) was used to complex small interfering RNA (siRNA) and form nanoparticles (DEAE12-CH-PEG-FA2/siRNA). Based on the guidelines from the International Organization for Standardization (ISO), the American Society for Testing and Materials (ASTM), and the Nanotechnology Characterization Laboratory (NCL), we evaluated the effects of the interaction between these nanoparticles and blood components. In vitro screening assays such as hemolysis, hemagglutination, complement activation, platelet aggregation, coagulation times, cytokine production, and reactive species, such as nitric oxide (NO) and reactive oxygen species (ROS), were performed on erythrocytes, plasma, platelets, peripheral blood mononuclear cells (PBMC) and Raw 264.7 macrophages. Moreover, MTS and LDH assays on Raw 264.7 macrophages, PBMC and MG-63 cells were performed. RESULTS Our results show that a targeted theoretical plasma concentration (TPC) of DEAE12-CH-PEG-FA2/siRNA nanoparticles falls within the guidelines' thresholds: <1% hemolysis, 2.9% platelet aggregation, no complement activation, and no effect on coagulation times. ROS and NO production levels were comparable to controls. Cytokine secretion (TNF-α, IL-6, IL-4, and IL-10) was not affected by nanoparticles except for IL-1β and IL-8. Nanoparticles showed a slight agglutination. Cell viability was >70% for TPC in all cell types, although LDH levels were statistically significant in Raw 264.7 macrophages and PBMC after 24 and 48 h of incubation. CONCLUSION These DEAE12-CH-PEG-FA2/siRNA nanoparticles fulfill the existing ISO, ASTM and NCL guidelines' threshold criteria, and their low toxicity and blood biocompatibility warrant further investigation for potential clinical applications.
Collapse
Affiliation(s)
- Elsa Patricia Rondon
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Houda Abir Benabdoun
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Francis Vallières
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Maicon Segalla Petrônio
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, UNESP-São Paulo State University, São José Do Rio Preto, São Paulo State, Brazil
| | - Marcio José Tiera
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, UNESP-São Paulo State University, São José Do Rio Preto, São Paulo State, Brazil
| | - Mohamed Benderdour
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Julio Cesar Fernandes
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| |
Collapse
|
55
|
Gordienko MG, Palchikova VV, Kalenov SV, Lebedev EA, Belov AA, Menshutina NV. The alginate–chitosan composite sponges with biogenic Ag nanoparticles produced by combining of cryostructuration, ionotropic gelation and ion replacement methods. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1798439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mariia G. Gordienko
- International Science and Education Centre for Transfer of Biopharmaceutical Technologies, D.I. Mendeleyev University of Chemical-Technology of Russia, Moscow, Russian Federation
| | - Vera V. Palchikova
- International Science and Education Centre for Transfer of Biopharmaceutical Technologies, D.I. Mendeleyev University of Chemical-Technology of Russia, Moscow, Russian Federation
| | - Sergei V. Kalenov
- Biotechnology Department, D.I. Mendeleyev University of Chemical-Technology of Russia, Moscow, Russian Federation
| | - Evgeniy A. Lebedev
- International Science and Education Centre for Transfer of Biopharmaceutical Technologies, D.I. Mendeleyev University of Chemical-Technology of Russia, Moscow, Russian Federation
| | - Alexei A. Belov
- Biotechnology Department, D.I. Mendeleyev University of Chemical-Technology of Russia, Moscow, Russian Federation
| | - Natalia V. Menshutina
- International Science and Education Centre for Transfer of Biopharmaceutical Technologies, D.I. Mendeleyev University of Chemical-Technology of Russia, Moscow, Russian Federation
| |
Collapse
|
56
|
Souza MPCD, Sábio RM, Ribeiro TDC, Santos AMD, Meneguin AB, Chorilli M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int J Biol Macromol 2020; 159:804-822. [PMID: 32425271 PMCID: PMC7232078 DOI: 10.1016/j.ijbiomac.2020.05.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The development of gastroretentive systems have been growing lately due to the high demand for carriers that increase drug bioavailability and therapeutic effectiveness after oral administration. Most of systems reported up to now are based on chitosan (CS) due to its peculiar properties, such as cationic nature, biodegradability, biocompatibility and important mucoadhesiveness, which make CS a promising biopolymer to design effective gastroretentive systems. In light of this, we reported in this review the CS versatility to fabricate different types of nano- and microstructured gastroretentive systems. For a better understanding of the gastric retention mechanisms, we highlighted expandable, density-based, magnetic, mucoadhesive and superporous systems. The biological and chemical properties of CS, anatomophysiological aspects related to gastrointestinal tract (GIT) and some applications of these systems are also described here. Overall, this review may assist researchers to explore new strategies to design safe and efficient gastroretentive systems in order to popularize them in the treatment of diseases and clinical practices.
Collapse
Affiliation(s)
- Maurício Palmeira Chaves de Souza
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Tais de Cassia Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Aline Martins Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|
57
|
Abstract
Composite chitosan fibers filled with chitin nanofibrils (CNF) were obtained by the wet spinning method. The paper discusses the mechanical properties of such type fibers and their hemocompatibility, as well as the possibility of optimizing these properties by adding chitin nanofibrils. It was shown that low CNF concentration (about 0.5%) leads to an increase in fiber tensile strength due to the additional orientation of chitosan macromolecules. At the same time, with an increase in the content of CNF, the stability of the mechanical properties of composite fibers in a humid medium increases. All chitosan fibers, except 0.5% CNF, showed good hemocompatibility, even on prolonged contact with human blood. The addition of chitin nanofibers leads to decrease in hemoglobin molecules sorption due to the decline in optical density at wavelengths of 414 nm and 540 nm. Nevertheless, the hemolysis of fibers was comparable or even lesser that carbon hemosorbent, which is actively used in clinical practice.
Collapse
|
58
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
59
|
Pour Khalili N, Moradi R, Kavehpour P, Islamzada F. Boron nitride nanotube clusters and their hybrid nanofibers with polycaprolacton: Thermo-pH sensitive drug delivery functional materials. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
First study on telomerization of chitosan and guar hemicellulose with butadiene: Influence of reaction parameters on the substitution degree of the biopolymers. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
61
|
Wang F, Pang Y, Chen G, Wang W, Chen Z. Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking. Carbohydr Polym 2020; 229:115529. [DOI: 10.1016/j.carbpol.2019.115529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022]
|
62
|
Ibrahim HM, Mostafa M, Kandile NG. Potential use of N-carboxyethylchitosan in biomedical applications: Preparation, characterization, biological properties. Int J Biol Macromol 2020; 149:664-671. [PMID: 32014481 DOI: 10.1016/j.ijbiomac.2020.01.299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/24/2022]
Abstract
N-carboxyethylchitosan (CECS) was successfully prepared via Michael addition reaction of chitosan (CS) with acrylic acid in water. The structure of CECS was characterized by Fourier transform Infra-Red spectrometry (FT-IR), 1HNMR, elemental analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). Antibacterial activity of CECS was evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by using minimum inhibition concentration (MIC). The results showed that the prepared CECS soluble in water at wide range of pH values. In addition, it has amorphous character improve its chemical reactivity than CS itself, in addition it has been showed stronger antibacterial activity than chitosan itself due to the presence of both -COOH and -NH2 groups and the CECS shows higher antibacterial activity towards S. aureus than E. coli. Finally, the cytotoxicity of CECS has been evaluated through Cell viability assay, which confirm that CECS is non-toxic and tissue compatible like CS.
Collapse
Affiliation(s)
- H M Ibrahim
- Textile Research Division, National Research Centre, 33 El Bohouthst. (Former El Tahrir St.), Dokki, P.O.12622, Giza, Egypt.
| | - M Mostafa
- Chemistry Department, Faculty of Girls for Arts, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - N G Kandile
- Chemistry Department, Faculty of Girls for Arts, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| |
Collapse
|
63
|
Yang G, Sun H, Cao R, Liu Q, Mao X. Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5. Int J Biol Macromol 2020; 146:518-523. [PMID: 31917207 DOI: 10.1016/j.ijbiomac.2020.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
Chitosanases play an important role in chitosan degradation, and the enzymatic degradation products of chitosan show various biological activities. Here, a novel glycoside hydrolase family 46 chitosanase (named Csn-BAC) from Bacillus sp. MD-5 was heterologously expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was purified by Ni-NTA affinity chromatography, and its molecular weight was estimated to be 35 kDa by SDS-PAGE. Csn-BAC showed maximal activity toward colloidal chitosan at pH 7 and 40 °C. The enzymatic activity of Csn-BAC was enhanced by Mn2+, Cu2+ and Co2+ at 1 mM, and by Mn2+ at 5 mM. Thin-layer chromatography and electrospray ionization-mass spectrometry results demonstrated that Csn-BAC exhibited an endo-type cleavage pattern and hydrolyzed chitosan to yield, mainly, (GlcN)2 and (GlcN)3. The enzymatic properties of this chitosanase may make it a good candidate for use in oligosaccharide production-based industries.
Collapse
Affiliation(s)
- Guosong Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
64
|
Soliman OY, Alameh MG, De Cresenzo G, Buschmann MD, Lavertu M. Efficiency of Chitosan/Hyaluronan-Based mRNA Delivery Systems In Vitro: Influence of Composition and Structure. J Pharm Sci 2019; 109:1581-1593. [PMID: 31891675 DOI: 10.1016/j.xphs.2019.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
Messenger RNA (mRNA)-containing nanoparticles were produced by electrostatic complexation with a library of pharmaceutical grade chitosans with different degrees of deacetylation and hyaluronic acids (HAs) (native vs. sulfated). Polymer length (Mn), HA degree of sulfation (DS), and amine to phosphate to carboxyl + sulfate (from HA) ratio (N:P:C) were controlled. In vitro transfections were performed in the presence/absence of trehalose and at different pH. Particle size and ζ-potential were correlated with transfection efficiency. Polymer length and charge densities (degree of deacetylation, degree of sulfation) of both HA and chitosan had a direct influence on transfection efficiency through modulation of avidity to mRNA. N:P:C ratio, trehalose, mixing concentration, and nucleic acid dose influenced transfection efficiency with optimized formulations reaching ∼60%-65% transfection efficiency relative to commercially available lipid control with no apparent toxicity for transfection at slightly acidic pH 6.5.
Collapse
Affiliation(s)
| | - Mohamad Gabriel Alameh
- Infectious Disease Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gregory De Cresenzo
- Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada; Department of Chemical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Michael D Buschmann
- Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030
| | - Marc Lavertu
- Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada; Department of Chemical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
65
|
Souza Campelo C, Chevallier P, Loy C, Silveira Vieira R, Mantovani D. Development, Validation, and Performance of Chitosan-Based Coatings Using Catechol Coupling. Macromol Biosci 2019; 20:e1900253. [PMID: 31834670 DOI: 10.1002/mabi.201900253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/15/2019] [Indexed: 01/20/2023]
Abstract
The use of long-lasting polymer coatings on biodevice surfaces has been investigated to improve material-tissue interaction, minimize adverse effects, and enhance their functionality. Natural polymers, especially chitosan, are of particular interest due to their excellent biological properties, such as biocompatibility, non-toxicity, and antimicrobial properties. One way to produce chitosan coating is by covalent grafting with catechol molecules such as dopamine, caffeic acid, and tannic acid, resulting in an attachment ten times stronger than that of simple physisorption. Caffeic acid presents an advantage over dopamine because it allows direct chitosan grafting, due to its terminal carboxylic acid group, without the need of a linking arm, as employed in the dopamine approach. In this study, the grafting of chitosan using caffeic acid, over surfaces or in solution, is compared with dopamine grafting using poly(ethylene glycol) as a linking arm. The following coating properties are observed; covering and homogeneity are assessed by X-ray photoelectron spectroscopy and atomic force microscopy analyses, hydrophilicity with contact angle measurements, stability with aging tests, anticorrosion behavior, and coating non-toxicity. Results show that grafting using caffeic acid/chitosan in solution over a metallic surface may be advantageous, compared to traditional dopamine coating.
Collapse
Affiliation(s)
- Clayton Souza Campelo
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Eng., & University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, G1V 0A6, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Eng., & University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, G1V 0A6, Canada
| | - Caroline Loy
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Eng., & University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, G1V 0A6, Canada
| | - Rodrigo Silveira Vieira
- Grupo de Pesquisa em Separação por Adsorção, Department of Chemical Eng., Federal University of Ceará, Campus do Pici - Bloco 709, Fortaleza, Ceará, 60455-760, Brazil
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Eng., & University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, G1V 0A6, Canada
| |
Collapse
|
66
|
Queda F, Covas G, Silva T, Santos CA, Bronze MR, Cañada FJ, Corvo MC, Filipe SR, Marques MMB. A top-down chemo-enzymatic approach towards N-acetylglucosamine-N-acetylmuramic oligosaccharides: Chitosan as a reliable template. Carbohydr Polym 2019; 224:115133. [DOI: 10.1016/j.carbpol.2019.115133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
67
|
Kamel R, El-batanony R, Salama A. Pioglitazone-loaded three-dimensional composite polymeric scaffolds: A proof of concept study in wounded diabetic rats. Int J Pharm 2019; 570:118667. [DOI: 10.1016/j.ijpharm.2019.118667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
68
|
Zakharova NV, Simonova MA, Zelinskii SN, Annenkov VV, Filippov AP. Synthesis, molecular characteristics, and stimulus-sensitivity of graft copolymer of chitosan and poly(N,N-diethylacrylamide). J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
69
|
Cegłowski M, Kurczewska J, Ruszkowski P, Schroeder G. Application of paclitaxel-imprinted microparticles obtained using two different cross-linkers for prolonged drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
70
|
Hemodialysis performance and anticoagulant activities of PVP-k25 and carboxylic-multiwall nanotube composite blended Polyethersulfone membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109769. [PMID: 31349444 DOI: 10.1016/j.msec.2019.109769] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 11/22/2022]
Abstract
Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.
Collapse
|
71
|
Bombaldi de Souza FC, Bombaldi de Souza RF, Drouin B, Popat KC, Mantovani D, Moraes ÂM. Polysaccharide-based tissue-engineered vascular patches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109973. [PMID: 31499972 DOI: 10.1016/j.msec.2019.109973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Coronary artery and peripheral vascular diseases are the leading cause of morbidity and mortality worldwide and often require surgical intervention to replace damaged blood vessels, including the use of vascular patches in endarterectomy procedures. Tissue engineering approaches can be used to obtain biocompatible and biodegradable materials directed to this application. In this work, dense or porous scaffolds constituted of chitosan (Ch) complexed with alginate (A) or pectin (P) were fabricated and characterized considering their application as tissue-engineered vascular patches. Scaffolds fabricated with alginate presented higher culture medium uptake capacity (up to 17 g/g) than materials produced with pectin. A degradation study of the patches in the presence of lysozyme showed longer-term stability for Ch-P-based scaffolds. Pectin-containing matrices presented higher elastic modulus (around 280 kPa) and ability to withstand larger deformations. Moreover, these materials demonstrated better performance when tested for hemocompatibility, with lower levels of platelet adhesion and activation. Human smooth muscle cells (HSMC) adhered, spread and proliferated better on matrices produced with pectin, probably as a consequence of cell response to higher stiffness of this material. Thus, the outcomes of this study demonstrate that Ch-P-based scaffolds present superior characteristics for the application as vascular patches. Despite polysaccharides are yet underrated in this field, this work shows that biocompatible tridimensional structures based on these polymers present high potential to be applied for the reconstruction and regeneration of vascular tissues.
Collapse
Affiliation(s)
- Fernanda Carla Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bernard Drouin
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Ketul C Popat
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
72
|
Markowicz-Piasecka M, Skupień A, Mikiciuk-Olasik E, Sikora J. Biocompatibility Studies of Gadolinium Complexes with Iminodiacetic Acid Derivatives. Biol Trace Elem Res 2019; 189:426-436. [PMID: 30215189 PMCID: PMC6469645 DOI: 10.1007/s12011-018-1496-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
Abstract
Apart from using as radiopharmaceuticals, iminodiacetic acid derivatives, after complexation with gadolinium, have been also tested as MRI CAs (magnetic resonance imaging contrast agents) since they show high affinity to hepatocytes and therefore provide high-resolution MRI of the liver. The purpose of this study was to evaluate the biocompatibility of four gadolinium complexes with iminodiacetic acid (IDA) derivatives differing in substituent in aromatic ring by estimating their influence on plasma hemostasis, integrity of erythrocyte membrane, and toxicity towards human umbilical vein endothelial cells (HUVECs). The influence of gadolinium-based CAs on plasma hemostasis was evaluated by measuring PT (prothrombin time), APTT (activated partial tromboplastin time), and TT (thrombin time). The effects of tested compounds on RBCs (Red Blood Cells) were assessed using hemolysis assay and microscopy studies. The influence of gadolinium complexes on the barrier properties of HUVECs was assessed by means of real-time method based on the measurements of the impedance changes of the cells. Gadolinium complexes did not affect significantly PT and TT. APTT measurements revealed significant prolongation in the presence of all tested gadolinium complexes at the concentration higher than 0.5 μmol/mL. Hemolysis assay showed that compounds with alkyl substituents in benzene ring without halogen atom (1-3) do not exert unfavorable effect on the integrity of erythrocyte membrane over the entire concentration range. All gadolinium complexes at 1.0 μmol/mL contribute to the decrease in HUVEC viability and integrity. To conclude, the study describes biocompatibility studies of gadolinium-based CAs, provides additional insight into their potential toxicity associated with systemic administration, and underscores the necessity for further research.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland
| | - Agata Skupień
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland
| |
Collapse
|
73
|
Eskandari P, Bigdeli B, Porgham Daryasari M, Baharifar H, Bazri B, Shourian M, Amani A, Sadighi A, Goliaei B, Khoobi M, Saboury AA. Gold-capped mesoporous silica nanoparticles as an excellent enzyme-responsive nanocarrier for controlled doxorubicin delivery. J Drug Target 2019; 27:1084-1093. [PMID: 30900473 DOI: 10.1080/1061186x.2019.1599379] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have ideal characteristics as next generation of controlled drug delivery systems. In this study, a MSN-based nanocarrier was fabricated and gold nanoparticle (GNP)-biotin conjugates were successfully grafted onto the pore outlets of the prepared MSN. This bioconjugate served as a capping agent with a peptide-cleavable linker sensitive to matrix metalloproteinases (MMPs), which are overexpressed extracellular proteolytic enzymes in cancerous tissue. The prepared nanocarriers were fully characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption, Fourier transform infra-red spectroscopy (FTIR), dynamic light scattering (DLS) and thermo gravimetric analysis (TGA). In vitro release studies showed efficient capping of MSNs with gold gate and controlled release of Doxorubicin (DOX) in the presence of matrix metalloproteinase-2 (MMP-2) and acidic pH values. High DOX-loading capacity (21%) and encapsulation efficiency (95.5%) were achieved using fluorescence technique. DOX-loaded nanocarriers showed high cytocompatibility and could efficiently induce cell death and apoptosis in the MMP-2 overexpressed cell lines. Moreover, Haemolysis, platelet activation and inflammatory responses assessment approved excellent hemocompatibility and minimal side effects by encapsulation of DOX in MSNs carrier.
Collapse
Affiliation(s)
- Parvaneh Eskandari
- Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Bahare Bigdeli
- Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Mohammad Porgham Daryasari
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Behroz Bazri
- Department of Chemistry, Amirkabir University of Technology , Tehran , Iran
| | | | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Armin Sadighi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston , RI, USA
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Mehdi Khoobi
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Ali A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| |
Collapse
|
74
|
Alves P, Santos M, Mendes S, P Miguel S, D de Sá K, S D Cabral C, J Correia I, Ferreira P. Photocrosslinkable Nanofibrous Asymmetric Membrane Designed for Wound Dressing. Polymers (Basel) 2019; 11:E653. [PMID: 30974796 PMCID: PMC6523099 DOI: 10.3390/polym11040653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Recently, the biomedical scientists who are working in the skin regeneration area have proposed asymmetric membranes as ideal wound dressings, since they are able to reproduce both layers of skin and improve the healing process as well as make it less painful. Herein, an electrospinning technique was used to produce new asymmetric membranes. The protective layer was composed of a blending solution between polycaprolactone and polylactic acid, whereas the underlying layer was comprised of methacrylated gelatin and chitosan. The chemical/physical properties, the in vitro hemo- and biocompatibility of the nanofibrous membranes were evaluated. The results obtained reveal that the produced membranes exhibited a wettability able to provide a moist environment at wound site. Moreover, the membranes' hemocompatibility and fibroblast cell adhesion, spreading and proliferation at the surface of the membranes were also noticed in the in vitro assays. Such results highlight the suitability of these asymmetric membranes for wound dressing applications.
Collapse
Affiliation(s)
- Patrícia Alves
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| | - Marta Santos
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| | - Sabrina Mendes
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| | - Sónia P Miguel
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Kevin D de Sá
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Cátia S D Cabral
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Ilídio J Correia
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Paula Ferreira
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| |
Collapse
|
75
|
Thermo-sensitive gellan maleate/N-isopropylacrylamide hydrogels: initial “in vitro” and “in vivo” evaluation as ocular inserts. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
76
|
Lim LT, Mendes AC, Chronakis IS. Electrospinning and electrospraying technologies for food applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:167-234. [PMID: 31151724 DOI: 10.1016/bs.afnr.2019.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospinning and electrospraying are versatile techniques for the production of nano- to micro-scale fibers and particles. Over the past 2 decades, significant progresses have been made to advance the fundamental understandings of these electrohydrodynamic processes. Researchers have investigated different polymeric and non-polymeric substrates for producing submicron electrospun/electrosprayed materials of unique morphologies and physicochemical properties. This chapter provides an overview on the basic principles of electrospinning and electrospraying, highlighting the effects of key processing and solution parameters. Electrohydrodynamic phenomena of edible substrates, including polysaccharides (xanthan, alginate, starch, cyclodextrin, pullulan, dextran, modified celluloses, and chitosan), proteins (zein, what gluten, whey protein, soy protein, gelatin, etc.), and phospholipids are reviewed. Selected examples are presented on how ultrafine fibers and particles derived from these substrates are being exploited for food and nutraceutical applications. Finally, the challenges and opportunities of the electrostatic methods are discussed.
Collapse
Affiliation(s)
- Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON, Canada.
| | - Ana C Mendes
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| | - Ioannis S Chronakis
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
77
|
Li T, Lü S, Yan J, Bai X, Gao C, Liu M. An Environment-Friendly Fertilizer Prepared by Layer-by-Layer Self-Assembly for pH-Responsive Nutrient Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10941-10950. [PMID: 30802026 DOI: 10.1021/acsami.9b01425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Layer-by-layer (LBL) self-assembly based on natural polysaccharides is drawing significant attention in various applications. However, its application in fertilizers is limited. In this study, LBL electrostatic self-assembly technology was employed to prepare an environment-responsive fertilizer with natural polyelectrolyte layers of chitosan and lignosulfonate deposited on polydopamine-coated ammonium zinc phosphate. The morphology of the fertilizer was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The composition and self-assembly process of the fertilizer were characterized by elemental analysis, Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy, zeta potential analysis, thermal analysis, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Excellent pH-responsive behavior was observed by the nutrient release results. In an alkaline medium at room temperature, the nutrient release rate can be clearly accelerated compared with that in acidic and neutral media. Moreover, pot experiments showed that the fertilizer can effectively promote plant growth. The pH-responsive environment-friendly fertilizer can control nutrient release and avoid excessive release of nutrients, showing promising applications in modern green and sustainable agriculture and horticulture.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Jia Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Xiao Bai
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273100 , People's Republic of China
| | - Chunmei Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| |
Collapse
|
78
|
Pokhrel S, Yadav PN. Functionalization of chitosan polymer and their applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1581576] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shanta Pokhrel
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
79
|
Appuhamillage GA, Berry DR, Benjamin CE, Luzuriaga MA, Reagan JC, Gassensmith JJ, Smaldone RA. A biopolymer‐based 3D printable hydrogel for toxic metal adsorption from water. POLYM INT 2019. [DOI: 10.1002/pi.5787] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gayan A Appuhamillage
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Danielle R Berry
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Candace E Benjamin
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Michael A Luzuriaga
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - John C Reagan
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Ronald A Smaldone
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| |
Collapse
|
80
|
Antony R, Arun T, Manickam STD. A review on applications of chitosan-based Schiff bases. Int J Biol Macromol 2019; 129:615-633. [PMID: 30753877 DOI: 10.1016/j.ijbiomac.2019.02.047] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Biopolymers have become very attractive as they are degradable, biocompatible, non-toxic and renewable. Due to the intrinsic reactive amino groups, chitosan is vibrant in the midst of other biopolymers. Using the versatility of these amino groups, various structural modifications have been accomplished on chitosan through certain chemical reactions. Chemical modification of chitosan via imine functionalization (RR'CNR″; R: alkyl/aryl, R': H/alkyl/aryl and R″: chitosan ring) is significant as it recommends the resultant chitosan-based Schiff bases (CSBs) for the important applications in the fields like biology, catalysis, sensors, water treatment, etc. CSBs are usually synthesized by the Schiff condensation reaction between chitosan's amino groups and carbonyl compounds with the removal of water molecules. In this review, we first introduce the available synthetic approaches for the preparation of CSBs. Then, we discuss the biological applications of CSBs including antimicrobial activity, anticancer activity, drug carrier ability, antioxidant activity and tissue engineering capacity. Successively, the applications of CSBs in other fields such as catalysis, adsorption and sensors are demonstrated.
Collapse
Affiliation(s)
- R Antony
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology (Autonomous), Tirunelveli 627152, Tamil Nadu, India.
| | - T Arun
- Department of Chemistry, Kamaraj College, Thoothukudi 628003, Tamil Nadu, India
| | - S Theodore David Manickam
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology (Autonomous), Tirunelveli 627152, Tamil Nadu, India.
| |
Collapse
|
81
|
Bahramzadeh E, Yilmaz E, Adali T. Chitosan-graft-poly(N-hydroxy ethyl acrylamide) copolymers: Synthesis, characterization and preliminary blood compatibility in vitro. Int J Biol Macromol 2019; 123:1257-1266. [DOI: 10.1016/j.ijbiomac.2018.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/16/2018] [Accepted: 12/02/2018] [Indexed: 12/21/2022]
|
82
|
Morin-Crini N, Lichtfouse E, Torri G, Crini G. Fundamentals and Applications of Chitosan. SUSTAINABLE AGRICULTURE REVIEWS 35 2019. [DOI: 10.1007/978-3-030-16538-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
83
|
Cloning, purification and characterization of a novel GH46 family chitosanase, Csn-CAP, from Staphylococcus capitis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
84
|
Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr Polym 2018; 202:382-396. [DOI: 10.1016/j.carbpol.2018.09.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022]
|
85
|
Irfan M, Irfan M, Idris A, Baig N, Saleh TA, Nasiri R, Iqbal Y, Muhammad N, Rehman F, Khalid H. Fabrication and performance evaluation of blood compatible hemodialysis membrane using carboxylic multiwall carbon nanotubes and low molecular weight polyvinylpyrrolidone based nanocomposites. J Biomed Mater Res A 2018; 107:513-525. [DOI: 10.1002/jbm.a.36566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Muhammad Irfan
- Interdisciplinary Research Centre in Biomedical Materials; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
- Faculty of Chemical and Energy Engineering; Institute of Bioproduct Development, Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering; Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
| | - Masooma Irfan
- Department of Chemistry; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
| | - Ani Idris
- Faculty of Chemical and Energy Engineering; Institute of Bioproduct Development, Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering; Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
| | - Nadeem Baig
- Chemistry Department; King Fahd University of Petroleum and Minerals; Dhahran, 31261 Saudi Arabia
| | - Tawfik A. Saleh
- Chemistry Department; King Fahd University of Petroleum and Minerals; Dhahran, 31261 Saudi Arabia
| | - Rozita Nasiri
- Faculty of Chemical and Energy Engineering; Institute of Bioproduct Development, Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering; Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
| | - Younas Iqbal
- Faculty of Science, Technology and Human Development; University Tun Hussein Onn Malaysia; 86400 Parit Raja Johor, Malaysia
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
| | - Fozia Rehman
- Interdisciplinary Research Centre in Biomedical Materials; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
| |
Collapse
|
86
|
Sun T, Guo X, Zhong R, Ma L, Li H, Gu Z, Guan J, Tan H, You C, Tian M. Interactions of oligochitosan with blood components. Int J Biol Macromol 2018; 124:304-313. [PMID: 30445093 DOI: 10.1016/j.ijbiomac.2018.11.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/15/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Abstract
Oligochitosan (OCHI) is known to have some specific biological activities. However, its interactions with blood components and related correlation with molecular structures remains to be clarified due to its growing use in biomedical areas. Herein, a series of OCHI were prepared by hydrogen peroxide induced degradation combined fractionation in ethanol solutions and their molecular structures were characterized by GPC, FTIR, 1H and 13C NMR, and then the interactions of the prepared OCHI with blood components, including red blood cells (hemolysis, deformability, and aggregation), coagulation system, complement (C3a, and C5a activation), and platelet (activation, and aggregation), were investigated. For red blood cells, OCHI has a quite low risk of hemolysis in a dose- and MW-dependent manner and the deformability and aggregation were observed in its high MW fraction. The coagulation tests revealed that OCHI is capable of a mild anticoagulation through blocking the intrinsic pathway and the anticoagulation corresponding MW was identified. In terms of complement, OCHI could inhibit C3a in a dose-dependent manner and activate C5a with its high MW fraction. In addition, there is no significant effect of OCHI on platelet activation and aggregation. Based on above results, the interactions related mechanism was discussed and proposed.
Collapse
Affiliation(s)
- Tong Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xi Guo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Meng Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
87
|
Narayanan V, Sumathi S. Preparation, characterization and in vitro biological study of silk fiber/methylcellulose composite for bone tissue engineering applications. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2518-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
88
|
Tamba B, Streinu V, Foltea G, Neagu A, Dodi G, Zlei M, Tijani A, Stefanescu C. Tailored surface silica nanoparticles for blood-brain barrier penetration: Preparation and in vivo investigation. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
89
|
Ouerghemmi S, Dimassi S, Tabary N, Leclercq L, Degoutin S, Chai F, Pierlot C, Cazaux F, Ung A, Staelens JN, Blanchemain N, Martel B. Synthesis and characterization of polyampholytic aryl-sulfonated chitosans and their in vitro anticoagulant activity. Carbohydr Polym 2018; 196:8-17. [DOI: 10.1016/j.carbpol.2018.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 10/17/2022]
|
90
|
Morphological, Mechanical and Mucoadhesive Properties of Electrospun Chitosan/Phospholipid Hybrid Nanofibers. Int J Mol Sci 2018; 19:ijms19082266. [PMID: 30072627 PMCID: PMC6121410 DOI: 10.3390/ijms19082266] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022] Open
Abstract
This study aimed to develop hybrid electrospun chitosan⁻phospholipid nanofibers and investigate the effect of phospholipid (P) content and chitosans (Ch) molecular weights (Mw) and degree of acetylation (DA), on the morphological, mechanical and mucoadhesive properties of the nanofibers. Electrospun Ch/P nanofibers exhibited a smooth and uniform surface with average diameters ranging from 300 to 1000 nm, as observed by scanning electron microscopy (SEM). The average diameter of the nanofibers was observed to increase with the increase of the Mw and degree of deacetylation of Ch, and phospholipid content. The elastic and adhesive properties of the nanofibers were determined by atomic force microscopy, and displayed higher values for higher Mw and lower DA Ch used. The elastic modulus of electrospun Ch/P hybrid fibers determined for the different conditions tested was found to be in the range of 500 and 1400 MPa. Furthermore, electrospun Ch/P nanofibers displayed mucoadhesive properties expressed by the work of adhesion calculated after the compression of the nanofibers against a section of pig small intestine. Our results showed that the increase in phospholipid content and DA of Ch decrease the work of adhesion, while the increase of Mw resulted in slightly higher work of adhesion of the nanofibers.
Collapse
|
91
|
Sharifi F, Atyabi SM, Norouzian D, Zandi M, Irani S, Bakhshi H. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol 2018; 115:243-248. [DOI: 10.1016/j.ijbiomac.2018.04.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
|
92
|
Cocoa Pod Husk Pectin Intended as a Pharmaceutical Excipient Has No Adverse Effects on Haematological Parameters in Sprague Dawley Rats. JOURNAL OF PHARMACEUTICS 2018; 2018:1459849. [PMID: 29955438 PMCID: PMC6000902 DOI: 10.1155/2018/1459849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/11/2018] [Accepted: 04/29/2018] [Indexed: 11/17/2022]
Abstract
Natural polymer research has recently become the focus of intensive research in the quest for new enabling excipients for novel drugs in pharmaceutical formulation for optimal treatment outcomes. Evaluations of some excipients have shown deleterious haematological effects of varying extents on the safety profile of these excipients. A 90-day subchronic toxicity study was conducted to evaluate the influence of cocoa pod husk (CPH) pectin on indicators for haematotoxicity. Male and female Sprague Dawley rats (SDRs) were fed with CPH pectin in doses up to 71.4 mg/kg. The effects of CPH pectin on the haematological indices, direct and total bilirubin, and the spleen were determined. The results indicated that CPH pectin did not induce any untoward toxic effects on the haematological indices, bilirubin levels, and the spleen. There were, however, elevations in MCV at day 30, which was not sustained after the 90 days. The data obtained from this study did not reveal any remarkable findings of toxicological relevance to the haematopoietic system.
Collapse
|
93
|
Mochalova AE, Smirnova LA. State of the Art in the Targeted Modification of Chitosan. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
94
|
Clifford A, Pang X, Zhitomirsky I. Biomimetically modified chitosan for electrophoretic deposition of composites. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
95
|
Silver nanoparticles-based hydrogel: Characterization of material parameters for pressure ulcer dressing applications. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
96
|
Fabrication of asymmetric nanostarch reinforced Chitosan/PVP membrane and its evaluation as an antibacterial patch for in vivo wound healing application. Int J Biol Macromol 2018; 114:204-213. [PMID: 29572145 DOI: 10.1016/j.ijbiomac.2018.03.092] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/08/2018] [Accepted: 03/19/2018] [Indexed: 11/23/2022]
Abstract
Starch is an abundant, relatively inexpensive and ecofriendly materials which can be easily convert into nanoparticle and also as filler for the preparation of bionanocomposite for wound dressing application. Symmetric and asymmetric Chitosan(C)/PVP(P) films containing porous structure supported with nanostarch (NS) were prepared by salt leaching method for wound dressing application. Symmetric Chitosan/PVP/Nanostarch (CPNS) film with 1% and 3% wt nanostarch was prepared without coating of stearic acid whereas asymmetric Chitosan/PVP/Nanostarch-Stearic acid (CPNS-S) film was prepared by coating of stearic acid. The stearic acid coated surface possesses hydrophobic water repellent, microporous, bacterial anti adhesion property and the stearic acid uncoated hydrophilic surface shows superior antibacterial and noncytotoxicity property with highly porous character. All the symmetric and asymmetric films exhibit almost same mechanical, barrier, swelling and hemolytic property reveals that the stearic acid does not affect the physical and hemolytic property whereas the concentration of nanostarch greatly influence the above property. The reinforcement of nanostarch with chitosan and PVP was proved by TEM and SEM analysis. The CPNS1%-S film shows excellent S. aureus anti adhesion property. Furthermore, the in vivo excision-type wound healing proved that the CPNS1%-S film enhanced the healing effect and increased re-epithelialization and collagen formation.
Collapse
|
97
|
Alfaro-González B, Ulate D, Alvarado R, Argüello-Miranda O. Chitosan-silver nanoparticles as an approach to control bacterial proliferation, spores and antibiotic-resistant bacteria. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaaafe] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
98
|
Abdel-Hafez SM, Hathout RM, Sammour OA. Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanning microscopy. Int J Biol Macromol 2018; 108:753-764. [DOI: 10.1016/j.ijbiomac.2017.10.170] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022]
|
99
|
Kumar IA, Viswanathan N. Preparation and testing of a tetra-amine copper(II) chitosan bead system for enhanced phosphate remediation. Carbohydr Polym 2018; 183:173-182. [DOI: 10.1016/j.carbpol.2017.11.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/11/2017] [Accepted: 11/24/2017] [Indexed: 11/15/2022]
|
100
|
CR R, PS S, O M, PP S, A S. Nanochitosan enriched poly ε-caprolactone electrospun wound dressing membranes: A fine tuning of physicochemical properties, hemocompatibility and curcumin release profile. Int J Biol Macromol 2018; 108:1261-1272. [DOI: 10.1016/j.ijbiomac.2017.11.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/28/2022]
|