51
|
JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood 2013; 122:3787-97. [PMID: 24085768 DOI: 10.1182/blood-2013-06-501452] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The principal morbidity and mortality in patients with essential thrombocythemia (ET) and polycythemia rubra vera (PV) stems from thrombotic events. Most patients with ET/PV harbor a JAK2V617F mutation, but its role in the thrombotic diathesis remains obscure. Platelet function studies in patients are difficult to interpret because of interindividual heterogeneity, reflecting variations in the proportion of platelets derived from the malignant clone, differences in the presence of additional mutations, and the effects of medical treatments. To circumvent these issues, we have studied a JAK2V617F knock-in mouse model of ET in which all megakaryocytes and platelets express JAK2V617F at a physiological level, equivalent to that present in human ET patients. We show that, in addition to increased differentiation, JAK2V617F-positive megakaryocytes display greater migratory ability and proplatelet formation. We demonstrate in a range of assays that platelet reactivity to agonists is enhanced, with a concomitant increase in platelet aggregation in vitro and a reduced duration of bleeding in vivo. These data suggest that JAK2V617F leads to intrinsic changes in both megakaryocyte and platelet biology beyond an increase in cell number. In support of this hypothesis, we identify multiple differentially expressed genes in JAK2V617F megakaryocytes that may underlie the observed biological differences.
Collapse
|
52
|
Ghevaert C. Megakaryopoiesis through the ages: from the twinkle in the eye to the fully grown adult. J Thromb Haemost 2013; 11:1727-9. [PMID: 23848222 DOI: 10.1111/jth.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 12/22/2022]
Affiliation(s)
- C Ghevaert
- Department of Haematology, University of Cambridge, Cambridge, UK; NHS Blood and Transplant, Cambridge, UK
| |
Collapse
|
53
|
Chen S, Su Y, Wang J. ROS-mediated platelet generation: a microenvironment-dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death Dis 2013; 4:e722. [PMID: 23846224 PMCID: PMC3730424 DOI: 10.1038/cddis.2013.253] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/18/2022]
Abstract
Platelets have an important role in the body because of their manifold functions in haemostasis, thrombosis, and inflammation. Platelets are produced by megakaryocytes (MKs) that are differentiated from haematopoietic stem cells via several consecutive stages, including MK lineage commitment, MK progenitor proliferation, MK differentiation and maturation, cell apoptosis, and platelet release. During differentiation, the cells migrate from the osteoblastic niche to the vascular niche in the bone marrow, which is accompanied by reactive oxygen species (ROS)-dependent oxidation state changes in the microenvironment, suggesting that ROS can distinctly influence platelet generation and function in a microenvironment-dependent manner. The objective of this review is to reveal the role of ROS in regulating MK proliferation, differentiation, maturation, and platelet activation, thereby providing new insight into the mechanism of platelet generation, which may lead to the development of new therapeutic agents for thrombocytopenia and/or thrombosis.
Collapse
Affiliation(s)
- S Chen
- College of Preventive Medicine, State Key Laboratory of Trauma and Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | |
Collapse
|
54
|
Abbonante V, Gruppi C, Rubel D, Gross O, Moratti R, Balduini A. Discoidin domain receptor 1 protein is a novel modulator of megakaryocyte-collagen interactions. J Biol Chem 2013; 288:16738-16746. [PMID: 23530036 DOI: 10.1074/jbc.m112.431528] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Growing evidence demonstrates that extracellular matrices regulate many aspects of megakaryocyte (MK) development; however, among the different extracellular matrix receptors, integrin α2β1 and glycoprotein VI are the only collagen receptors studied in platelets and MKs. In this study, we demonstrate the expression of the novel collagen receptor discoidin domain receptor 1 (DDR1) by human MKs at both mRNA and protein levels and provide evidence of DDR1 involvement in the regulation of MK motility on type I collagen through a mechanism based on the activity of SHP1 phosphatase and spleen tyrosine kinase (Syk). Specifically, we demonstrated that inhibition of DDR1 binding to type I collagen, preserving the engagement of the other collagen receptors, glycoprotein VI, α2β1, and LAIR-1, determines a decrease in MK migration due to the reduction in SHP1 phosphatase activity and consequent increase in the phosphorylation level of its main substrate Syk. Consistently, inhibition of Syk activity restored MK migration on type I collagen. In conclusion, we report the expression and function of a novel collagen receptor on human MKs, and we point out that an increasing level of complexity is necessary to better understand MK-collagen interactions in the bone marrow environment.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Cristian Gruppi
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Diana Rubel
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Oliver Gross
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Remigio Moratti
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Alessandra Balduini
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
55
|
Eliades A, Papadantonakis N, Matsuura S, Mi R, Bais MV, Trackman P, Ravid K. Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide. Cell Cycle 2013; 12:1242-50. [PMID: 23518500 DOI: 10.4161/cc.24312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Megakaryocytes (MKs), the platelet precursors, undergo an endomitotic cell cycle that leads to polyploidy. Lysyl oxidase propeptide (LOX-PP) is generated from lysyl oxidase (LOX) pro-enzyme after proteolytical cleavage. We recently reported that LOX, a known matrix cross-linking enzyme, contributes to MK lineage expansion. In addition, LOX expression levels are ploidy-dependent, with polyploidy MKs having minimal levels. This led us to test the effects of LOX-PP on the number and ploidy of primary MKs. LOX-PP significantly decreases mouse bone marrow MK ploidy coupled with a reduction in MK size. MK number is unchanged upon LOX-PP treatment. Analysis of LOX-PP- or vehicle-treated MKs by western blotting revealed a reduction in ERK1/2 phosphorylation and in the levels of its downstream targets, cyclin D3 and cyclin E, which are known to play a central role in MK endomitosis. Pull-down assays and immunochemistry staining indicated that LOX-PP interacts with α-tubulin and the mictotubules, which can contribute to decreased MK ploidy. Thus, our findings defined a role for LOX-PP in reducing MK ploidy. This suggests that high-level expression of LOX in aberrantly proliferating MKs could play a part in inhibiting their polyploidization via LOX-PP.
Collapse
Affiliation(s)
- Alexia Eliades
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Megakaryocyte-specific deletion of the protein-tyrosine phosphatases Shp1 and Shp2 causes abnormal megakaryocyte development, platelet production, and function. Blood 2013; 121:4205-20. [PMID: 23509158 DOI: 10.1182/blood-2012-08-449272] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SH2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2 have been implicated in regulating signaling from a variety of platelet and megakaryocyte receptors. In this study, we investigate the functions of Shp1 and Shp2 in megakaryocytes and platelets. Megakaryocyte/platelet (MP)-specific deletion of Shp1 in mice resulted in platelets being less responsive to collagen-related peptide due to reduced GPVI expression and signaling via the Src family kinase (SFK)-Syk-PLCγ2 pathway, and fibrinogen due to reduced SFK activity. By contrast, deletion of Shp2 in the MP lineage resulted in macrothrombocytopenia and platelets being hyper-responsive to anti-CLEC-2 antibody and fibrinogen. Shp1- and Shp2-deficient megakaryocytes had partial blocks at 2N/4N ploidy; however, only the latter exhibited reduced proplatelet formation, thrombopoietin, and integrin signaling. Mice deficient in both Shp1 and Shp2 were severely macrothrombocytopenic and had reduced platelet surface glycoprotein expression, including GPVI, αIIbβ3, and GPIbα. Megakaryocytes from these mice were blocked at 2N/4N ploidy and did not survive ex vivo. Deletion of the immunoreceptor tyrosine-based inhibition motif-containing receptor G6b-B in the MP lineage phenocopied multiple features of Shp1/2-deficient mice, suggesting G6b-B is a critical regulator of Shp1 and Shp2. This study establishes Shp1 and Shp2 as major regulators of megakaryocyte development, platelet production, and function.
Collapse
|
57
|
Williams CM, Harper MT, Poole AW. PKCα negatively regulates in vitro proplatelet formation and in vivo platelet production in mice. Platelets 2013; 25:62-8. [PMID: 23402219 DOI: 10.3109/09537104.2012.761686] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Proplatelet formation is a part of the intricate process by which platelets are generated by their precursor cell, the megakaryocyte. The processes that drive megakaryocyte maturation and platelet production are however still not well understood. The protein kinase C (PKC) family of serine/threonine kinases has been demonstrated as an important regulator of megakaryocyte maturation and proplatelet formation, but little investigation has been made on the individual isoforms. We have previously shown, in mouse models, that PKCα plays a vital role in regulating platelet function, so in this study we aimed to investigate the role of PKCα in megakaryocyte function using the same Prkca(-)(/)(-) mice. We assessed the role of global PKC and specifically PKCα in proplatelet formation in vitro, analyzed polyploidy in Prkca(-)(/)(-)-derived megakaryocytes and followed platelet recovery in platelet-depleted Prkca(-)(/)(-) mice. We show reduced proplatelet formation in the presence of global PKC blockade. However, in the presence of a selective classical PKC isoform inhibitor, Go6976, proplatelet formation was conversely enhanced. PKCα null megakaryocytes also showed enhanced proplatelet formation, as well as a shift to greater polyploidy. In vivo, platelet production was enhanced in response to experimentally induced immune thrombocytopenia. In conclusion, our data indicate that classical PKC isoforms, and more specifically PKCα, are negative regulators of proplatelet formation. PKCα appears to negatively regulate endomitosis, with the enhanced polyploidy observed in Prkca(-)(/)(-)-derived megakaryocytes. In vivo, these observations may culminate in the observed ability of Prkca(-)(/)(-) mice to recover more rapidly from a thrombocytopenic insult.
Collapse
Affiliation(s)
- Christopher M Williams
- School of Physiology and Pharmacology, Bristol Heart Institute, Bristol Platelet Group, Medical Sciences Building, University of Bristol, University Walk , Bristol, BS8 1TD , UK
| | | | | |
Collapse
|
58
|
High doses of romiplostim induce proliferation and reduce proplatelet formation by human megakaryocytes. PLoS One 2013; 8:e54723. [PMID: 23359807 PMCID: PMC3554640 DOI: 10.1371/journal.pone.0054723] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
Background Romiplostim (AMG531) is a Thrombopoietin (TPO) receptor agonist with no homology with the endogenous TPO that has been used to treat patients affected by immune thrombocytopenia (ITP). Despite the use of TPO mimetics in the clinical practice, the mechanisms underlying their impact on megakaryocyte function is still unknown. Methodology/Principal Findings In this project we took advantage of an in vitro human model, that we have established in our laboratory for long time to study megakaryocyte development from human cord blood-derived progenitor cells, and we demonstrated that increasing doses of AMG531 (100 to 2000 ng/mL) determine a progressive increase of megakaryocyte proliferation with a parallel decrease in megakaryocyte ploidy and capacity of extending proplatelets. Most importantly, these differences in megakaryocyte function seemed to be correlated to modulation of AKT phosphorylation. Conclusions/Significance Overall our results shed new light on the mechanisms and on the relevance of dosage related to AMG531 impact on megakaryocyte function.
Collapse
|
59
|
Schachtner H, Li A, Stevenson D, Calaminus SDJ, Thomas S, Watson SP, Sixt M, Wedlich-Soldner R, Strathdee D, Machesky LM. Tissue inducible Lifeact expression allows visualization of actin dynamics in vivo and ex vivo. Eur J Cell Biol 2012; 91:923-929. [PMID: 22658956 PMCID: PMC3930012 DOI: 10.1016/j.ejcb.2012.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/01/2012] [Accepted: 04/12/2012] [Indexed: 11/21/2022] Open
Abstract
We describe here the development and characterization of a conditionally inducible mouse model expressing Lifeact-GFP, a peptide that reports the dynamics of filamentous actin. We have used this model to study platelets, megakaryocytes and melanoblasts and we provide evidence that Lifeact-GFP is a useful reporter in these cell types ex vivo. In the case of platelets and megakaryocytes, these cells are not transfectable by traditional methods, so conditional activation of Lifeact allows the study of actin dynamics in these cells live. We studied melanoblasts in native skin explants from embryos, allowing the visualization of live actin dynamics during cytokinesis and migration. Our study revealed that melanoblasts lacking the small GTPase Rac1 show a delay in the formation of new pseudopodia following cytokinesis that accounts for the previously reported cytokinesis delay in these cells. Thus, through use of this mouse model, we were able to gain insights into the actin dynamics of cells that could only previously be studied using fixed specimens or following isolation from their native tissue environment.
Collapse
Affiliation(s)
- Hannah Schachtner
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Ang Li
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - David Stevenson
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Simon D. J. Calaminus
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Steve Thomas
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT
| | - Michael Sixt
- Institute of Science and Technology, Am Campus 1, A-3400 Klosterneuberg, Austria
| | - Roland Wedlich-Soldner
- Cellular Dynamics and Cell Patterning, Max-Planck Institute of Biochemistry, Am, Klopferspitz 18, 82152 Martinsried, Germany
| | - Douglas Strathdee
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Laura M. Machesky
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD
| |
Collapse
|
60
|
Mazharian A, Wang YJ, Mori J, Bem D, Finney B, Heising S, Gissen P, White JG, Berndt MC, Gardiner EE, Nieswandt B, Douglas MR, Campbell RD, Watson SP, Senis YA. Mice lacking the ITIM-containing receptor G6b-B exhibit macrothrombocytopenia and aberrant platelet function. Sci Signal 2012; 5:ra78. [PMID: 23112346 PMCID: PMC4973664 DOI: 10.1126/scisignal.2002936] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelets are highly reactive cell fragments that adhere to exposed extracellular matrix (ECM) and prevent excessive blood loss by forming clots. Paradoxically, megakaryocytes, which produce platelets in the bone marrow, remain relatively refractory to the ECM-rich environment of the bone marrow despite having the same repertoire of receptors as platelets. These include the ITAM (immunoreceptor tyrosine-based activation motif)-containing collagen receptor complex, which consists of glycoprotein VI (GPVI) and the Fc receptor γ-chain, and the ITIM (immunoreceptor tyrosine-based inhibition motif)-containing receptor G6b-B. We showed that mice lacking G6b-B exhibited macrothrombocytopenia (reduced platelet numbers and the presence of enlarged platelets) and a susceptibility to bleeding as a result of aberrant platelet production and function. Platelet numbers were markedly reduced in G6b-B-deficient mice compared to those in wild-type mice because of increased platelet turnover. Furthermore, megakaryocytes in G6b-B-deficient mice showed enhanced metalloproteinase production, which led to increased shedding of cell-surface receptors, including GPVI and GPIbα. In addition, G6b-B-deficient megakaryocytes exhibited reduced integrin-mediated functions and defective formation of proplatelets, the long filamentous projections from which platelets bud off. Together, these findings establish G6b-B as a major inhibitory receptor regulating megakaryocyte activation, function, and platelet production.
Collapse
Affiliation(s)
- Alexandra Mazharian
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ying-Jie Wang
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jun Mori
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Danai Bem
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Brenda Finney
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Silke Heising
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Gissen
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - James G. White
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C. Berndt
- Biomedical Diagnostics Institute, Dublin City University and Royal College of Surgeons in Ireland, Glasnevin, Dublin 9, Ireland
| | - Elizabeth E. Gardiner
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Bernhard Nieswandt
- University Hospital and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Michael R. Douglas
- Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
- Department of Neurology, Dudley Group of Hospitals NHS Foundation Trust, Dudley DY1 2HQ, UK
| | - Robert D. Campbell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Steve P. Watson
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yotis A. Senis
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
61
|
Balduini A, Di Buduo CA, Malara A, Lecchi A, Rebuzzini P, Currao M, Pallotta I, Jakubowski JA, Cattaneo M. Constitutively released adenosine diphosphate regulates proplatelet formation by human megakaryocytes. Haematologica 2012; 97:1657-65. [PMID: 22689668 DOI: 10.3324/haematol.2011.059212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The interaction of adenosine diphosphate with its P2Y(1) and P2Y(12) receptors on platelets is important for platelet function. However, nothing is known about adenosine diphosphate and its function in human megakaryocytes. DESIGN AND METHODS We studied the role of adenosine diphosphate and P2Y receptors on proplatelet formation by human megakaryocytes in culture. RESULTS Megakaryocytes expressed all the known eight subtypes of P2Y receptors, and constitutively released adenosine diphosphate. Proplatelet formation was inhibited by the adenosine diphosphate scavengers apyrase and CP/CPK by 60-70% and by the P2Y(12) inhibitors cangrelor and 2-MeSAMP by 50-60%, but was not inhibited by the P2Y(1) inhibitor MRS 2179. However, the active metabolites of the anti-P2Y(12) drugs, clopidogrel and prasugrel, did not inhibit proplatelet formation. Since cangrelor and 2-MeSAMP also interact with P2Y(13), we hypothesized that P2Y(13), rather than P2Y(12) is involved in adenosine diphosphate-regulated proplatelet formation. The specific P2Y(13) inhibitor MRS 2211 inhibited proplatelet formation in a concentration-dependent manner. Megakaryocytes from a patient with severe congenital P2Y(12) deficiency showed normal proplatelet formation, which was inhibited by apyrase, cangrelor or MRS 2211 by 50-60%. The platelet count of patients with congenital delta-storage pool deficiency, who lack secretable adenosine diphosphate, was significantly lower than that of patients with other platelet function disorders, confirming the important role of secretable adenosine diphosphate in platelet formation. CONCLUSIONS This is the first demonstration that adenosine diphosphate released by megakaryocytes regulates their function by interacting with P2Y(13). The clinical relevance of this not previously described physiological role of adenosine diphosphate and P2Y(13) requires further exploration.
Collapse
Affiliation(s)
- Alessandra Balduini
- Biotechnology Laboratories, Department of Molecular Medicine, IRCCS San Matteo Foundation, Università degli Studi di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Potentiated activation of VLA-4 and VLA-5 accelerates proplatelet-like formation. Ann Hematol 2012; 91:1633-43. [PMID: 22644786 DOI: 10.1007/s00277-012-1498-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
Fibronectin (FN) plays important roles in the proliferation, differentiation, and maintenance of megakaryocytic-lineage cells through FN receptors. However, substantial role of FN receptors and their functional assignment in proplatelet-like formation (PPF) of megakaryocytes are not yet fully understood. Herein, we investigated the effects of FN receptors on PPF using the CHRF-288 human megakaryoblastic cell line, which expresses VLA-4 and VLA-5 as FN receptors. FN and phorbol 12-myristate 13-acetate (PMA) were essential for inducing PPF in CHRF-288 cells. Blocking experiments using anti-β1-integrin monoclonal antibodies indicated that the adhesive interaction with FN via VLA-4 and VLA-5 were required for PPF. PPF induced by FN plus PMA was accelerated when CHRF-288 cells were enforced adhering to FN by TNIIIA2, a peptide derived from tenascin-C, which we recently found to induce β1-integrin activation. Adhesion to FN enhanced PMA-stimulated activation of extracellular signal-regulated protein kinase 1 (ERK1)/2 and enforced adhesion to FN via VLA-4 and VLA-5 by TNIIIA2-accelerated activation of ERK1/2 with FN plus PMA. However, c-Jun amino-terminal kinase 1 (JNK1), p38, and phosphoinositide-3 kinase (PI3K)/Akt were not stimulated by FN plus PMA, even with TNIIIA2. Thus, the enhanced activation of ERK1/2 by FN, PMA plus TNIIIA2 was responsible for acceleration of PPF with FN plus PMA.
Collapse
|
63
|
Jarvis GE, Bihan D, Hamaia S, Pugh N, Ghevaert CJG, Pearce AC, Hughes CE, Watson SP, Ware J, Rudd CE, Farndale RW. A role for adhesion and degranulation-promoting adapter protein in collagen-induced platelet activation mediated via integrin α(2) β(1). J Thromb Haemost 2012; 10:268-77. [PMID: 22103309 PMCID: PMC3791415 DOI: 10.1111/j.1538-7836.2011.04567.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Collagen-induced platelet activation is a key step in the development of arterial thrombosis via its interaction with the receptors glycoprotein (GP)VI and integrin α(2) β(1) . Adhesion and degranulation-promoting adapter protein (ADAP) regulates α(IIb) β(3) in platelets and α(L) β(2) in T cells, and is phosphorylated in GPVI-deficient platelets activated by collagen. OBJECTIVES To determine whether ADAP plays a role in collagen-induced platelet activation and in the regulation and function of α(2) β(1). METHODS Using ADAP(-/-) mice and synthetic collagen peptides, we investigated the role of ADAP in platelet aggregation, adhesion, spreading, thromboxane synthesis, and tyrosine phosphorylation. RESULTS AND CONCLUSIONS Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP(-/-) platelets. However, aggregation and signaling induced by collagen-related peptide (CRP), a GPVI-selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α(2) β(1) -selective ligand GFOGER and to a peptide (III-04), which supports adhesion that is dependent on both GPVI and α(2) β(1), was reduced in ADAP(-/-) platelets. An impedance-based label-free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non-fluorescent differential-interference contrast microscopy, which revealed reduced filpodia formation in ADAP(-/-) platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen-binding integrin α(2) β(1). In addition, we found that ADAP(-/-) mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild-type animals. This may reflect increased removal of platelets from the circulation.
Collapse
Affiliation(s)
- G E Jarvis
- School of Pharmacy, Queen's University Belfast, Belfast, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW It has become increasingly clear that there are substantial biological differences between fetal/neonatal and adult megakaryopoiesis. Over the last 18 months, studies challenged the paradigm that neonatal megakaryocytes are immature and revealed a developmentally unique uncoupling of proliferation, polyploidization, and cytoplasmic maturation. Several studies also described substantial molecular differences between fetal/neonatal and adult megakaryocytes involving transcription factors, signaling pathways, cytokine receptors, and microRNAs. RECENT FINDINGS This review will summarize our current knowledge on the developmental differences between fetal/neonatal and adult megakaryocytes, and recent advances in the underlying molecular mechanisms, including differences in transcription factors, in the response to thrombopoietin (Tpo), and newly described developmentally regulated signaling pathways. We will also discuss the implications of these findings on the way megakaryocytes interact with the environment, the response of neonates to thrombocytopenia, and the pathogenesis of Down syndrome-transient myeloproliferative disorder (TMD) and Down syndrome-acute megakaryoblastic leukemia (DS-AMKL). SUMMARY A better characterization of the molecular differences between fetal/neonatal and adult megakaryocytes is critical to elucidating the pathogenesis of a group of disorders that selectively affect fetal/neonatal megakaryocyte progenitors, including the thrombocytopenia-absent radius (TAR) syndrome, Down syndrome-TMD or Down syndrome-AMKL, and the delayed platelet engraftment following cord blood transplantation.
Collapse
|
65
|
Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration. Blood 2011; 119:838-46. [PMID: 22128142 DOI: 10.1182/blood-2011-04-346098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Megakaryocytes are large, polyploid cells that produce platelets. We have previously reported that calcium- and integrin-binding protein 1 (CIB1) regulates endomitosis in Dami cells. To further characterize the role of CIB1 in megakaryopoiesis, we used a Cib1(-/-) mouse model. Cib1(-/-) mice have more platelets and BM megakaryocytes than wild-type (WT) controls (P < .05). Furthermore, subsequent analysis of megakaryocyte-CFU production revealed an increase with Cib1 deletion compared with WT (P < .05). In addition, BM from Cib1(-/-) mice, cultured with thrombopoietin (TPO) for 24 hours, produced more highly polyploid megakaryocytes than WT BM (P < .05). Subsequent analysis of TPO signaling revealed enhanced Akt and ERK1/2 phosphorylation, whereas FAK(Y925) phosphorylation was reduced in Cib1(-/-) megakaryocytes treated with TPO. Conversely, platelet recovery in Cib1(-/-) mice after platelet depletion was attenuated compared with WT (P < .05). This could be the result of impaired adhesion and migration, as adhesion to fibrinogen and fibronectin and migration toward an SDF-1α gradient were reduced in Cib1(-/-) megakaryocytes compared with WT (P < .05). In addition, Cib1(-/-) megakaryocytes formed fewer proplatelets compared with WT (P < .05), when plated on fibrinogen. These data suggest that CIB1 plays a dual role in megakaryopoiesis, initially by negatively regulating TPO signaling and later by augmenting proplatelet production.
Collapse
|
66
|
Hirudin and heparin enable efficient megakaryocyte differentiation of mouse bone marrow progenitors. Exp Cell Res 2011; 318:25-32. [PMID: 22008103 DOI: 10.1016/j.yexcr.2011.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/12/2011] [Accepted: 10/01/2011] [Indexed: 11/21/2022]
Abstract
Hematopoietic progenitors from murine fetal liver efficiently differentiate in culture into proplatelet-producing megakaryocytes and have proved valuable to study platelet biogenesis. In contrast, megakaryocyte maturation is far less efficient in cultured bone marrow progenitors, which hampers studies in adult animals. It is shown here that addition of hirudin to media containing thrombopoietin and serum yielded a proportion of proplatelet-forming megakaryocytes similar to that in fetal liver cultures (approximately 50%) with well developed extensions and increased the release of platelet particles in the media. The effect of hirudin was maximal at 100 U/ml, and was more pronounced when it was added in the early stages of differentiation. Hirugen, which targets the thrombin anion binding exosite I, and argatroban, a selective active site blocker, also promoted proplatelet formation albeit less efficiently than hirudin. Heparin, an indirect thrombin blocker, and OTR1500, a stable heparin-like synthetic glycosaminoglycan generated proplatelets at levels comparable to hirudin. Heparin with low affinity for antithrombin was equally as effective as standard heparin, which indicates antithrombin independent effects. Use of hirudin and heparin compounds should lead to improved culture conditions and facilitate studies of platelet biogenesis in adult mice.
Collapse
|
67
|
Chung E, Kondo M. Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res 2011; 49:248-68. [PMID: 21170740 DOI: 10.1007/s12026-010-8187-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent research on hematological malignancies has shown that malignant cells often co-opt physiological pathways to promote their growth and development. Bone marrow homeostasis requires a fine balance between cellular differentiation and self-renewal; cell survival and apoptosis; and cellular proliferation and senescence. The Ras/Raf/MEK/ERK pathway has been shown to be important in regulating these biological functions. Moreover, the Ras/Raf/MEK/ERK pathway has been estimated to be mutated in 30% of all cancers, thus making it the focus of many scientific studies which have lead to a deeper understanding of cancer development and help to elucidate potential weaknesses that can be targeted by pharmacological agents [1]. In this review, we specifically focus on the role of this pathway in physiological hematopoiesis and how augmentation of the pathway may lead to hematopoietic malignancies. We also discuss the challenges and success of targeting this pathway.
Collapse
Affiliation(s)
- Eva Chung
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
68
|
Eliades A, Papadantonakis N, Bhupatiraju A, Burridge KA, Johnston-Cox HA, Migliaccio AR, Crispino JD, Lucero HA, Trackman PC, Ravid K. Control of megakaryocyte expansion and bone marrow fibrosis by lysyl oxidase. J Biol Chem 2011; 286:27630-8. [PMID: 21665949 DOI: 10.1074/jbc.m111.243113] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lysyl oxidase (LOX), a matrix cross-linking protein, is known to be selectively expressed and to enhance a fibrotic phenotype. A recent study of ours showed that LOX oxidizes the PDGF receptor-β (PDGFR-β), leading to amplified downstream signaling. Here, we examined the expression and functions of LOX in megakaryocytes (MKs), the platelet precursors. Cells committed to the MK lineage undergo mitotic proliferation to yield diploid cells, followed by endomitosis and acquisition of polyploidy. Intriguingly, LOX expression is detected in diploid-tetraploid MKs, but scarce in polyploid MKs. PDGFR-BB is an inducer of mitotic proliferation in MKs. LOX inhibition with β-aminopropionitrile reduces PDGFR-BB binding to cells and downstream signaling, as well as its proliferative effect on the MK lineage. Inhibition of LOX activity has no influence on MK polyploidy. We next rationalized that, in a system with an abundance of low ploidy MKs, LOX could be highly expressed and with functional significance. Thus, we resorted to GATA-1(low) mice, where there is an increase in low ploidy MKs, augmented levels of PDGF-BB, and an extensive matrix of fibers. MKs from these mice display high expression of LOX, compared with control mice. Importantly, treatment of GATA-1(low) mice with β-aminopropionitrile significantly improves the bone marrow fibrotic phenotype, and MK number in the spleen. Thus, our in vitro and in vivo data support a novel role for LOX in regulating MK expansion by PDGF-BB and suggest LOX as a new potential therapeutic target for myelofibrosis.
Collapse
Affiliation(s)
- Alexia Eliades
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Matsuki E, Miyakawa Y, Yamane A, Okamoto S. Humanized VB22B minibody for human Mpl stimulates human megakaryopoiesis but does not enhance platelet aggregation. Exp Hematol 2011; 39:829-36. [PMID: 21605620 DOI: 10.1016/j.exphem.2011.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/09/2011] [Accepted: 04/30/2011] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Thrombopoietin stimulates megakaryopoiesis and platelet production by binding to its receptor, Mpl, on hematopoietic progenitor cells. Previously, a murine VB22B minibody for Mpl was shown to stimulate megakaryocyte colony formation in vitro and increase the platelet count in cynomolgus monkeys. In this study, we directly compared the effects of a humanized VB22B minibody (huVB22B) with those of thrombopoietin and eltrombopag under the hypothesis that Mpl agonists might have different biological effects on megakaryopoiesis, platelet production, intracellular signal transduction, and platelet function. MATERIALS AND METHODS Human bone marrow-derived CD34(+) cells were used for colony formation assays and proplatelet formation assays in vitro. The DNA ploidy in megakaryocytes was analyzed by flow cytometry. Phosphorylation of signal transducers and activators of transcription and mitogen-activated protein kinase was detected by Western blotting using specific antibodies. The effects of the Mpl agonists on platelet aggregation were analyzed by aggregometry using human platelets. RESULTS HuVB22B was as potent as thrombopoietin and eltrombopag in its ability to form mature megakaryocytes using human CD34(+) cells in vitro. It did not affect granulocyte-macrophage or erythroid colony formation. HuVB22B increased the number of proplatelet-forming megakaryocytes more efficiently than thrombopoietin or eltrombopag. Despite stronger phosphorylation of signal transducers and activators of transcription and mitogen-activated protein kinase compared with thrombopoietin in human platelets, huVB22B did not enhance adenosine diphosphate- or collagen-induced platelet aggregation. Eltrombopag did not enhance agonist-induced platelet aggregation. CONCLUSIONS We found that huVB22B, eltrombopag, and thrombopoietin have different effects on megakaryopoiesis, platelet function, and intracellular signaling. The precise mechanisms for these different biological effects regarding stimulation through the same receptor, Mpl, remain to be elucidated.
Collapse
Affiliation(s)
- Eri Matsuki
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
70
|
Petronelli A, Pelosi E, Santoro S, Saulle E, Cerio AM, Mariani G, Labbaye C, Testa U. CDDO-Im is a stimulator of megakaryocytic differentiation. Leuk Res 2010; 35:534-44. [PMID: 21035854 DOI: 10.1016/j.leukres.2010.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/15/2010] [Accepted: 09/19/2010] [Indexed: 01/11/2023]
Abstract
Although the triterpene CDDO and its potent derivatives, CDDO-Im and CDDO-Me, are now in phase I/II studies in the treatment of some pathological conditions, their effects on normal hematopoiesis are not known. In the present study we provide evidence that CDDO-Im exerts in vitro a potent inhibitory effect on erythroid cell proliferation and survival and a stimulatory action on megakaryocytic differentiation. The effect of CDDO-Im on erythroid and megakaryocytic differentiation was evaluated both on normal hemopoietic progenitor cells (HPCs) induced to selective erythroid (E) or megakaryocytic (Mk) differentiation and on erythroleukemic cell lines HEL and TF1. The inhibitory effect of CDDO-Im on erythroid cell survival and proliferation is mainly related to a reduced GATA-1 expression. This conclusion is supported by the observation that GATA-1 overexpressing TF1 cells are partially protected from the inhibitory effect of CDDO-Im on cell proliferation and survival. The stimulatory effect of CDDO-Im on normal megakaryopoiesis is seemingly related to upmodulation of GATA2 expression and induction of mitogen-activated protein kinases ERK1/2.
Collapse
Affiliation(s)
- Alessia Petronelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
71
|
García-Sevilla JA, Alvaro-Bartolomé M, Díez-Alarcia R, Ramos-Miguel A, Puigdemont D, Pérez V, Alvarez E, Meana JJ. Reduced platelet G protein-coupled receptor kinase 2 in major depressive disorder: antidepressant treatment-induced upregulation of GRK2 protein discriminates between responder and non-responder patients. Eur Neuropsychopharmacol 2010; 20:721-30. [PMID: 20493668 DOI: 10.1016/j.euroneuro.2010.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/31/2010] [Accepted: 04/20/2010] [Indexed: 11/16/2022]
Abstract
The homologous regulation of neurotransmitter receptors by G protein-coupled receptor kinases (GRKs) is important in the pathogenesis and treatment of major depressive disorder (MDD). Previous studies have reported that the basal status of GRK2 is different in brains (upregulation) and platelets (downregulation) of subjects with MDD. The principal aim of this study was to re-examine the status of platelet membrane GRK2 protein in patients with MDD, along with GRK3 (a close kinase homolog) and GRK5 (a kinase with different properties), before and after treatment with serotonin-selective reuptake inhibitor (SSRI) or serotonin noradrenaline reuptake inhibitor (SNRI) antidepressants. The main findings indicated that platelet GRK2 and p-Ser670 GRK2 were reduced (36-41%) in unmedicated MDD subjects, and that GRK2 content correlated inversely with the severity of depression (r=-0.51). Effective antidepressant treatments normalized platelet GRK2, and, notably, GRK2 upregulation discriminated between responder and non-responder patients. Other findings revealed a modest reduction of platelet GRK3 (23%) and no alteration of platelet GRK5 content. In untreated subjects with MDD, lymphocyte GRK2 and GRK5 mRNAs were unaltered but antidepressant treatment-induced upregulation of GRK2 mRNA expression. The reduced content of platelet GRK2 protein is a relevant target in MDD. Although this peripheral GRK2 defect does not mirror the canonical regulation of brain GRK2 in depressed suicides, it could well represent a disease state marker as well as a surrogate of response to effective antidepressant treatment.
Collapse
Affiliation(s)
- Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
MicroRNAs are small noncoding RNAs that regulate cellular development by interfering with mRNA stability and translation. We examined global microRNA expression during the differentiation of murine hematopoietic progenitors into megakaryocytes. Of 435 miRNAs analyzed, 13 were up-regulated and 81 were down-regulated. Many of these changes are consistent with miRNA profiling studies of human megakaryocytes and platelets, although new patterns also emerged. Among 7 conserved miRNAs that were up-regulated most strongly in murine megakaryocytes, 6 were also induced in the related erythroid lineage. MiR-146a was strongly up-regulated during mouse and human megakaryopoiesis but not erythropoiesis. However, overexpression of miR-146a in mouse bone marrow hematopoietic progenitor populations produced no detectable alterations in megakaryocyte development or platelet production in vivo or in colony assays. Our findings extend the repertoire of differentially regulated miRNAs during murine megakaryopoiesis and provide a useful new dataset for hematopoiesis research. In addition, we show that enforced hematopoietic expression of miR-146a has minimal effects on megakaryopoiesis. These results are compatible with prior studies indicating that miR-146a inhibits megakaryocyte production indirectly by suppressing inflammatory cytokine production from innate immune cells, but cast doubt on a different study, which suggests that this miRNA inhibits megakaryopoiesis cell-autonomously.
Collapse
|
73
|
Critical role of Src-Syk-PLC{gamma}2 signaling in megakaryocyte migration and thrombopoiesis. Blood 2010; 116:793-800. [PMID: 20457868 DOI: 10.1182/blood-2010-03-275990] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Migration of megakaryocytes (MKs) from the proliferative osteoblastic niche to the capillary-rich vascular niche is essential for proplatelet formation and platelet release. In this study, we explore the role of surface glycoprotein receptors and signaling proteins in regulating MK migration and platelet recovery after immune-induced thrombocytopenia. We show that spreading and migration of mouse primary bone marrow-derived MKs on a fibronectin matrix are abolished by the Src family kinases inhibitor PP1, the Syk kinase inhibitor R406 and the integrin alphaIIbbeta3 antagonist lotrafiban. We also demonstrate that these responses are inhibited in primary phospholipase C gamma2 (PLCgamma2)-deficient MKs. Conversely, MK spreading and migration were unaltered in the absence of the collagen receptor, the glycoprotein VI-FcRgamma-chain complex. We previously reported a correlation between a defect in MK migration and platelet recovery in the absence of platelet endothelial cell adhesion molecule-1 and the tyrosine phosphatase CD148. This correlation also holds for mice deficient in PLCgamma2. This study identifies a model in which integrin signaling via Src family kinases and Syk kinase to PLCgamma2 is required for MK spreading, migration, and platelet formation.
Collapse
|
74
|
Chang YI, Hua WK, Yao CL, Hwang SM, Hung YC, Kuan CJ, Leou JS, Lin WJ. Protein-arginine methyltransferase 1 suppresses megakaryocytic differentiation via modulation of the p38 MAPK pathway in K562 cells. J Biol Chem 2010; 285:20595-606. [PMID: 20442406 DOI: 10.1074/jbc.m109.092411] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein-arginine methyltransferase 1 (PRMT1) plays pivotal roles in various cellular processes. However, its role in megakaryocytic differentiation has yet to be investigated. Human leukemia K562 cells have been used as a model to study hematopoietic differentiation. In this study, we report that ectopic expression of HA-PRMT1 in K562 cells suppressed phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation as demonstrated by changes in cytological characteristics, adhesive properties, and CD41 expression, whereas knockdown of PRMT1 by small interference RNA promoted differentiation. Impairment of the methyltransferase activity of PRMT1 diminished the suppressive effect. These results provide evidence for a novel role of PRMT1 in negative regulation of megakaryocytic differentiation. Activation of ERK MAPK has been shown to be essential for megakaryocytic differentiation, although the role of p38 MAPK is still poorly understood. We show that knockdown of p38alpha MAPK or treatment with the p38 inhibitor SB203580 significantly enhanced PMA-induced megakaryocytic differentiation. Further investigation revealed that PRMT1 promotes activation of p38 MAPK without inhibiting activation of ERK MAPK. In p38alpha knockdown cells, PRMT1 could no longer suppress differentiation. In contrast, enforced expression of p38alpha MAPK suppressed PMA-induced megakaryocytic differentiation of parental K562 as well as PRMT1-knockdown cells. We propose modulation of the p38 MAPK pathway by PRMT1 as a novel mechanism regulating megakaryocytic differentiation. This study thus provides a new perspective on the promotion of megakaryopoiesis.
Collapse
Affiliation(s)
- Yuan-I Chang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Conde I, Pabón D, Jayo A, Lastres P, González-Manchón C. Involvement of ERK1/2, p38 and PI3K in megakaryocytic differentiation of K562 cells. Eur J Haematol 2010; 84:430-40. [PMID: 20070854 DOI: 10.1111/j.1600-0609.2010.01416.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Megakaryocytic differentiation of myelogenous leukemia cell lines induced by a number of chemical compounds mimics, in part, the physiological process that takes place in the bone marrow in response to a variety of stimuli. We have investigated the involvement of mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated protein kinase (ERK1/2) and p38] and phosphoinositide 3-kinase (PI3K) signaling pathways in the differentiated phenotypes of K562 cells promoted by phorbol 12-myristate 13-acetate, staurosporine (STA), and the p38 MAPK inhibitor SB202190. In our experimental conditions, only STA-treated cells showed the phenotype of mature megakaryocytes (MKs) including GPIbalpha expression, DNA endoreduplication, and formation of platelet-like structures. We provide evidence supporting that basal activity, but not sustained activation, of ERK1/2 is required for expression of MK surface markers. Moreover, ERK1/2 signaling is not involved in cell endomitosis. The PI3K pathway exerts dual regulatory effects on K562 cell differentiation: it is intimately connected with ERK1/2 cascade to stimulate expression of surface markers and it is also necessary, but not sufficient, for polyploidization. Finally, apoptosis and megakaryocytic differentiation exhibit different sensitivity to p38 down-regulation: it is required for expression of early specific markers but is not involved in cell apoptosis. The present work with K562 cells provides new insights into the molecular mechanisms regulating MK differentiation. The results indicate that a precise orchestration of signals, including ERK1/2 and p38 MAPKs as well as PI3K pathway, is necessary for acquisition of features of mature MKs.
Collapse
Affiliation(s)
- Isabel Conde
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
76
|
Séverin S, Ghevaert C, Mazharian A. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. J Thromb Haemost 2010; 8:17-26. [PMID: 19874462 DOI: 10.1111/j.1538-7836.2009.03658.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Megakaryopoiesis is a process by which bone marrow progenitor cells develop into mature megakaryocytes (MKs), which in turn produce platelets required for normal hemostasis. The mitogen-activated protein kinases (MAPKs) family comprises four main groups of proteins: extracellular signal-related kinases (ERKs) (ERK1/2 or p44/p42), ERK5, p38MAPKs (alpha, beta, gamma, delta) and c-Jun amino-terminal kinases (JNKs) (JNK 1, 2, 3). These intracellular signaling pathways play a pivotal role in many essential cellular processes including proliferation and differentiation. The purpose of this review is to summarize our current knowledge on the role of MAPKs in MKs, specifically regarding differentiation in immortalized cell lines and primary MKs. A critical role of the MEK (MAPK kinase)-ERK1/2 pathway in MK development has been demonstrated although the details remain controversial. There is at present no functional evidence for a role of p38MAPKs whereas the role of JNKs and ERK5 in MK development is not known. Characterization of these molecular event cascades remains crucial for the understanding of the megakaryopoiesis process.
Collapse
Affiliation(s)
- S Séverin
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|