51
|
Johnson K, Bateman J, DiTommaso T, Wong AY, Whited JL. Systemic cell cycle activation is induced following complex tissue injury in axolotl. Dev Biol 2018; 433:461-472. [PMID: 29111100 PMCID: PMC5750138 DOI: 10.1016/j.ydbio.2017.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022]
Abstract
Activation of progenitor cells is crucial to promote tissue repair following injury in adult animals. In the context of successful limb regeneration following amputation, progenitor cells residing within the stump must re-enter the cell cycle to promote regrowth of the missing limb. We demonstrate that in axolotls, amputation is sufficient to induce cell-cycle activation in both the amputated limb and the intact, uninjured contralateral limb. Activated cells were found throughout all major tissue populations of the intact contralateral limb, with internal cellular populations (bone and soft tissue) the most affected. Further, activated cells were additionally found within the heart, liver, and spinal cord, suggesting that amputation induces a common global activation signal throughout the body. Among two other injury models, limb crush and skin excisional wound, only limb crush injuries were capable of inducing cellular responses in contralateral uninjured limbs but did not achieve activation levels seen following limb loss. We found this systemic activation response to injury is independent of formation of a wound epidermis over the amputation plane, suggesting that injury-induced signals alone can promote cellular activation. In mammals, mTOR signaling has been shown to promote activation of quiescent cells following injury, and we confirmed a subset of activated contralateral cells is positive for mTOR signaling within axolotl limbs. These findings suggest that conservation of an early systemic response to injury exists between mammals and axolotls, and propose that a distinguishing feature in species capable of full regeneration is converting this initial activation into sustained and productive growth at the site of regeneration.
Collapse
Affiliation(s)
- Kimberly Johnson
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA
| | - Joel Bateman
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA
| | - Tia DiTommaso
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA
| | - Alan Y Wong
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA
| | - Jessica L Whited
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA.
| |
Collapse
|
52
|
Hazelton I, Yates A, Dale A, Roodselaar J, Akbar N, Ruitenberg MJ, Anthony DC, Couch Y. Exacerbation of Acute Traumatic Brain Injury by Circulating Extracellular Vesicles. J Neurotrauma 2018; 35:639-651. [PMID: 29149810 DOI: 10.1089/neu.2017.5049] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammatory lesions in the brain activate a systemic acute-phase response (APR), which is dependent on the release of extracellular vesicles (EVs) into the circulation. The resulting APR is responsible for regulating leukocyte mobilization and subsequent recruitment to the brain. Factors that either exacerbate or inhibit the APR will also exacerbate or inhibit central nervous system (CNS) inflammation as a consequence and have the potential to influence ongoing secondary damage. Here, we were interested to discover how the circulating EV population changes after traumatic brain injury (TBI) and how manipulation of the circulating EV pool impacts on the outcome of TBI. We found the number of circulating EVs increased rapidly post-TBI, and this was accompanied by an increase in CNS and hepatic leukocyte recruitment. In an adoptive transfer study, we then evaluated the outcomes of TBI after administering EVs derived from either in vitro macrophage or endothelial cell lines stimulated with lipopolysaccharide (LPS), or from murine plasma from an LPS challenge using the air-pouch model. By manipulating the circulating EV population, we were able to demonstrate that each population of transferred EVs increased the APR. However, the characteristics of the response were dependent on the nature of the EVs; specifically, it was significantly increased when animals were challenged with macrophage-derived EVs, suggesting that the cellular origins of EVs may determine their function. Selectively targeting EVs from macrophage/monocyte populations is likely to be of value in reducing the impact of the systemic inflammatory response on the outcome of traumatic CNS injury.
Collapse
Affiliation(s)
- Isla Hazelton
- 1 Department of Pharmacology, University of Oxford , Oxford, United Kingdom .,2 School of Biomedical Sciences, The University of Queensland , Queensland, Australia
| | - Abi Yates
- 1 Department of Pharmacology, University of Oxford , Oxford, United Kingdom
| | - Ashley Dale
- 1 Department of Pharmacology, University of Oxford , Oxford, United Kingdom .,2 School of Biomedical Sciences, The University of Queensland , Queensland, Australia
| | - Jay Roodselaar
- 1 Department of Pharmacology, University of Oxford , Oxford, United Kingdom
| | - Naveed Akbar
- 3 Department of Cardiovascular Medicine, RDM-Investigative Medicine, University of Oxford , Oxford, United Kingdom
| | - Marc J Ruitenberg
- 2 School of Biomedical Sciences, The University of Queensland , Queensland, Australia
| | - Daniel C Anthony
- 1 Department of Pharmacology, University of Oxford , Oxford, United Kingdom
| | - Yvonne Couch
- 4 Acute Stroke Programme, RDM-Investigative Medicine, University of Oxford , Oxford, United Kingdom
| |
Collapse
|
53
|
Ruzicka J, Urdzikova LM, Kloudova A, Amin AG, Vallova J, Kubinova S, Schmidt MH, Jhanwar-Uniyal M, Jendelova P. Anti-inflammatory compound curcumin and mesenchymal stem cells in the treatment of spinal cord injury in rats. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
54
|
Tan JW, Zhang F, Liu HJ, Li Z. Hyperbaric oxygen ameliorated the lesion scope and nerve function in acute spinal cord injury patients: A retrospective study. Clin Biochem 2017; 53:1-7. [PMID: 29217422 DOI: 10.1016/j.clinbiochem.2017.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This is a retrospective study to assess the therapeutic effect of hyperbaric oxygen (HBO) in early treatment of acute spinal cord injury (SCI) using magnetic resonance imaging (MRI) and electrophysiology in diagnosing. METHODS Forty acute SCI patients from Sun Yat-Sen Memorial Hospital who were assigned into HBO treatment were included during August 2013 to October 2014.The patients with adverse reactions or contraindications for HBO were assigned as controls. Both of two groups (HBO and Control) received medicine treatment with Urbason, GM-1 and mecobalamine after surgery. ASIA and the Frankel scores were used to evaluate the therapeutic effect of HBO at the 15th and 30th day after HBO treatment by using MRI and electrophysiology features. RESULTS Significant therapeutic effect of HBO treatment on acute SCI patients was observed compared with the control group (P<0.05). Comparison for ASIA and Frankel scores showed that motor and neurological functions were significantly improved in HBO group at day 15 and day 30 post treatment. MRI images showed that the grade III injury in HBO group was significant lower than the control group. In comparison with the control, the peak of somatosensory evoked potential (SEP) and motor evoked potential (MEP) amplitude increased, the latency was shortened, and the conduction velocity of sensory nerve (SCV) and motor nerve (MCV) was significantly increased in the HBO group (P<0.05). CONCLUSIONS HBO treatment has a great efficacy in acute SCI patients. HBO therapy at early stage of acute SCI is beneficiary to the recovery.
Collapse
Affiliation(s)
- Jie-Wen Tan
- Department of Rehabilitation Medicine, XinHua College, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - He-Jun Liu
- Department of Rehabilitation Medicine, XinHua College, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Zhuo Li
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital Affiliated to Capital University of Medical Science, China.
| |
Collapse
|
55
|
Ma EL, Smith AD, Desai N, Cheung L, Hanscom M, Stoica BA, Loane DJ, Shea-Donohue T, Faden AI. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun 2017; 66:56-69. [PMID: 28676351 PMCID: PMC5909811 DOI: 10.1016/j.bbi.2017.06.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/02/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. METHODS Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. RESULTS Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. CONCLUSION These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury.
Collapse
Affiliation(s)
- Elise L Ma
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allen D Smith
- Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - Neemesh Desai
- Department of Radiation Oncology and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lumei Cheung
- Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - Marie Hanscom
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terez Shea-Donohue
- Department of Radiation Oncology and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
56
|
Organ-Organ Crosstalk and Alcoholic Liver Disease. Biomolecules 2017; 7:biom7030062. [PMID: 28812994 PMCID: PMC5618243 DOI: 10.3390/biom7030062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is a common custom worldwide, and the toxic effects of alcohol on several target organs are well-understood. Given the poor prognosis of treating clinically-relevant alcoholic liver disease (ALD) (i.e., alcoholic hepatitis (AH) and cirrhosis), additional research is required to develop more effective therapies. While the stages of ALD have been well-characterized, targeted therapies to prevent or reverse this process in humans are still needed. Better understanding of risk factors and mechanisms underlying disease progression can lead to the development of rational therapies to prevent or reverse ALD in the clinic. A potential area of targeted therapy for ALD may be organ–organ communication in the early stages of the disease. In contrast to AH and end-stage liver diseases, the involvement of multiple organs in the development of ALD is less understood. The impact of these changes on pathology to the liver and other organs may not only influence disease progression during the development of the disease, but also outcomes of end stages diseases. The purpose of this review is to summarize the established and proposed communication between the liver and other organ systems that may contribute to the development and progression of liver disease, as well as to other organs. Potential mechanisms of this organ–organ communication are also discussed.
Collapse
|
57
|
de Castro MRT, Ferreira APDO, Busanello GL, da Silva LRH, da Silveira Junior MEP, Fiorin FDS, Arrifano G, Crespo-López ME, Barcelos RP, Cuevas MJ, Bresciani G, González-Gallego J, Fighera MR, Royes LFF. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. J Physiol 2017; 595:6023-6044. [PMID: 28726269 DOI: 10.1113/jp273933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. ABSTRACT Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as inhibition of citrate synthase activity) and ion gradient homeostasis (inhibition of Na+ ,K+ -ATPase activity inhibition) when analysed 24 h after TBI. Previous exercise training also protected against dysglycaemia, impaired hepatic signalling (increase in phosphorylated c-Jun NH2-terminal kinase, phosphorylated decreases in insulin receptor substrate and phosphorylated AKT expression), high levels of circulating and neuronal cytokines, the opening of the blood-brain barrier, neutrophil infiltration and Na+ ,K+ -ATPase activity inhibition in the ipsilateral cortex after TBI. Moreover, the impairment of protein function, neurobehavioural (neuromotor dysfunction and spatial learning) disability and hippocampal cell damage in sedentary rats suggests that exercise training also modulates peripheral oxidative/inflammatory pathways in TBI, which corroborates the ever increasing evidence regarding health-related outcomes with respect to a physically active lifestyle.
Collapse
Affiliation(s)
- Mauro Robson Torres de Castro
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício
| | | | - Guilherme Lago Busanello
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício
| | | | | | - Fernando da Silva Fiorin
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Gabriela Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Maria Elena Crespo-López
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Rômulo Pillon Barcelos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - María J Cuevas
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, León, Spain
| | - Guilherme Bresciani
- Escuela de Educación Física, Pontificia Universidad Católica de Valparaiso (PUCV), Valparaiso, Chile
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, León, Spain
| | - Michele Rechia Fighera
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-graduação em Educação Física.,Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
58
|
Couch Y, Akbar N, Davis S, Fischer R, Dickens AM, Neuhaus AA, Burgess AI, Rothwell PM, Buchan AM. Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation. Stroke 2017; 48:2292-2296. [PMID: 28536169 DOI: 10.1161/strokeaha.117.017236] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. METHODS EVs were quantified and analyzed in the sera of patients after an acute stroke (<24 hours; OXVASC [Oxford Vascular Study]). Isolated EV fractions were subjected to untargeted proteomic analysis by liquid chromatography mass-spectrometry/mass-spectrometry and then applied to macrophages in culture to investigate inflammatory gene expression. RESULTS EV number, but not size, is significantly increased in stroke patients when compared to age-matched controls. Proteomic analysis reveals an overall increase in acute phase proteins, including C-reactive protein. EV fractions applied to monocyte-differentiated macrophage cultures induced inflammatory gene expression. CONCLUSIONS Together these data show that EVs from stroke patients are proinflammatory in nature and are capable of inducing inflammation in immune cells.
Collapse
Affiliation(s)
- Yvonne Couch
- From the Acute Stroke Programme, Radcliffe Department of Medicine, John Radcliffe Hospital (Y.C., A.A.N., A.M.B.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital (N.A.), Target Discovery Institute, Nuffield Department of Medicine (S.D., R.F.), and Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences (P.M.R., A.I.B.), University of Oxford, United Kingdom; and Turku Centre for Biotechnology, University of Turku, Biocity, Finland (A.M.D.).
| | - Naveed Akbar
- From the Acute Stroke Programme, Radcliffe Department of Medicine, John Radcliffe Hospital (Y.C., A.A.N., A.M.B.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital (N.A.), Target Discovery Institute, Nuffield Department of Medicine (S.D., R.F.), and Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences (P.M.R., A.I.B.), University of Oxford, United Kingdom; and Turku Centre for Biotechnology, University of Turku, Biocity, Finland (A.M.D.)
| | - Simon Davis
- From the Acute Stroke Programme, Radcliffe Department of Medicine, John Radcliffe Hospital (Y.C., A.A.N., A.M.B.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital (N.A.), Target Discovery Institute, Nuffield Department of Medicine (S.D., R.F.), and Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences (P.M.R., A.I.B.), University of Oxford, United Kingdom; and Turku Centre for Biotechnology, University of Turku, Biocity, Finland (A.M.D.)
| | - Roman Fischer
- From the Acute Stroke Programme, Radcliffe Department of Medicine, John Radcliffe Hospital (Y.C., A.A.N., A.M.B.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital (N.A.), Target Discovery Institute, Nuffield Department of Medicine (S.D., R.F.), and Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences (P.M.R., A.I.B.), University of Oxford, United Kingdom; and Turku Centre for Biotechnology, University of Turku, Biocity, Finland (A.M.D.)
| | - Alex M Dickens
- From the Acute Stroke Programme, Radcliffe Department of Medicine, John Radcliffe Hospital (Y.C., A.A.N., A.M.B.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital (N.A.), Target Discovery Institute, Nuffield Department of Medicine (S.D., R.F.), and Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences (P.M.R., A.I.B.), University of Oxford, United Kingdom; and Turku Centre for Biotechnology, University of Turku, Biocity, Finland (A.M.D.)
| | - Ain A Neuhaus
- From the Acute Stroke Programme, Radcliffe Department of Medicine, John Radcliffe Hospital (Y.C., A.A.N., A.M.B.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital (N.A.), Target Discovery Institute, Nuffield Department of Medicine (S.D., R.F.), and Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences (P.M.R., A.I.B.), University of Oxford, United Kingdom; and Turku Centre for Biotechnology, University of Turku, Biocity, Finland (A.M.D.)
| | - Annette I Burgess
- From the Acute Stroke Programme, Radcliffe Department of Medicine, John Radcliffe Hospital (Y.C., A.A.N., A.M.B.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital (N.A.), Target Discovery Institute, Nuffield Department of Medicine (S.D., R.F.), and Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences (P.M.R., A.I.B.), University of Oxford, United Kingdom; and Turku Centre for Biotechnology, University of Turku, Biocity, Finland (A.M.D.)
| | - Peter M Rothwell
- From the Acute Stroke Programme, Radcliffe Department of Medicine, John Radcliffe Hospital (Y.C., A.A.N., A.M.B.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital (N.A.), Target Discovery Institute, Nuffield Department of Medicine (S.D., R.F.), and Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences (P.M.R., A.I.B.), University of Oxford, United Kingdom; and Turku Centre for Biotechnology, University of Turku, Biocity, Finland (A.M.D.)
| | - Alastair M Buchan
- From the Acute Stroke Programme, Radcliffe Department of Medicine, John Radcliffe Hospital (Y.C., A.A.N., A.M.B.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital (N.A.), Target Discovery Institute, Nuffield Department of Medicine (S.D., R.F.), and Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences (P.M.R., A.I.B.), University of Oxford, United Kingdom; and Turku Centre for Biotechnology, University of Turku, Biocity, Finland (A.M.D.)
| |
Collapse
|
59
|
Jin P, Wang K, Huang C, Nice EC. Mining the fecal proteome: from biomarkers to personalised medicine. Expert Rev Proteomics 2017; 14:445-459. [PMID: 28361558 DOI: 10.1080/14789450.2017.1314786] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Fecal proteomics has gained increased prominence in recent years. It can provide insights into the diagnosis and surveillance of many bowel diseases by both identifying potential biomarkers in stool samples and helping identify disease-related pathways. Fecal proteomics has already shown its potential for the discovery and validation of biomarkers for colorectal cancer screening, and the analysis of fecal microbiota by MALDI-MS for the diagnosis of a range of bowel diseases is gaining clinical acceptance. Areas covered: Based on a comprehensive analysis of the current literature, we introduce the range of sensitive and specific proteomics methods which comprise the current 'Proteomics Toolbox', explain how the integration of fecal proteomics with data processing/bioinformatics has been used for the identification of potential biomarkers for both CRC and other gut-related pathologies and analysis of the fecal microbiome, outline some of the current fecal assays in current clinical practice and introduce the concept of personalised medicine which these technologies will help inform. Expert commentary: Integration of fecal proteomics with other proteomics and genomics strategies as well as bioinformatics is paving the way towards personalised medicine, which will bring with it improved global healthcare.
Collapse
Affiliation(s)
- Ping Jin
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Kui Wang
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Canhua Huang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Edouard C Nice
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| |
Collapse
|
60
|
Xie X, Luo X, Liu N, Li X, Lou F, Zheng Y, Ren Y. Monocytes, microglia, and CD200-CD200R1 signaling are essential in the transmission of inflammation from the periphery to the central nervous system. J Neurochem 2017; 141:222-235. [PMID: 28164283 DOI: 10.1111/jnc.13972] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/05/2023]
Abstract
Peripheral inflammation is known to trigger neuroinflammation and neurodegenerative disease. However, the key components during the propagation of inflammation from the periphery to the central nervous system (CNS) remain unclear. Lipopolysaccharide (LPS) was administered to Sprague-Dawley rats to induce peripheral inflammation. An intravenous injection and an intranigral injection of clodronate liposomes were given to deplete monocytes and microglia, respectively. Recombinant CD200 fusion protein (CD200Fc) or an anti-CD200R1 antibody was injected into the substantia nigra to manipulate the involvement of CD200 and CD200R1. Immunohistochemistry and immunofluorescence staining were used to measure microglial activation and dopaminergic neuronal loss. The expression of brain pro-inflammatory cytokines (i.e., tumor necrosis factor alpha, IL-1β) and CD200-CD200R1 signaling were measured by quantitative RT-PCR. Our data showed that the peripheral LPS injection activated the microglia and induced an increase in the levels of pro-inflammatory cytokines (i.e., tumor necrosis factor alpha, IL-1β). The depletion of either monocytes or microglia suppressed these inflammatory effects that were induced by peripheral LPS administration. The peripheral LPS injection increased the expression of CD200 and CD200R1 in the substantia nigra. Dopaminergic neuronal loss induced by the peripheral LPS injection was accelerated by the blockade of CD200-CD200R1 signaling with an anti-CD200R1 antibody and attenuated by intensifying the signaling with CD200Fc. These results highlight the importance of monocytes, microglia, and CD200-CD200R1 signaling in the transmission of inflammation from the periphery to the CNS.
Collapse
Affiliation(s)
- Xin Xie
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoguang Luo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Na Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaohong Li
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fan Lou
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yumin Zheng
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Ren
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
61
|
|
62
|
|
63
|
Ruzicka J, Machova-Urdzikova L, Gillick J, Amemori T, Romanyuk N, Karova K, Zaviskova K, Dubisova J, Kubinova S, Murali R, Sykova E, Jhanwar-Uniyal M, Jendelova P. A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transplant 2016; 26:585-603. [PMID: 27938489 DOI: 10.3727/096368916x693671] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three different sources of human stem cells-bone marrow-derived mesenchymal stem cells (BM-MSCs), neural progenitors (NPs) derived from immortalized spinal fetal cell line (SPC-01), and induced pluripotent stem cells (iPSCs)-were compared in the treatment of a balloon-induced spinal cord compression lesion in rats. One week after lesioning, the rats received either BM-MSCs (intrathecally) or NPs (SPC-01 cells or iPSC-NPs, both intraspinally), or saline. The rats were assessed for their locomotor skills (BBB, flat beam test, and rotarod). Morphometric analyses of spared white and gray matter, axonal sprouting, and glial scar formation, as well as qPCR and Luminex assay, were conducted to detect endogenous gene expression, while inflammatory cytokine levels were performed to evaluate the host tissue response to stem cell therapy. The highest locomotor recovery was observed in iPSC-NP-grafted animals, which also displayed the highest amount of preserved white and gray matter. Grafted iPSC-NPs and SPC-01 cells significantly increased the number of growth-associated protein 43 (GAP43+) axons, reduced astrogliosis, downregulated Casp3 expression, and increased IL-6 and IL-12 levels. hMSCs transiently decreased levels of inflammatory IL-2 and TNF-α. These findings correlate with the short survival of hMSCs, while NPs survived for 2 months and matured slowly into glia- and tissue-specific neuronal precursors. SPC-01 cells differentiated more in astroglial phenotypes with a dense structure of the implant, whereas iPSC-NPs displayed a more neuronal phenotype with a loose structure of the graft. We concluded that the BBB scores of iPSC-NP- and hMSC-injected rats were superior to the SPC-01-treated group. The iPSC-NP treatment of spinal cord injury (SCI) provided the highest recovery of locomotor function due to robust graft survival and its effect on tissue sparing, reduction of glial scarring, and increased axonal sprouting.
Collapse
|
64
|
Early Inflammatory Response following Traumatic Brain Injury in Rabbits Using USPIO- and Gd-Enhanced MRI. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8431987. [PMID: 27868069 PMCID: PMC5102713 DOI: 10.1155/2016/8431987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/04/2016] [Indexed: 11/28/2022]
Abstract
Purpose. To monitor the inflammatory response (IR) following traumatic brain injury (TBI) before and after the rehabilitation of the blood-brain barrier (BBB) in rabbits using USPIO- and Gd-enhanced MRI. Materials and Methods. Twenty white big-eared rabbits with mild TBI (mTBI) were randomly and equally divided into four groups. Rabbits were sacrificed for the brain specimens immediately after the last MRI-monitoring. Sequences were tse-T1WI, tse-T2WI, Gd-T1WI, and USPIO-T1WI. Dynamical MRI presentations were evaluated and compared with pathological findings for each group. Results. Twenty-four hours after injury, all rabbits displayed high signal foci on T2WI, while only 55% lesions could be found on Gd-T1WI and none on USPIO-T1WI. The lesions were enhanced on Gd-T1WI in 100% subjects after 48 h and the enhancement sizes augmented to the largest after 72 h. At the time point of 72 h after TBI, 90% lesions were enhanced by USPIO. Five days after injury, 19 lesions showed decreased Gd-enhancement and one disappeared; however, USPIO-enhancement became larger than before. Pathological findings showed microglias slightly appeared in dense leukocytes at 48 h, but became the dominant inflammatory cells after five days. Conclusions. Dynamic IR following injury could be monitored by combination of Gd- and USPIO-MRI in mTBI rabbits.
Collapse
|
65
|
Kigerl KA, Hall JCE, Wang L, Mo X, Yu Z, Popovich PG. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med 2016; 213:2603-2620. [PMID: 27810921 PMCID: PMC5110012 DOI: 10.1084/jem.20151345] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Kigerl et al. show that spinal cord injury causes profound changes in gut microbiota and that these changes in gut ecology are associated with activation of GALT immune cells. They show that feeding mice probiotics after SCI confers neuroprotection and improves functional recovery. The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid–producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| | - Jodie C E Hall
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| | - Lingling Wang
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
66
|
Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. J Neuroinflammation 2016; 13:260. [PMID: 27716334 PMCID: PMC5053065 DOI: 10.1186/s12974-016-0736-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/28/2016] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in significant physical disabilities for affected individuals. Apart from local injury within the spinal cord, SCI patients develop a variety of complications characterized by multiple organ dysfunction or failure. These disorders, such as neurogenic pain, depression, lung injury, cardiovascular disease, liver damage, kidney dysfunction, urinary tract infection, and increased susceptibility to pathogen infection, are common in injured patients, hinder functional recovery, and can even be life threatening. Multiple lines of evidence point to pathological connections emanating from the injured spinal cord, post-injury systemic inflammation, and immune suppression as important multifactorial mechanisms underlying post-SCI complications. SCI triggers systemic inflammatory responses marked by increased circulation of immune cells and pro-inflammatory mediators, which result in the infiltration of inflammatory cells into secondary organs and persistence of an inflammatory microenvironment that contributes to organ dysfunction. SCI also induces immune deficiency through immune organ dysfunction, resulting in impaired responsiveness to pathogen infection. In this review, we summarize current evidence demonstrating the relevance of inflammatory conditions and immune suppression in several complications frequently seen following SCI. In addition, we highlight the potential pathways by which inflammatory and immune cues contribute to multiple organ failure and dysfunction and discuss current anti-inflammatory approaches used to alleviate post-SCI complications. A comprehensive review of this literature may provide new insights into therapeutic strategies against complications after SCI by targeting systemic inflammation.
Collapse
|
67
|
Markus TE, Zeharia A, Cohen YH, Konen O. Persistent Headache and Cephalic Allodynia Attributed to Head Trauma in Children and Adolescents. J Child Neurol 2016; 31:1213-9. [PMID: 27221373 DOI: 10.1177/0883073816650036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/27/2016] [Indexed: 01/02/2023]
Abstract
The aim of the study was to investigate clinical features of headache associated with minor versus moderate to severe traumatic brain injury and of posttraumatic versus primary headache in children and adolescents. Study group included 74 patients after mild (n = 60) or moderate to severe (n = 14) traumatic brain injury identified by retrospective review of the computerized files of a tertiary pediatric headache clinic. Forty patients (54%) had migraine-like headache, 23 (31.1%) tension-like headache, and 11 (14.9%) nonspecified headache. Fourteen patients (53.8%) had allodynia. In comparison with 174 control patients, the study group had a significantly lower proportion of patients with migraine-like headache and a higher proportion of male patients and patients with allodynia. There was no statistically significant correlation of any of the clinical parameters with the type or severity of the posttraumatic headache or rate of allodynia. The high rate of allodynia in the study group may indicate a central sensitization in posttraumatic headache.
Collapse
Affiliation(s)
- Tal Eidlitz Markus
- Pediatric Headache Clinic, Day Hospitalization Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avraham Zeharia
- Pediatric Headache Clinic, Day Hospitalization Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yishai Haimi Cohen
- Pediatric Headache Clinic, Day Hospitalization Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Konen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Department of Pediatric Radiology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
68
|
Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood-Brain Barrier Permeability following Experimental Traumatic Brain Injury. J Neurosci 2016; 36:2809-18. [PMID: 26937017 DOI: 10.1523/jneurosci.3197-15.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Traumatic brain injury (TBI) is a major human health concern that has the greatest impact on young men and women. The breakdown of the blood-brain barrier (BBB) is an important pathological consequence of TBI that initiates secondary processes, including infiltration of inflammatory cells, which can exacerbate brain inflammation and contribute to poor outcome. While the role of inflammation within the injured brain has been examined in some detail, the contribution of peripheral/systemic inflammation to TBI pathophysiology is largely unknown. Recent studies have implicated vagus nerve regulation of splenic cholinergic nicotinic acetylcholine receptor α7 (nAChRa7) signaling in the regulation of systemic inflammation. However, it is not known whether this mechanism plays a role in TBI-triggered inflammation and BBB breakdown. Following TBI, we observed that plasma TNF-α and IL-1β levels, as well as BBB permeability, were significantly increased in nAChRa7 null mice (Chrna7(-/-)) relative to wild-type mice. The administration of exogenous IL-1β and TNF-α to brain-injured animals worsened Evans Blue dye extravasation, suggesting that systemic inflammation contributes to TBI-triggered BBB permeability. Systemic administration of the nAChRa7 agonist PNU-282987 or the positive allosteric modulator PNU-120596 significantly attenuated TBI-triggered BBB compromise. Supporting a role for splenic nAChRa7 receptors, we demonstrate that splenic injection of the nicotinic receptor blocker α-bungarotoxin increased BBB permeability in brain-injured rats, while PNU-282987 injection decreased such permeability. These effects were not seen when α-bungarotoxin or PNU-282987 were administered to splenectomized, brain-injured rats. Together, these findings support the short-term use of nAChRa7-activating agents as a strategy to reduce TBI-triggered BBB permeability. SIGNIFICANCE STATEMENT Breakdown of the blood-brain barrier (BBB) in response to traumatic brain injury (TBI) allows for the accumulation of circulating fluids and proinflammatory cells in the injured brain. These processes can exacerbate TBI pathology and outcome. While the role of inflammation in the injured tissue has been examined in some detail, the contribution of peripheral inflammation in BBB breakdown and ensuing pathology has not been well defined. We present experimental evidence to indicate that the stimulation of nicotinic acetylcholine α7 receptors (nAChRa7s) can reduce peripheral inflammation and BBB breakdown after TBI. These results suggest that activators of nAChRa7 may have therapeutic utility for the treatment of TBI.
Collapse
|
69
|
Di Battista AP, Rhind SG, Richards D, Churchill N, Baker AJ, Hutchison MG. Altered Blood Biomarker Profiles in Athletes with a History of Repetitive Head Impacts. PLoS One 2016; 11:e0159929. [PMID: 27458972 PMCID: PMC4961456 DOI: 10.1371/journal.pone.0159929] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023] Open
Abstract
The long-term health effects of concussion and sub-concussive impacts in sport are unknown. Growing evidence suggests both inflammation and neurodegeneration are pivotal to secondary injury processes and the etiology of neurodegenerative diseases. In the present study we characterized circulating brain injury and inflammatory mediators in healthy male and female athletes according to concussion history and collision sport participation. Eighty-seven university level athletes (male, n = 60; female, n = 27) were recruited before the start of the competitive season. Athletes were healthy at the time of the study (no medications, illness, concussion or musculoskeletal injuries). Dependent variables included 29 inflammatory and 10 neurological injury analytes assessed in the peripheral blood by immunoassay. Biomarkers were statistically evaluated using partial least squares multivariate analysis to identify possible relationships to self-reported previous concussion history, number of previous concussions and collision sport participation in male and female athletes. Multiple concussions were associated with increases in peripheral MCP-1 in females, and MCP-4 in males. Collision sport participation was associated with increases in tau levels in males. These results are consistent with previous experimental and clinical findings that suggest ongoing inflammatory and cerebral injury processes after repetitive mild head trauma. However, further validation is needed to correlate systemic biomarkers to repetitive brain impacts, as opposed to the extracranial effects common to an athletic population such as exercise and muscle damage.
Collapse
Affiliation(s)
- Alex P. Di Battista
- Institute of Medical Science, University of Toronto, Toronto ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto ON, Canada
| | - Doug Richards
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto ON, Canada
| | - Nathan Churchill
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Andrew J. Baker
- Institute of Medical Science, University of Toronto, Toronto ON, Canada
- Departments of Critical Care, Anesthesia and Surgery, St. Michael’s Hospital, University of Toronto, Toronto ON, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Michael G. Hutchison
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
70
|
Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats. Neuroscience 2016; 328:40-9. [DOI: 10.1016/j.neuroscience.2016.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022]
|
71
|
Nwachuku EL, Puccio AM, Adeboye A, Chang YF, Kim J, Okonkwo DO. Time course of cerebrospinal fluid inflammatory biomarkers and relationship to 6-month neurologic outcome in adult severe traumatic brain injury. Clin Neurol Neurosurg 2016; 149:1-5. [PMID: 27450760 DOI: 10.1016/j.clineuro.2016.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/28/2016] [Accepted: 06/11/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Activation of the inflammatory cascade is a known pathophysiologic process in severe traumatic brain injury (TBI) with yet non-standardized scientific data regarding relationship to outcome. The understanding of the time course of expression of cerebrospinal fluid (CSF) biomarker levels following severe TBI is an important step toward using these biomarkers to measure injury severity and/or early response to therapeutic interventions. The objective of the current study is to report the time course and values of a battery of CSF inflammatory biomarkers following severe TBI in our reasonably sized patient cohort. PATIENTS AND METHODS Our patient cohort consists of 32 consented patients, who met the study's inclusion criteria for data collection from 2000 to 2010. The time course and values of a battery of CSF biomarkers (IL-1β, IL-6, TNF-α, IFN-γ, IL-12p70, IL-10, and IL-8) following severe TBI in this patient cohort was characterized. Additionally, the correlation of biomarker concentration with 6-month neurological outcome was assessed. Serial CSF sampling through an external ventricular drain was performed over the first five days following injury. Concentration of a panel of inflammatory biomarkers (IL-1β, IL-6, TNF-α, IFN-γ, IL-12p70, IL-10, and IL-8) were evaluated using Meso Scale Discovery's Multi-Array technology. Glasgow Outcome Scale (GOS) score at six months following injury was dichotomized into poor outcome (GOS 1-3) and favorable outcome (GOS 4-5). Statistical analyses were performed using Kruskal-Wallis test and linear regression analysis. RESULTS The result shows that CSF concentrations of inflammatory biomarkers had a significant association with 6-month neurological outcome (p-values≤0.05 for each marker), with the favorable outcome group having lower concentrations of these biomarkers on average, in comparison to the poor neurologic outcome group over the first five days after TBI. All inflammatory biomarkers decreased to normal levels by post-trauma day 5, except for IL-6 and IL-8. Upregulation and increased expression of key inflammatory markers following severe TBI were significant predictors of worse 6-month neurologic outcome. Additionally, post-trauma day 5 concentrations of IL-6 and IL-8 remained elevated over normal CSF values. CONCLUSION The study shows that inflammatory biomarkers in CSF are potential biomarkers of injury severity and progression and/or recovery; they could prove beneficial in the future assessment of injury severity and response to therapy after severe TBI.
Collapse
Affiliation(s)
- Enyinna L Nwachuku
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite B-400, Pittsburgh, PA 15213, United States.
| | - Ava M Puccio
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite B-400, Pittsburgh, PA 15213, United States.
| | - Adeolu Adeboye
- Frank H. Netter MD School of Medicine of Quinnipiac University, 300 Bassett Road, MNH-211K North Haven, CT 06473, United States.
| | - Yue-Fang Chang
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite B-400, Pittsburgh, PA 15213, United States.
| | - Jinho Kim
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite B-400, Pittsburgh, PA 15213, United States.
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite B-400, Pittsburgh, PA 15213, United States.
| |
Collapse
|
72
|
Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediators Inflamm 2016; 2016:9476020. [PMID: 27418745 PMCID: PMC4935915 DOI: 10.1155/2016/9476020] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury results in a life-disrupting series of deleterious interconnected mechanisms encompassed by the primary and secondary injury. These events are mediated by the upregulation of genes with roles in inflammation, transcription, and signaling proteins. In particular, cytokines and growth factors are signaling proteins that have important roles in the pathophysiology of SCI. The balance between the proinflammatory and anti-inflammatory effects of these molecules plays a critical role in the progression and outcome of the lesion. The excessive inflammatory Th1 and Th17 phenotypes observed after SCI tilt the scale towards a proinflammatory environment, which exacerbates the deleterious mechanisms present after the injury. These mechanisms include the disruption of the spinal cord blood barrier, edema and ion imbalance, in particular intracellular calcium and sodium concentrations, glutamate excitotoxicity, free radicals, and the inflammatory response contributing to the neurodegenerative process which is characterized by demyelination and apoptosis of neuronal tissue.
Collapse
|
73
|
Baranes K, Shevach M, Shefi O, Dvir T. Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation. NANO LETTERS 2016; 16:2916-20. [PMID: 26674672 DOI: 10.1021/acs.nanolett.5b04033] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Engineered 3D neuronal networks are considered a promising approach for repairing the damaged spinal cord. However, the lack of a technological platform encouraging axonal elongation over branching may jeopardize the success of such treatment. To address this issue we have decorated gold nanoparticles on the surface of electrospun nanofiber scaffolds, characterized the composite material, and investigated their effect on the differentiation, maturation, and morphogenesis of primary neurons and on an immature neuronal cell line. We have shown that the nanocomposite scaffolds have encouraged a longer outgrowth of the neurites, as judged by the total length of the branching trees and the length and total distance of neurites. Moreover, neurons grown on the nanocomposite scaffolds had less neurites originating out of the soma and lower number of branches. Taken together, these results indicate that neurons cultivated on the gold nanoparticle scaffolds prefer axonal elongation over forming complex branching trees. We envision that such cellular constructs may be useful in the future as implantable cellular devices for repairing damaged neuronal tissues, such as the spinal cord.
Collapse
Affiliation(s)
- Koby Baranes
- Faculty of Engineering and ‡Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan 52900, Israel
- The Laboratory for Tissue Engineering and Regenerative Medicine, Department of Molecular Microbiology and Biotechnology, ∥Department of Materials Science and Engineering, and ⊥The Center for Nanoscience and Nanotechnology, Tel Aviv University , Tel Aviv 69978, Israel
| | - Michal Shevach
- Faculty of Engineering and ‡Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan 52900, Israel
- The Laboratory for Tissue Engineering and Regenerative Medicine, Department of Molecular Microbiology and Biotechnology, ∥Department of Materials Science and Engineering, and ⊥The Center for Nanoscience and Nanotechnology, Tel Aviv University , Tel Aviv 69978, Israel
| | - Orit Shefi
- Faculty of Engineering and ‡Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan 52900, Israel
- The Laboratory for Tissue Engineering and Regenerative Medicine, Department of Molecular Microbiology and Biotechnology, ∥Department of Materials Science and Engineering, and ⊥The Center for Nanoscience and Nanotechnology, Tel Aviv University , Tel Aviv 69978, Israel
| | - Tal Dvir
- Faculty of Engineering and ‡Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan 52900, Israel
- The Laboratory for Tissue Engineering and Regenerative Medicine, Department of Molecular Microbiology and Biotechnology, ∥Department of Materials Science and Engineering, and ⊥The Center for Nanoscience and Nanotechnology, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
74
|
Pedersen AL, Nelson LH, Saldanha CJ. Centrally Synthesized Estradiol Is a Potent Anti-Inflammatory in the Injured Zebra Finch Brain. Endocrinology 2016; 157:2041-51. [PMID: 26963472 PMCID: PMC4870876 DOI: 10.1210/en.2015-1991] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In homeotherms, injury to the brain, such as a penetrating wound, increases microglial cytokine expression and astroglial aromatase (estrogen synthase). In songbirds, injury-induced synthesis of estrogens is neuroprotective as aromatase inhibition and replacement with estradiol (E2) exacerbates and mitigates the extent of damage, respectively. The influence of induced aromatization on inflammation, however, remains unstudied. We hypothesized that injury-induced aromatization, via E2 synthesis, may affect neuroinflammation after a penetrating brain injury. Using adult zebra finches, we first documented an increase in the transcription of cytokines but not aromatase, 2 hours after the injury. Twenty-four hours after the injury, however, aromatase was dramatically elevated and cytokine expression had returned to baseline, suggesting that aromatization may be involved in the decrease of cytokines and neuroinflammation. In two subsequent experiments, we tested the influence of the inhibition of induced aromatization and aromatase inhibition with concomitant central E2 replacement on the transcription of the cytokines TNF-α, IL-1β, and IL-6, the enzyme cyclooxygenase-2 (cox-2), and its product prostaglandin E2 (PGE2). Administration of fadrozole, an aromatase inhibitor, caused a sustained elevation of IL-1β in females and TNF-α, cox-2, and PGE2 in both sexes. This prolonged neuroinflammation appears to be due to a failure to synthesize E2 locally because intracranial E2 replacement lowered IL-1β in females, TNF-α in males, and cox-2 and PGE2 in both sexes. IL-6 was not affected by injury, aromatase inhibition, or E2 replacement in either sex. These data suggest that E2 synthesis after a penetrating brain injury is a potent and inducible anti-inflammatory signal, with specific modulation of discrete cytokine signaling.
Collapse
Affiliation(s)
- Alyssa L Pedersen
- Department of Biology, Behavior, Cognition, and Neuroscience Program and The Center for Behavioral Neuroscience, American University, Washington, DC 20016
| | - Lars H Nelson
- Department of Biology, Behavior, Cognition, and Neuroscience Program and The Center for Behavioral Neuroscience, American University, Washington, DC 20016
| | - Colin J Saldanha
- Department of Biology, Behavior, Cognition, and Neuroscience Program and The Center for Behavioral Neuroscience, American University, Washington, DC 20016
| |
Collapse
|
75
|
Villalba N, Sackheim AM, Nunez IA, Hill-Eubanks DC, Nelson MT, Wellman GC, Freeman K. Traumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through Arginase-1-Dependent Uncoupling of Endothelial Nitric Oxide Synthase. J Neurotrauma 2016; 34:192-203. [PMID: 26757855 DOI: 10.1089/neu.2015.4340] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O2- production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.
Collapse
Affiliation(s)
- Nuria Villalba
- 1 Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Adrian M Sackheim
- 2 Department of Surgery, University of Vermont , Burlington, Vermont
| | - Ivette A Nunez
- 2 Department of Surgery, University of Vermont , Burlington, Vermont
| | | | - Mark T Nelson
- 1 Department of Pharmacology, University of Vermont , Burlington, Vermont.,2 Department of Surgery, University of Vermont , Burlington, Vermont.,3 Institute of Cardiovascular Sciences, University of Manchester , Manchester, United Kingdom
| | - George C Wellman
- 1 Department of Pharmacology, University of Vermont , Burlington, Vermont.,2 Department of Surgery, University of Vermont , Burlington, Vermont
| | - Kalev Freeman
- 1 Department of Pharmacology, University of Vermont , Burlington, Vermont.,2 Department of Surgery, University of Vermont , Burlington, Vermont
| |
Collapse
|
76
|
Poniatowski ŁA, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I. Analysis of the Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Traumatic Brain and Spinal Cord Injury: Insight into Recent Advances in Actions of Neurochemokine Agents. Mol Neurobiol 2016; 54:2167-2188. [PMID: 26927660 PMCID: PMC5355526 DOI: 10.1007/s12035-016-9787-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
CX3CL1 (fractalkine) is the only member of the CX3C (delta) subfamily of chemokines which is unique and combines the properties of both chemoattractant and adhesion molecules. The two-form ligand can exist either in a soluble form, like all other chemokines, and as a membrane-anchored molecule. CX3CL1 discloses its biological properties through interaction with one dedicated CX3CR1 receptor which belongs to a family of G protein-coupled receptors (GPCR). The CX3CL1/CX3CR1 axis acts in many physiological phenomena including those occurring in the central nervous system (CNS), by regulating the interactions between neurons, microglia, and immune cells. Apart from the role under physiological conditions, the CX3CL1/CX3CR1 axis was implied to have a role in different neuropathologies such as traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries represent a serious public health problem, despite improvements in therapeutic management. To date, no effective treatment has been determined, so they constitute a leading cause of death and severe disability. The course of TBI and SCI has two consecutive poorly demarcated phases: the initial, primary injury and secondary injury. Recent evidence has implicated the role of the CX3CL1/CX3CR1 axis in neuroinflammatory processes occurring after CNS injuries. The importance of the CX3CL1/CX3CR1 axis in the pathophysiology of TBI and SCI in the context of systemic and direct local immune response is still under investigation. This paper, based on a review of the literature, updates and summarizes the current knowledge about CX3CL1/CX3CR1 axis involvement in TBI and SCI pathogenesis, indicating possible molecular and cellular mechanisms with a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Łukasz A Poniatowski
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.
| | - Piotr Wojdasiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.,Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.,Department of Pediatric and Neurological Rehabilitation, Faculty of Rehabilitation, Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Robert Gasik
- Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Łukasz Kubaszewski
- Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Orthopaedics and Traumatology, Wiktor Dega Orthopaedic and Rehabilitation Clinical Hospital, Poznań University of Medical Sciences, 28 Czerwca 1956 135/147, 61-545, Poznań, Poland
| | | |
Collapse
|
77
|
Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, Inaba K, Topolovec-Vranic J, Neto AC, Rizoli SB, Baker AJ. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflammation 2016; 13:40. [PMID: 26883121 PMCID: PMC4754875 DOI: 10.1186/s12974-016-0500-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/01/2016] [Indexed: 01/25/2023] Open
Abstract
Background Traumatic brain injury (TBI) elicits intense sympathetic nervous system (SNS) activation with profuse catecholamine secretion. The resultant hyperadrenergic state is linked to immunomodulation both within the brain and systemically. Dysregulated inflammation post-TBI exacerbates secondary brain injury and contributes to unfavorable patient outcomes including death. The aim of this study was to characterize the early dynamic profile of circulating inflammatory cytokines/chemokines in patients admitted for moderate-to-severe TBI, to examine interrelationships between these mediators and catecholamines, as well as clinical indices of injury severity and neurological outcome. Methods Blood was sampled from 166 isolated TBI patients (aged 45 ± 20.3 years; 74.7 % male) on admission, 6-, 12-, and 24-h post-injury and from healthy controls (N = 21). Plasma cytokine [interleukin (IL)-1β, -2, -4, -5, -10, -12p70, -13, tumor necrosis factor (TNF)-α, interferon (IFN)-γ] and chemokine [IL-8, eotaxin, eotaxin-3, IFN-γ-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, -4, macrophage-derived chemokine (MDC), macrophage inflammatory protein (MIP)-1β, thymus activation regulated chemokine (TARC)] concentrations were analyzed using high-sensitivity electrochemiluminescence multiplex immunoassays. Plasma catecholamines [epinephrine (Epi), norepinephrine (NE)] were measured by immunoassay. Neurological outcome at 6 months was assessed using the extended Glasgow outcome scale (GOSE) dichotomized as good (>4) or poor (≤4) outcomes. Results Patients showed altered levels of IL-10 and all chemokines assayed relative to controls. Significant differences in a number of markers were evident between moderate and severe TBI cohorts. Elevated IL-8, IL-10, and TNF-α, as well as alterations in 8 of 9 chemokines, were associated with poor outcome at 6 months. Notably, a positive association was found between Epi and IL-1β, IL-10, Eotaxin, IL-8, and MCP-1. NE was positively associated with IL-1β, IL-10, TNF-α, eotaxin, IL-8, IP-10, and MCP-1. Conclusions Our results provide further evidence that exaggerated SNS activation acutely after isolated TBI in humans may contribute to harmful peripheral inflammatory cytokine/chemokine dysregulation. These findings are consistent with a potentially beneficial role for therapies aimed at modulating the inflammatory response and hyperadrenergic state acutely post-injury. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0500-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex P Di Battista
- Defence Research & Development Canada, Toronto Research Centre, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Shawn G Rhind
- Defence Research & Development Canada, Toronto Research Centre, Toronto, ON, Canada. .,Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada.
| | - Michael G Hutchison
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada. .,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hopsital, Toronto, ON, Canada.
| | - Syed Hassan
- Defence Research & Development Canada, Toronto Research Centre, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Maria Y Shiu
- Defence Research & Development Canada, Toronto Research Centre, Toronto, ON, Canada. .,Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada.
| | - Kenji Inaba
- Division of Trauma & Critical Care, University of Southern California, Los Angeles, CA, USA. .,LA County+ USC Medical Center, Los Angeles, CA, USA.
| | - Jane Topolovec-Vranic
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hopsital, Toronto, ON, Canada.
| | | | - Sandro B Rizoli
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hopsital, Toronto, ON, Canada. .,Department of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada. .,Department of Anesthesia, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada. .,Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| | - Andrew J Baker
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hopsital, Toronto, ON, Canada. .,Department of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada. .,Department of Anesthesia, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada. .,Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
78
|
Thakore NP, Samantaray S, Park S, Nozaki K, Smith JA, Cox A, Krause J, Banik NL. Molecular Changes in Sub-lesional Muscle Following Acute Phase of Spinal Cord Injury. Neurochem Res 2016; 41:44-52. [PMID: 26290268 PMCID: PMC9727651 DOI: 10.1007/s11064-015-1696-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
To clarify the molecular changes of sublesional muscle in the acute phase of spinal cord injury (SCI), a moderately severe injury (40 g cm) was induced in the spinal cord (T10 vertebral level) of adult male Sprague-Dawley rats (injury) and compared with sham (laminectomy only). Rats were sacrificed at 48 h (acute) post injury, and gastrocnemius muscles were excised. Morphological examination revealed no significant changes in the muscle fiber diameter between the sham and injury rats. Western blot analyses performed on the visibly red, central portion of the gastrocnemius muscle showed significantly higher expression of muscle specific E3 ubiquitin ligases (muscle ring finger-1 and muscle atrophy f-box) and significantly lower expression of phosphorylated Akt-1/2/3 in the injury group compared to the sham group. Cyclooxygenase 2, tumor necrosis factor alpha (TNF-α), and caspase-1, also had a significantly higher expression in the injury group; although, the mRNA levels of TNF-α and IL-6 did not show any significant difference between the sham and injury groups. These results suggest activation of protein degradation, deactivation of protein synthesis, and development of inflammatory reaction occurring in the sublesional muscles in the acute phase of SCI before overt muscle atrophy is seen.
Collapse
Affiliation(s)
- Nakul P Thakore
- Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 309 CSB, MSC 606, Charleston, SC, 29425, USA
| | - Supriti Samantaray
- Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 309 CSB, MSC 606, Charleston, SC, 29425, USA
| | - Sookyoung Park
- Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 309 CSB, MSC 606, Charleston, SC, 29425, USA
- Departmentof Physical Therapy, Kyungnam University, Changwon, South Korea
| | - Kenkichi Nozaki
- Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 309 CSB, MSC 606, Charleston, SC, 29425, USA
- Division of Neuromuscular Disease, Department of Neurology, University of Alabama, Birmingham, AL, USA
| | - Joshua A Smith
- Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 309 CSB, MSC 606, Charleston, SC, 29425, USA
| | - April Cox
- Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 309 CSB, MSC 606, Charleston, SC, 29425, USA
| | - James Krause
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L Banik
- Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 309 CSB, MSC 606, Charleston, SC, 29425, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
79
|
Rajkovic I, Denes A, Allan SM, Pinteaux E. Emerging roles of the acute phase protein pentraxin-3 during central nervous system disorders. J Neuroimmunol 2016; 292:27-33. [PMID: 26943955 DOI: 10.1016/j.jneuroim.2015.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022]
Abstract
Pentraxin-3 (PTX3) is an acute phase protein (APP) and a member of the long pentraxin family that is recognised for its role in peripheral immunity and vascular inflammation in response to injury, infection and diseases such as atherosclerosis, cancer and respiratory disease. Systemic levels of PTX3 are highly elevated in these conditions, and PTX3 is now recognised as a new biomarker of disease risk and progression. There is extensive evidence demonstrating that central nervous system (CNS) disorders are primarily characterised by central activation of innate immunity, as well as activation of a potent peripheral acute phase response (APR) that influences central inflammation and contributes to poor outcome. PTX3 has been recently recognised to play important roles in CNS disorders, having both detrimental and neuroprotective effects. The present review aims to give an up-to-date account of the emerging roles of PTX3 in CNS disorders, and to provide a critical comparison between peripheral and central actions of PTX3 in inflammatory diseases.
Collapse
Affiliation(s)
- Ivana Rajkovic
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adam Denes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest H-1450, Hungary
| | - Stuart M Allan
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
80
|
Plesnila N. The immune system in traumatic brain injury. Curr Opin Pharmacol 2015; 26:110-7. [PMID: 26613129 DOI: 10.1016/j.coph.2015.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 01/21/2023]
Abstract
Traumatic brain injury (TBI) is the major cause of death in children and young adults and one of the major reasons for long-term disability worldwide, however, no specific clinical treatment option could be established so far. This is surprising since it is well known that following the initial mechanical damage to the brain a plethora of delayed processes are activated which ultimately result in additional brain damage. Among these secondary mechanisms, acute and chronic activation of the innate and adaptive immune system is increasingly believed to play an important role for the pathogenesis of TBI. Understanding these processes may results in new, clinically applicable therapeutic options for TBI patients.
Collapse
Affiliation(s)
- Nikolaus Plesnila
- Institute for Stroke and Dementia Research and Munich Cluster of System Neurology (Synergy), University of Munich Medical Center, Munich, Germany.
| |
Collapse
|
81
|
Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochem Pharmacol 2015; 103:1-16. [PMID: 26556658 DOI: 10.1016/j.bcp.2015.11.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
Abstract
Recent neuroscience research has established the adult brain as a dynamic organ having a unique ability to undergo changes with time. Neuroglia, especially microglia and astrocytes, provide dynamicity to the brain. Activation of these glial cells is a major component of the neuroinflammatory responses underlying brain injury and neurodegeneration. Glial cells execute functional reaction programs in response to diverse microenvironmental signals manifested by neuropathological conditions. Activated microglia exist along a continuum of two functional states of polarization namely M1-type (classical/proinflammatory activation) and M2-type (alternative/anti-inflammatory activation) as in macrophages. The balance between classically and alternatively activated microglial phenotypes influences disease progression in the CNS. The classically activated state of microglia drives the neuroinflammatory response and mediates the detrimental effects on neurons, whereas in their alternative activation state, which is apparently a beneficial activation state, the microglia play a crucial role in tissue maintenance and repair. Likewise, in response to immune or inflammatory microenvironments astrocytes also adopt neurotoxic or neuroprotective phenotypes. Reactive astrocytes exhibit two distinctive functional phenotypes defined by pro- or anti-inflammatory gene expression profile. In this review, we have thoroughly covered recent advances in the understanding of the functional polarization of brain and peripheral glia and its implications in neuroinflammation and neurological disorders. The identifiable phenotypes adopted by neuroglia in response to specific insult or injury can be exploited as promising diagnostic markers of neuroinflammatory diseases. Furthermore, harnessing the beneficial effects of the polarized glia could undoubtedly pave the way for the formulation of novel glia-based therapeutic strategies for diverse neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
82
|
Carpenter RS, Kigerl KA, Marbourg JM, Gaudet AD, Huey D, Niewiesk S, Popovich PG. Traumatic spinal cord injury in mice with human immune systems. Exp Neurol 2015; 271:432-44. [PMID: 26193167 DOI: 10.1016/j.expneurol.2015.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/18/2015] [Accepted: 07/13/2015] [Indexed: 01/21/2023]
Abstract
Mouse models have provided key insight into the cellular and molecular control of human immune system function. However, recent data indicate that extrapolating the functional capabilities of the murine immune system into humans can be misleading. Since immune cells significantly affect neuron survival and axon growth and also are required to defend the body against infection, it is important to determine the pathophysiological significance of spinal cord injury (SCI)-induced changes in human immune system function. Research projects using monkeys or humans would be ideal; however, logistical and ethical barriers preclude detailed mechanistic studies in either species. Humanized mice, i.e., immunocompromised mice reconstituted with human immune cells, can help overcome these barriers and can be applied in various experimental conditions that are of interest to the SCI community. Specifically, newborn NOD-SCID-IL2rg(null) (NSG) mice engrafted with human CD34(+) hematopoietic stem cells develop normally without neurological impairment. In this report, new data show that when mice with human immune systems receive a clinically-relevant spinal contusion injury, spontaneous functional recovery is indistinguishable from that achieved after SCI using conventional inbred mouse strains. Moreover, using routine immunohistochemical and flow cytometry techniques, one can easily phenotype circulating human immune cells and document the composition and distribution of these cells in the injured spinal cord. Lesion pathology in humanized mice is typical of mouse contusion injuries, producing a centralized lesion epicenter that becomes occupied by phagocytic macrophages and lymphocytes and enclosed by a dense astrocytic scar. Specific human immune cell types, including three distinct subsets of human monocytes, were readily detected in the blood, spleen and liver. Future studies that aim to understand the functional consequences of manipulating the neuro-immune axis after SCI should consider using the humanized mouse model. Humanized mice represent a powerful tool for improving the translational value of pre-clinical SCI data.
Collapse
Affiliation(s)
- Randall S Carpenter
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Kristina A Kigerl
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Jessica M Marbourg
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Andrew D Gaudet
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Devra Huey
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
83
|
Jovanovic B, Milan Z, Markovic-Denic L, Djuric O, Radinovic K, Doklestic K, Velickovic J, Ivancevic N, Gregoric P, Pandurovic M, Bajec D, Bumbasirevic V. Risk factors for ventilator-associated pneumonia in patients with severe traumatic brain injury in a Serbian trauma centre. Int J Infect Dis 2015; 38:46-51. [PMID: 26166697 DOI: 10.1016/j.ijid.2015.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The aims of this study were (1) to assess the incidence of ventilator-associated pneumonia (VAP) in patients with traumatic brain injury (TBI), (2) to identify risk factors for developing VAP, and (3) to assess the prevalence of the pathogens responsible. PATIENTS AND METHODS The following data were collected prospectively from patients admitted to a 24-bed intensive care unit (ICU) during 2013/14: the mechanism of injury, trauma distribution by system, the Acute Physiology and Chronic Health Evaluation (APACHE) II score, the Abbreviated Injury Scale (AIS) score, the Injury Severity Score (ISS), underlying diseases, Glasgow Coma Scale (GCS) score, use of vasopressors, need for intubation or cardiopulmonary resuscitation upon admission, and presence of pulmonary contusions. All patients were managed with a standardized protocol if VAP was suspected. The Sequential Organ Failure Assessment (SOFA) score and the Clinical Pulmonary Infection Score (CPIS) were measured on the day of VAP diagnosis. RESULTS Of the 144 patients with TBI who underwent mechanical ventilation for >48h, 49.3% did not develop VAP, 24.3% developed early-onset VAP, and 26.4% developed late-onset VAP. Factors independently associated with early-onset VAP included thoracic injury (odds ratio (OR) 8.56, 95% confidence interval (CI) 2.05-35.70; p=0.003), ISS (OR 1.09, 95% CI 1.03-1.15; p=0.002), and coma upon admission (OR 13.40, 95% CI 3.12-57.66; p<0.001). Age (OR 1.04, 95% CI 1.02-1.07; p=0.002), ISS (OR 1.09, 95% CI 1.04-1.13; p<0.001), and coma upon admission (OR 3.84, 95% CI 1.44-10.28; p=0.007) were independently associated with late-onset VAP (Nagelkerke r(2)=0.371, area under the curve (AUC) 0.815, 95% CI 0.733-0.897; p<0.001). The 28-day survival rate was 69% in the non-VAP group, 45.7% in the early-onset VAP group, and 31.6% in the late-onset VAP group. Acinetobacter spp was the most common pathogen in patients with early- and late-onset VAP. CONCLUSIONS These results suggest that the extent of TBI and trauma of other organs influences the development of early VAP, while the extent of TBI and age influences the development of late VAP. Patients with early- and late-onset VAP harboured the same pathogens.
Collapse
Affiliation(s)
- Bojan Jovanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Centre for Anaesthesiology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Zoka Milan
- King's College Hospital, London, SE5 9RS, UK.
| | | | - Olivera Djuric
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Krstina Doklestic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Emergency Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Jelena Velickovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Centre for Anaesthesiology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Nenad Ivancevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Emergency Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Pavle Gregoric
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Emergency Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Milena Pandurovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Centre for Anaesthesiology, Clinical Centre of Serbia, Belgrade, Serbia; "Medigroup" Hospital, Belgrade, Serbia
| | - Djordje Bajec
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Digestive Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Vesna Bumbasirevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Centre for Anaesthesiology, Clinical Centre of Serbia, Belgrade, Serbia
| |
Collapse
|
84
|
Chemokine-ligands/receptors: multiplayers in traumatic spinal cord injury. Mediators Inflamm 2015; 2015:486758. [PMID: 25977600 PMCID: PMC4419224 DOI: 10.1155/2015/486758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) results in complex posttraumatic sequelae affecting the whole neuraxis. Due to its involvement in varied neuromodulatory processes, the chemokine-ligand/receptor-network is a key element of secondary lesion cascades induced by SCI. This review will provide a synopsis of chemokine-ligand/receptor-expression along the whole neuraxis after traumatic spinal cord (sc) insults on basis of recent in vivo and in vitro findings in a SCI paradigm of thoracic force-defined impact lesions (Infinite Horizon Impactor) in adult rats. Analyses of chemokine-ligand/receptor-expression at defined time points after sc lesion of different severity grades or sham operation revealed that these inflammatory mediators are induced in distinct anatomical sc regions and in thalamic nuclei, periaqueductal grey, and hippocampal structures in the brain. Cellular and anatomical expression profiles together with colocalization/expression of neural stem/progenitor cell markers in adult sc stem cells niches or with pain-related receptors and mediators in dorsal horns, dorsal columns, and pain-processing brain areas support the notion that chemokines are involved in distinct cascades underlying clinical posttraumatic impairments and syndromes. These aspects and their implication in concepts of tailored SCI treatment are reviewed in the context of the recent literature on chemokine-ligand/receptor involvement in complex secondary lesion cascades.
Collapse
|
85
|
Liu C, Cui Z, Wang S, Zhang D. CD93 and GIPC expression and localization during central nervous system inflammation. Neural Regen Res 2015; 9:1995-2001. [PMID: 25598782 PMCID: PMC4283283 DOI: 10.4103/1673-5374.145383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2014] [Indexed: 12/15/2022] Open
Abstract
CD93 and GAIP-interacting protein, C termius (GIPC) have been shown to interactively alter phagocytic processes of immune cells. CD93 and GIPC expression and localization during central nervous system inflammation have not yet been reported. In this study, we established a rat model of brain inflammation by lipopolysaccharide injection to the lateral ventricle. In the brain of rats with inflammation, western blots showed increased CD93 expression that decreased over time. GIPC expression was unaltered. Immunohistochemistry demonstrated extensive distribution of CD93 expression mainly in cell membranes in the cerebral cortex. After lipopolysaccharide stimulation, CD93 expression increased and then reduced, with distinct staining in the cytoplasm and nucleus. Double immunofluorescence staining in cerebral cortex of normal rats showed that CD93 and GIPC widely expressed in resting microglia and neurons. CD93 was mainly expressed in microglial and neuronal cell membranes, while GIPC was expressed in both cell membrane and cytoplasm. In the cerebral cortex at 9 hours after model establishment, CD93-immunoreactive signal diminished in microglial membrane, with cytoplasmic translocation and aggregation detected. GIPC localization was unaltered in neurons and microglia. These results are the first to demonstrate CD93 participation in pathophysiological processes of central nervous system inflammation.
Collapse
Affiliation(s)
- Chun Liu
- Experimental Animal Center, Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province, Nantong University, Nantong, Jiangsu Province, China
| | - Zhichao Cui
- Department of Pathogen Biology, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Shengjie Wang
- Experimental Animal Center, Key Laboratory of Inflammation and Molecular Drug Targets of Jiangsu Province, Nantong University, Nantong, Jiangsu Province, China
| | - Dongmei Zhang
- Department of Pathogen Biology, Medical School of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
86
|
Decreased anti-regenerative effects after spinal cord injury in spry4-/- mice. Neuroscience 2014; 287:104-12. [PMID: 25541251 DOI: 10.1016/j.neuroscience.2014.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 11/22/2022]
Abstract
Previously, we have demonstrated a role for fibroblast growth factor (Fgf) in spinal cord regeneration in both zebrafish and mouse. We have shown that exogenous Fgf2 treatment attenuates astrocytic gliosis and induces glia cells to become progenitors that undergo neurogenesis as well as differentiating into bipolar astrocytes that support axonal regeneration (Goldshmit et al., 2012, 2014). One of the downstream signaling target genes of Fgf is spry4, which acts as a feedback inhibitor for Fgf signaling. In this study we examined the effects of increased endogenous Fgf signaling, in spry4-/- mice, on the early events that occur after spinal cord injury (SCI). We demonstrate that in spry4-/- mice inflammatory responses, such as tumor necrosis factor α (TNFα) secretion and macrophage/neutrophil invasion into the lesion site are reduced. In addition, astrocytic gliosis is attenuated and neuronal survival is increased. These results further support a pro-regenerative role of Fgf after SCI, and suggest that increased endogenous Fgf signaling after SCI may contribute to functional recovery and therefore presents this pathway as a target for new therapy development.
Collapse
|
87
|
Schwab JM, Zhang Y, Kopp MA, Brommer B, Popovich PG. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp Neurol 2014; 258:121-129. [PMID: 25017893 PMCID: PMC4099970 DOI: 10.1016/j.expneurol.2014.04.023] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023]
Abstract
During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the "immune privileged/specialized" milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of "SCI disease" and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because inflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, "compartimentalized" investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS are influenced by systemic immune challenges and that the immune system is 'hardwired' into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the context of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and "neurogenic" spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired "host-defense" and trauma-induced autoimmunity.
Collapse
Affiliation(s)
- Jan M. Schwab
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
- Spinal Cord Injury Center, Trauma Hospital Berlin, D-12683 Berlin, Germany
| | - Yi Zhang
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Marcel A. Kopp
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
| | - Benedikt Brommer
- Department of Neurology and Experimental Neurology, Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charite - Universitatsmedizin Berlin, D-10117 Berlin, Germany
| | - Phillip G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
88
|
Affiliation(s)
- Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA
| |
Collapse
|