51
|
Mahmood MHR, Qayyum MA, Yaseen F, Farooq T, Farooq Z, Yaseen M, Irfan A, Muddassir K, Zafar MN, Qamar MT, Abbasi AM, Liu HY. Multivariate Investigation of Toxic and Essential Metals in the Serum from Various Types and Stages of Colorectal Cancer Patients. Biol Trace Elem Res 2022; 200:31-48. [PMID: 33635516 DOI: 10.1007/s12011-021-02632-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/08/2021] [Indexed: 01/22/2023]
Abstract
Colorectal cancer (CRC) is currently one of the most frequent malignant neoplasms, ranking 3rd in incidence and 2nd in mortality both in the USA and across the world. The pathogenesis of CRC is a complex interaction between genetic susceptibility and environmental factors such as exposure to metals. Therefore, the present study was intended to assess the imbalances in the concentrations of selected essential/toxic elements (Pb, Cr, Fe, Zn, As, Cd, Cu, Se, Ni, and Hg) in the serum of newly diagnosed colorectal carcinoma patients (n = 165) in comparison with counterpart controls (n = 151) by atomic absorption spectrometry after wet-acid digestion method. Serum carcinoembryonic antigen (CEA) of the CRC patients was determined using immunoradiometric method. Body mass index (BMI) which is an established risk factor for CRC was also calculated for patients and healthy controls. Conversely, average Ni (2.721 μg/g), Cd (0.563 μg/g), As (0.539 μg/g), and Pb (1.273 μg/g) levels were significantly elevated in the serum of CRC patients compared to the healthy donors, while the average Se (7.052 μg/g), Fe (15.67 μg/g), Cu (2.033 μg/g), and Zn (8.059 μg/g) concentrations were elevated in controls. The correlation coefficients between the elements in the cancerous patients demonstrated significantly dissimilar communal relationships compared with the healthy subjects. Significant differences in the elemental levels were also showed for CRC types (primary colorectal lymphoma, gastrointestinal stromal tumor, and adenocarcinoma) and CRC stages (stage-I, stage-II, stage-III, and stage-IV) among the patients. Majority of the elements demonstrated perceptible disparities in their levels based on dietary, habitat, gender, and smoking habits of the malignant patients and healthy subjects. Multivariate methods revealed noticeably divergent apportionment among the toxic/essential elements in the cancerous patients than the healthy counterparts. Overall, the study showed significantly divergent distribution and associations of the essential and toxic elemental levels in the serum of the CRC patients in comparison with the healthy donors.
Collapse
Affiliation(s)
- Mian H R Mahmood
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Farhan Yaseen
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Zahid Farooq
- Department of Physics, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Muhammad Yaseen
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Khawaja Muddassir
- Division of Pulmonary Critical Care and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | | | - Muhammad Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Hai-Yang Liu
- Department of Chemistry, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
52
|
Characteristics of Oral Microbiota in Patients with Esophageal Cancer in China. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2259093. [PMID: 34957299 PMCID: PMC8702330 DOI: 10.1155/2021/2259093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Gut microbiota dysbiosis is closely associated with intestinal carcinogenesis, but the oral microbiota of patients with esophageal squamous cell carcinoma who live in high-risk regions in China has not been fully characterized. In the current study, oral microbial diversity was investigated in 33 patients with esophageal squamous cell carcinoma and 35 healthy controls in Chongqing, China, by sequencing 16S rRNA of V3-V4 gene regions. There were statistically significant differences in oral microbiota between esophageal squamous cell carcinoma patients and controls as determined via unweighted pair-group analysis with arithmetic means. At the phylum level, in esophageal squamous cell carcinoma patients, there were comparatively greater amounts of Firmicutes (34.0% vs. 31.1%) and Bacteroidetes (25.3% vs. 24.9%) and lower amounts of Proteobacteria (17.0% vs. 20.1%). At the genus level, esophageal squamous cell carcinoma patients exhibited comparatively greater amounts of Streptococcus (17.3% vs. 14.5%) and Prevotella_7 (8.6% vs. 8.5%) and lower amounts of Neisseria (8.1% vs. 10.7%). Using a linear discriminant analysis effect size method, Planctomycetes and Verrucomicrobia were identified in the esophageal squamous cell carcinoma group. 10 genera were higher abundances identified in the healthy control group, and different 10 genera were identified in the esophageal squamous cell carcinoma group. In the present study, there were significant differences in oral microbial compositions of esophageal squamous cell carcinoma patients and healthy controls. Further longitudinal and mechanistic studies are needed to further characterize relationships between oral microbiota and esophageal squamous cell carcinoma.
Collapse
|
53
|
Li A, Ding J, Shen T, Han Z, Zhang J, Abadeen ZU, Kulyar MFEA, Wang X, Li K. Environmental hexavalent chromium exposure induces gut microbial dysbiosis in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112871. [PMID: 34649138 DOI: 10.1016/j.ecoenv.2021.112871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/12/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Hexavalent chromium [Cr (VI)] is a hazardous heavy metal that pollutes soil, water and crops. Moreover, its prolonged exposure can harm the gastrointestinal system, liver and respiratory tract in different species, but knowledge regarding Cr (VI) influence on gut microbiota in chickens remains scarce. Therefore, this study was performed to investigate the impact of Cr (VI) on gut microbiota in chickens. Results revealed that the gut microbiota in Cr (VI)-induced chickens exhibited a distinct reduction in alpha diversity, accompanied by significant shifts in microbial composition. Specifically, Firmicutes and Bacteroidetes were the most dominant phyla in the control chickens, whereas Firmicutes and Actinobacteria were observed to be predominant in the Cr (VI)-induced populations. Moreover, the types and relative abundances of predominant bacterial genus in control and Cr (VI)-induced chickens were also different. Bacterial taxonomic analysis revealed that the relative abundances of 3 phyla and 7 genera obviously increased, whereas 8 phyla and 30 genera dramatically decreased during Cr (VI) induction. Among them, 1 phylum (Deferribacteres) and 5 genera (Butyricicoccus, Butyricimonas, Intestinimonas, Lachnospiraceae_FCS020_group and Ruminococcaceae_V9D2013_group) even could not be found in the gut microbial community of Cr (VI)-induced chickens. Taken together, our study indicated that the long-term exposure to Cr (VI) dramatically alter the gut microbial diversity and composition in chickens. Notably, it represents a breakthrough in understanding the impact of Cr (VI) on the intestinal microbiota of chickens.
Collapse
Affiliation(s)
- Aoyun Li
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong 276005, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinxue Ding
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ting Shen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhaoqing Han
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong 276005, PR China
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zain Ul Abadeen
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, 38040 Faisalabad, Pakistan
| | | | - Xin Wang
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong 276005, PR China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
54
|
Poonia T, Singh N, Garg MC. Contamination of Arsenic, Chromium and Fluoride in the Indian groundwater: a review, meta-analysis and cancer risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021; 18:2891-2902. [DOI: 10.1007/s13762-020-03043-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 08/20/2024]
|
55
|
Gao J, Zhou N, Wu Y, Lu M, Wang Q, Xia C, Zhou M, Xu Y. Urinary metabolomic changes and microbiotic alterations in presenilin1/2 conditional double knockout mice. J Transl Med 2021; 19:351. [PMID: 34399766 PMCID: PMC8365912 DOI: 10.1186/s12967-021-03032-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background Given the clinical low efficient treatment based on mono-brain-target design in Alzheimer’s disease (AD) and an increasing emphasis on microbiome-gut-brain axis which was considered as a crucial pathway to affect the progress of AD along with metabolic changes, integrative metabolomic signatures and microbiotic community profilings were applied on the early age (2-month) and mature age (6-month) of presenilin1/2 conditional double knockout (PS cDKO) mice which exhibit a series of AD-like phenotypes, comparing with gender and age-matched C57BL/6 wild-type (WT) mice to clarify the relationship between microbiota and metabolomic changes during the disease progression of AD. Materials and methods Urinary and fecal samples from PS cDKO mice and gender-matched C57BL/6 wild-type (WT) mice both at age of 2 and 6 months were collected. Urinary metabolomic signatures were measured by the gas chromatography-time-of-flight mass spectrometer, as well as 16S rRNA sequence analysis was performed to analyse the microbiota composition at both ages. Furthermore, combining microbiotic functional prediction and Spearman’s correlation coefficient analysis to explore the relationship between differential urinary metabolites and gut microbiota. Results In addition to memory impairment, PS cDKO mice displayed metabolic and microbiotic changes at both of early and mature ages. By longitudinal study, xylitol and glycine were reduced at both ages. The disturbed metabolic pathways were involved in glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions, starch and sucrose metabolism, and citrate cycle, which were consistent with functional metabolic pathway predicted by the gut microbiome, including energy metabolism, lipid metabolism, glycan biosynthesis and metabolism. Besides reduced richness and evenness in gut microbiome, PS cDKO mice displayed increases in Lactobacillus, while decreases in norank_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, Mucispirillum, and Odoribacter. Those altered microbiota were exceedingly associated with the levels of differential metabolites. Conclusions The urinary metabolomics of AD may be partially mediated by the gut microbiota. The integrated analysis between gut microbes and host metabolism may provide a reference for the pathogenesis of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03032-9.
Collapse
Affiliation(s)
- Jie Gao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
| | - Yongkang Wu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mengna Lu
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qixue Wang
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
56
|
Wu H, Chen Q, Liu J, Chen X, Luo H, Ye Z, Liu J. Microbiome analysis reveals gut microbiota alteration in mice with the effect of matrine. Microb Pathog 2021; 156:104926. [PMID: 33964419 DOI: 10.1016/j.micpath.2021.104926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Mounting evidence revealed the negative effects of abuse of antibiotic including the induction of decreased immunity and dysbacteriosis. Matrine displayed multiple beneficial effects such as anti-inflammatory, antiviral and antibacterial, but studies of its influence on gut microbiota are still insufficient to report. Here, the present study was conducted to investigate the influence of matrine on the gut microbiota of mice and amoxicillin was used as a positive control. A total of 21 cecal samples were obtained from seven groups for high-throughput sequencing analysis based on V3-V4 variable region of 16S rRNA genes. Results revealed that the diversity and abundance of gut microbiota in mice gradually decreased with the increase of the concentration of amoxicillin, whereas matrine administration did not effect the intestinal microbial community structure. Additionally, amoxicillin and matrine supplementation also caused significant changes in the relative abundance of some intestinal bacteria. Specifically, the ratio of Klebsiella and Corynebacterium_1, Bacteroides and Parasutterella in the amoxicillin treated-group were increased as compared to the control group, whereas Muribaculaceae_unclassified, Alistipes and Lactobacillus were significantly decreased. Conversely, matrine administration significantly increased the proportion of beneficial bacteria such as Ruminiclostridium_9, Lachnospiraceae_NK4A136_group and Ruminococcaceae_unclassified. In conclusion, amoxicillin administration could change the microbial community composition and structure by increasing the proportion of pathogenic to beneficial bacteria, whereas matrine could increase the number of beneficial bacteria. Moreover, this study provides a theoretical basis for finding alternatives to antibiotics to decrease bacterial resistance and intestinal flora imbalance.
Collapse
Affiliation(s)
- Haigang Wu
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Qiong Chen
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Jinni Liu
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Xiaoqing Chen
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Houqiang Luo
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China.
| | - Zhaowei Ye
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| | - Jicheng Liu
- College of Animal Science and VeterinaryMedicine, Xinyang Agriculture And Forestry University, Xinyang, China
| |
Collapse
|
57
|
Chen Y, Wu H, Sun P, Liu J, Qiao S, Zhang D, Zhang Z. Remediation of Chromium-Contaminated Soil Based on Bacillus cereus WHX-1 Immobilized on Biochar: Cr(VI) Transformation and Functional Microbial Enrichment. Front Microbiol 2021; 12:641913. [PMID: 33841363 PMCID: PMC8027096 DOI: 10.3389/fmicb.2021.641913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 11/14/2022] Open
Abstract
Microorganisms are applied to remediate chromium (Cr)-contaminated soil extensively. Nevertheless, the microbial loss and growth inhibition in the soil environment restrain the application of this technology. In this study, a Cr(VI)-reducing strain named Bacillus cereus WHX-1 was screened, and the microbial aggregates system was established via immobilizing the strain on Enteromorpha prolifera biochar to enhance the Cr(VI)-reducing activity of this strain. The mechanism of the system on Cr(VI) transformation in Cr-contaminated soil was illuminated. Pot experiments indicated that the microbial aggregates system improved the physicochemical characteristics of Cr-contaminated soil obviously by increasing organic carbon content and cation exchange capacity, as well as decreasing redox potential and bulk density of soil. Moreover, 94.22% of Cr(VI) was transformed into Cr(III) in the pot, and the content of residue fraction Cr increased by 63.38% compared with control check (CK). Correspondingly, the physiological property of Ryegrass planted on the Cr-contaminated soil was improved markedly and the main Cr(VI)-reducing microbes, Bacillus spp., were enriched in the soil with a relative abundance of 28.43% in the microbial aggregates system. Considering more active sites of biochar for microbial aggregation, it was inferred that B. cereus WHX-1 could be immobilized by E. prolifera biochar, and more Cr(VI) was transformed into residue fraction. Cr stress was decreased and the growth of plants was enhanced. This study would provide a new perspective for Cr-contaminated soil remediation.
Collapse
Affiliation(s)
- Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China
| | - Haixia Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Shixuan Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Dakuan Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiming Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
58
|
|
59
|
Changes of intestinal microflora of breast cancer in premenopausal women. Eur J Clin Microbiol Infect Dis 2020; 40:503-513. [PMID: 32936397 DOI: 10.1007/s10096-020-04036-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Breast cancer is one of the most common malignant tumors in women. More than half of breast cancer patients are not menopausal at the time of diagnosis. The occurrence and development of premenopausal breast cancer are affected by many factors. Intestinal flora, especially SCFA-producing bacteria, participates in the development of various tumors, and there is a lack of in-depth research in premenopausal breast cancer patients. We used 16S rRNA gene sequencing, targeted metabolomics, and cell culture methods to analyze the changes in the intestinal flora and metabolites of premenopausal breast cancer patients. In addition, we treated breast cancer cells with significantly altered propionate and butyrate in vitro to examine their effects on cell activity. This study followed STROBE guidelines. We found that compared with healthy premenopausal women, the composition and symbiosis of intestinal flora in patients with premenopausal breast cancer changed significantly. The abundance of short-chain fatty acid (SCFA)-producing bacteria was significantly reduced, and the key SCFA-producing enzymes were also significantly reduced. Pediococcus and Desulfovibrio could distinguish premenopausal breast cancer patients from normal premenopausal women. The related propionate and butyrate had a certain ability to inhibit breast cancer cell viability in vitro. As SCFA-producing bacteria, Pediococcus and Desulfovibrio showed potential reference value for the diagnosis of premenopausal breast cancer. The ability of propionate and butyrate to inhibit breast cancer cell lines in vitro suggests that the relevant SCFA receptor may be a new target for the treatment of premenopausal breast cancer.
Collapse
|
60
|
Wang C, Ma X, Zhang J, Jia X, Huang M. DNMT1 maintains the methylation of miR-152-3p to regulate TMSB10 expression, thereby affecting the biological characteristics of colorectal cancer cells. IUBMB Life 2020; 72:2432-2443. [PMID: 32918845 PMCID: PMC7693087 DOI: 10.1002/iub.2366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Objective DNA methyltransferases (DNMTs) take on a relevant role in epigenetic control of cancer proliferation and cell survival. However, the molecular mechanisms underlying the establishment and maintenance of DNA methylation in human cancer remain to be fully elucidated. This study was to investigate that how DNMT1 affected the biological characteristics of colorectal cancer (CRC) cells via modulating methylation of microRNA (miR)‐152‐3p and thymosin β 10 (TMSB10) expression. Methods DNMT1, miR‐152‐3p, and TMSB10 expression, and the methylation of miR‐152‐3p in CRC tissues and cells were detected. SW‐480 and HCT‐116 CRC cells were transfected with DNMT1 or miR‐152‐3p‐related sequences or plasmids to explore their characters in biological functions of CRC cells. The binding relationship between DNMT1 and miR‐152‐3p and the targeting relationship between miR‐152‐3p and TMSB10 were analyzed. The tumor growth was also detected in vivo. Results Upregulated DNMT1, TMSB10, reduced miR‐152‐3p, and methylated miR‐152‐3p were detected in CRC tissues and cells. Silenced DNMT1 or upregulated miR‐152‐3p reduced TMSB10 expression and suppressed CRC progression and tumor growth. Moreover, elevated DNMT1 could reverse the effect of miR‐152‐3p upregulation on CRC development and tumor growth. DNMT1 maintained methylation of miR‐152‐3p. TMSB10 was the direct target gene of miR‐152‐3p. Conclusion The study highlights that silenced DNMT1 results in non‐methylated miR‐152‐3p to depress TMSB10 expression, thereby inhibiting CRC development, which provides a new approach for CRC therapy.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoji Ma
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jieyun Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaobin Jia
- Department of General Surgery, Shanghai DF Medical Center, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
61
|
Massardier V, Catinon M, Trunfio-Sfarghiu AM, Hubert J, Vincent M. Metal-Metal Hip Prosthesis and Kidney Cancer: Assumed Role of Chromium and Cobalt Overload. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e923416. [PMID: 32879298 PMCID: PMC7491974 DOI: 10.12659/ajcr.923416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patient: Female, 68-year-old Final Diagnosis: Bilateral renal carcinoma Symptoms: Bleeding of renal track • discomfort Medication: — Clinical Procedure: Cancer nodule removal • prosthesis replacement • radiotherapy Specialty: Neurology • Orthopedics and Traumatology
Collapse
Affiliation(s)
- Valentin Massardier
- Minapath Development, Villeurbanne, France.,Contact and Structure Mechanics Laboratory (LaMCoS), National Institute of Applied Sciences of Lyon (INSA Lyon), University of Lyon, Villeurbanne, France
| | | | - Ana-Maria Trunfio-Sfarghiu
- Contact and Structure Mechanics Laboratory (LaMCoS), National Institute of Applied Sciences of Lyon (INSA Lyon), University of Lyon, Villeurbanne, France
| | - Jacques Hubert
- Department of Urology, University Hospital, Vandoeuvre-les-Nancy, France.,Diagnosis and International Adaptive Imaging (IADI) INSERM (U1254), Lorraine University (UL), Vandoeuvre-les-Nancy, France
| | | |
Collapse
|