51
|
Markowitsch SD, Juetter KM, Schupp P, Hauschulte K, Vakhrusheva O, Slade KS, Thomas A, Tsaur I, Cinatl J, Michaelis M, Efferth T, Haferkamp A, Juengel E. Shikonin Reduces Growth of Docetaxel-Resistant Prostate Cancer Cells Mainly through Necroptosis. Cancers (Basel) 2021; 13:882. [PMID: 33672520 PMCID: PMC7923752 DOI: 10.3390/cancers13040882] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis for advanced prostate carcinoma (PCa) remains poor due to development of therapy resistance, and new treatment options are needed. Shikonin (SHI) from Traditional Chinese Medicine has induced antitumor effects in diverse tumor entities, but data related to PCa are scarce. Therefore, the parental (=sensitive) and docetaxel (DX)-resistant PCa cell lines, PC3, DU145, LNCaP, and 22Rv1 were exposed to SHI [0.1-1.5 μM], and tumor cell growth, proliferation, cell cycling, cell death (apoptosis, necrosis, and necroptosis), and metabolic activity were evaluated. Correspondingly, the expression of regulating proteins was assessed. Exposure to SHI time- and dose-dependently inhibited tumor cell growth and proliferation in parental and DX-resistant PCa cells, accompanied by cell cycle arrest in the G2/M or S phase and modulation of cell cycle regulating proteins. SHI induced apoptosis and more dominantly necroptosis in both parental and DX-resistant PCa cells. This was shown by enhanced pRIP1 and pRIP3 expression and returned growth if applying the necroptosis inhibitor necrostatin-1. No SHI-induced alteration in metabolic activity of the PCa cells was detected. The significant antitumor effects induced by SHI to parental and DX-resistant PCa cells make the addition of SHI to standard therapy a promising treatment strategy for patients with advanced PCa.
Collapse
Affiliation(s)
- Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kira M. Juetter
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Patricia Schupp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kristine Hauschulte
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kimberly Sue Slade
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt, Germany;
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany;
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| |
Collapse
|
52
|
Yamaguchi M, Osuka S, Murata T, Ramos JW. Progression-free survival of prostate cancer patients is prolonged with a higher regucalcin expression in the tumor tissues: Overexpressed regucalcin suppresses the growth and bone activity in human prostate cancer cells. Transl Oncol 2020; 14:100955. [PMID: 33232921 PMCID: PMC7691610 DOI: 10.1016/j.tranon.2020.100955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer, which is a bone metastatic cancer, is the second leading cause of cancer-related death in men. There is no effective treatment for metastatic prostate cancer. Regucalcin has been shown to contribute as a suppressor in various types of human cancers. In the present study, furthermore, we investigate an involvement of regucalcin in suppression of prostate cancer. Regucalcin expression was compared in 131 primary tumor tissues and 19 metastatic tumor tissues in prostate cancer patients. Regucalcin expression in the metastatic tumor was found to be reduced as compared with that in primary tumor. The progression-free survival rate was prolonged in patients with a higher regucalcin expression. Translationally, overexpression of regucalcin in bone metastatic human prostate cancer PC-3 and DU-145 cells suppressed colony formation and cell growth in vitro. Mechanistically, overexpressed regucalcin enhanced the levels of p53, Rb, and p21, and decreased the levels of Ras, PI3 kinase, Akt, and mitogen-activated protein kinase, leading to suppression of cell growth. Furthermore, higher regucalcin expression suppressed the levels of nuclear factor-κB p65, β-catenin, and signal transducer and activator of transcription 3, which regulate a transcription activity. Cell growth was promoted by culturing with the calcium agonist Bay K 8644. This effect was blocked by overexpression of regucalcin. Notably, overexpressed regucalcin suppressed bone metastatic activity of PC-3 and DU-145 cells when cocultured with preosteoblastic or preosteoclastic cells. Regucalcin may suppress the development of human prostate cancer, suggesting that gene delivery systems in which its expression is forced may be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI 96813, USA.
| | - Satoru Osuka
- Department of Neurosurgery, Wallace Tumor Institute, The University of Alabama at Birmingham, WTI 520A, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI 96813, USA
| |
Collapse
|
53
|
Gould ML, Nicholson HD. Changes in receptor location affect the ability of oxytocin to stimulate proliferative growth in prostate epithelial cells. Reprod Fertil Dev 2020; 31:1166-1179. [PMID: 31034785 DOI: 10.1071/rd18362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
In normal prostate cells, cell membrane receptors are located within signalling microdomains called caveolae. During cancer progression, caveolae are lost and sequestered receptors move out onto lipid rafts. The aim of this study was to investigate whether a change in the localisation of receptors out of caveolae and onto the cell membrane increased cell proliferation invitro, and to determine whether this is related to changes in the cell signalling pathways. Normal human prostate epithelial cells (PrEC) and androgen-independent (PC3) cancer cells were cultured with 10nM dihydrotestosterone (DHT). The effects of oxytocin (OT) and gonadal steroids on proliferation were assessed using the MTS assay. Androgen receptor (AR) and oxytocin receptor (OTR) expression was identified by immunofluorescence and quantified by western blot. OTR and lipid raft staining was determined using Pearson's correlation coefficient. Protein-protein interactions were detected and the cell signalling pathways identified. Treatment with OT did not affect the proliferation of PrEC. In PC3 cells, OT or androgen alone increased cell proliferation, but together had no effect. In normal cells, OTR localised to the membrane and AR localised to the nucleus, whereas in malignant cells both OTR and AR were identified in the cell membrane. Colocalisation of OTR and AR increased following treatment with androgens. Significantly fewer OTR/AR protein-protein interactions were seen in PrEC. With OT treatment, several cell signalling pathways were activated. Movement of OTR out of caveolae onto lipid rafts is accompanied by activation of alternative signal transduction pathways involved in stimulating increased cell proliferation.
Collapse
Affiliation(s)
- M L Gould
- Anatomy Department, University of Otago, PO Box 913, Dunedin 9054, New Zealand; and Corresponding author.
| | - H D Nicholson
- Anatomy Department, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| |
Collapse
|
54
|
Del Bubba M, Di Serio C, Renai L, Scordo CVA, Checchini L, Ungar A, Tarantini F, Bartoletti R. Vaccinium myrtillus
L. extract and its native polyphenol‐recombined mixture have anti‐proliferative and pro‐apoptotic effects on human prostate cancer cell lines. Phytother Res 2020; 35:1089-1098. [DOI: 10.1002/ptr.6879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Affiliation(s)
| | - Claudia Di Serio
- Department of Clinical and Experimental Medicine University of Florence Florence Italy
| | - Lapo Renai
- Department of Chemistry University of Florence Florence Italy
| | | | | | - Andrea Ungar
- Department of Clinical and Experimental Medicine University of Florence Florence Italy
| | - Francesca Tarantini
- Department of Clinical and Experimental Medicine University of Florence Florence Italy
| | - Riccardo Bartoletti
- Department of Translational Research and New Technologies in Medicine and Surgery University of Pisa Pisa Italy
| |
Collapse
|
55
|
ABT-737 and erufosine combination against castration-resistant prostate cancer: a promising but cell-type specific response associated with the modulation of anti-apoptotic signaling. Anticancer Drugs 2020; 30:383-393. [PMID: 30557204 DOI: 10.1097/cad.0000000000000736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A deeper understanding of the molecular basis of castration-resistant prostate cancer (CRPC) paved the way for the rational design and development of targeted therapies, which yielded promising preclinical results. However, translation of these potentially promising agents into clinics has usually failed, partly because of tumor heterogeneity. In this study, anticancer activities of the Bcl-2 inhibitor ABT-737 and the Akt-inhibitor erufosine (ErPC3) alone and in combination were compared between CRPC (PC-3 and DU-145) and healthy (PNT-1A) cell lines. The combination of ABT-737 and ErPC3 showed synergistic antiproliferative, antimigratory, and apoptotic effects in PC-3 cells. In DU-145 cells, ErPC3 showed a resistant profile, with half-maximal inhibitory concentration (IC50) values more than two-fold of PC-3, and combining ErPC3 with ABT-737 yielded no added benefit for all the incubation periods compared with ErPC3 alone. In PNT-1A cells, ABT-737 and ErPC3 alone and in combination reduced cell survival slightly and only at the highest concentrations. Apoptosis analysis showed that ABT-737 induced increased Akt expression and ErPC3 induced increased Mcl-1 expression in DU-145 cells. In conclusion, the ABT-737 and ErPC3 combination seems to be promising against CRPC, with a favorable safety profile in healthy cells. However, CRPC cell-type-specific resistance may be induced by enhancement of antiapoptotic signaling.
Collapse
|
56
|
Domińska K, Kowalska K, Urbanek KA, Habrowska-Górczyńska DE, Ochędalski T, Piastowska Ciesielska AW. The Impact of Ang-(1-9) and Ang-(3-7) on the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes. Int J Mol Sci 2020; 21:ijms21176227. [PMID: 32872192 PMCID: PMC7504072 DOI: 10.3390/ijms21176227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
The local renin–angiotensin system (RAS) plays an important role in the pathophysiology of the prostate, including cancer development and progression. The Ang-(1-9) and Ang-(3-7) are the less known active peptides of RAS. This study examines the influence of these two peptide hormones on the metabolic activity, proliferation and migration of prostate cancer cells. Significant changes in MTT dye reduction were observed depending on the type of angiotensin and its concentration as well as time of incubation. Ang-(1-9) did not regulate the 2D cell division of either prostate cancer lines however, it reduced the size of LNCaP colonies formed in soft agar, maybe through down-regulation of the HIF1a gene. Ang-(3-7) increased the number of PC3 cells in the S phase and improved anchorage-independent growth as well as mobility. In this case, a significant increase in MKI67, BIRC5, and CDH-1 gene expression was also observed as well as all members of the NF-kB family. Furthermore, we speculate that this peptide can repress the proliferation of LNCaP cells by NOS3-mediated G2/M cell cycle arrest. No changes in expression of BIRC5 and BCL2/BAX ratio were observed but a decrease mRNA proapoptotic BAD gene was seen. In the both lines, Ang-(3-7) improved ROCK1 gene expression however, increased VEGF and NOS3 mRNA was only seen in the PC3 or LNCaP cells, respectively. Interestingly, it appears that Ang-(1-9) and Ang-(3-7) can modulate the level of steroidogenic enzymes responsible for converting cholesterol to testosterone in both prostate cancer lines. Furthermore, in PC3 cells, Ang-(1-9) upregulated AR expression while Ang-(3-7) upregulated the expression of both estrogen receptor genes. Ang-(1-9) and Ang-(3-7) can impact on biological properties of prostate cancer cells by modulating inflammatory and steroidogenesis pathway genes, among others.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
- Correspondence:
| | - Karolina Kowalska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.K.); (K.A.U.); (D.E.H.-G.); (A.W.P.C.)
| | - Kinga Anna Urbanek
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.K.); (K.A.U.); (D.E.H.-G.); (A.W.P.C.)
| | - Dominika Ewa Habrowska-Górczyńska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.K.); (K.A.U.); (D.E.H.-G.); (A.W.P.C.)
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Agnieszka Wanda Piastowska Ciesielska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.K.); (K.A.U.); (D.E.H.-G.); (A.W.P.C.)
| |
Collapse
|
57
|
Pavlíčková V, Jurášek M, Rimpelová S, Záruba K, Sedlák D, Šimková M, Kodr D, Staňková E, Fähnrich J, Rottnerová Z, Bartůněk P, Lapčík O, Drašar P, Ruml T. Oxime-based 19-nortestosterone-pheophorbide a conjugate: bimodal controlled release concept for PDT. J Mater Chem B 2020; 7:5465-5477. [PMID: 31414695 DOI: 10.1039/c9tb01301f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy has become a feasible direction for the treatment of both malignant and non-malignant diseases. It has been in the spotlight since FDA regulatory approval was granted to several photosensitizers worldwide. Nevertheless, there are still strong limitations in the targeting specificity that is vital to prevent systemic toxicity. Here, we report the synthesis and biological evaluation of a novel bimodal oxime conjugate composed of a photosensitizing drug, red-emitting pheophorbide a, and nandrolone (NT), a steroid specifically binding the androgen receptor (AR) commonly overexpressed in various tumors. We characterized the physico-chemical properties of the NT-pheophorbide a conjugate (NT-Pba) and singlet oxygen generation. Because light-triggered therapies have the potential to provide important advances in the treatment of hormone-sensitive cancer, the biological potential of this novel specifically-targeted photosensitizer was assessed in prostatic cancer cell lines in vitro using an AR-positive (LNCaP) and an AR-negative/positive cell line (PC-3). U-2 OS cells, both with and without stable AR expression, were used as a second cell line model. Interestingly, we found that the NT-Pba conjugate was not only photodynamically active and AR-specific, but also that its phototoxic effect was more pronounced compared to pristine pheophorbide a. We also examined the intracellular localization of NT-Pba. Live-cell fluorescence microscopy provided clear evidence that the NT-Pba conjugate localized in the endoplasmic reticulum and mitochondria. Moreover, we performed a competitive localization study with the excess of nonfluorescent NT, which was able to displace fluorescent NT-Pba from the cell interior, thereby further confirming the binding specificity. The oxime ether bond degradation was assayed in living cells by both real-time microscopy and a steroid receptor reporter assay using AR U-2 OS cells. Thus, NT-Pba is a promising candidate for both the selective targeting and eradication of AR-positive malignant cells by photodynamic therapy.
Collapse
Affiliation(s)
- Vladimíra Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Soll M, Chen QC, Zhitomirsky B, Lim PP, Termini J, Gray HB, Assaraf YG, Gross Z. Protein-coated corrole nanoparticles for the treatment of prostate cancer cells. Cell Death Discov 2020; 6:67. [PMID: 32793397 PMCID: PMC7387447 DOI: 10.1038/s41420-020-0288-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 02/01/2023] Open
Abstract
Development of novel therapeutic strategies to eradicate malignant tumors is of paramount importance in cancer research. In a recent study, we have introduced a facile protocol for the preparation of corrole-protein nanoparticles (NPs). These NPs consist of a corrole-core coated with protein. We now report that a novel lipophilic corrole, (2)Ga, delivered as human serum albumin (HSA)-coated NPs, displayed antineoplastic activity towards human prostate cancer DU-145 cells. Cryo-TEM analysis of these NPs revealed an average diameter of 50.2 ± 8.1 nm with a spherical architecture exhibiting low polydispersity. In vitro cellular uptake of (2)Ga/albumin NPs was attributable to rapid internalization of the corrole through ligand binding-dependent extracellular release and intercalation of the corrole cargo into the lipid bilayer of the plasma membrane. This finding is in contrast with a previously reported study on corrole-protein NPs that displayed cellular uptake via endocytosis. Investigation of the non-light-induced mechanism of action of (2)Ga suggested the induction of necrosis through plasma membrane destabilization, impairment of calcium homeostasis, lysosomal stress and rupture, as well as formation of reactive oxygen species (ROS). (2)Ga also exhibited potent light-induced cytotoxicity through ROS generation. These findings demonstrate a rapid cellular uptake of (2)Ga/protein NPs along with targeted induction of tumor cell necrosis.
Collapse
Affiliation(s)
- Matan Soll
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Qiu-Cheng Chen
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Benny Zhitomirsky
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Punnajit P. Lim
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Monrovia, CA 91010 USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Monrovia, CA 91010 USA
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125 USA
| | - Yehuda G. Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
59
|
Wróbel TM, Rogova O, Andersen KL, Yadav R, Brixius-Anderko S, Scott EE, Olsen L, Jørgensen FS, Björkling F. Discovery of Novel Non-Steroidal Cytochrome P450 17A1 Inhibitors as Potential Prostate Cancer Agents. Int J Mol Sci 2020; 21:ijms21144868. [PMID: 32660148 PMCID: PMC7402352 DOI: 10.3390/ijms21144868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The current study presents the design, synthesis, and evaluation of novel cytochrome P450 17A1 (CYP17A1) ligands. CYP17A1 is a key enzyme in the steroidogenic pathway that produces androgens among other steroids, and it is implicated in prostate cancer. The obtained compounds are potent enzyme inhibitors (sub µM) with antiproliferative activity in prostate cancer cell lines. The binding mode of these compounds is also discussed.
Collapse
Affiliation(s)
- Tomasz M. Wróbel
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Correspondence: ; Tel.: +48-814-487-273
| | - Oksana Rogova
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
| | - Kasper L. Andersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark;
| | - Rahul Yadav
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA; (R.Y.); (S.B.-A.); (E.E.S.)
| | - Simone Brixius-Anderko
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA; (R.Y.); (S.B.-A.); (E.E.S.)
| | - Emily E. Scott
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA; (R.Y.); (S.B.-A.); (E.E.S.)
- Department of Pharmacology, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | - Lars Olsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
- Protein Engineering, Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsvaerd, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
| |
Collapse
|
60
|
Iwata T, Sadahira T, Ochiai K, Ueki H, Sasaki T, Haung P, Araki M, Watanabe T, Nasu Y, Watanabe M. Tumor suppressor REIC/Dkk-3 and its interacting protein SGTA inhibit glucocorticoid receptor to nuclear transport. Exp Ther Med 2020; 20:1739-1745. [PMID: 32765682 DOI: 10.3892/etm.2020.8819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
REIC/Dkk-3 is a tumor suppressor, and its expression is significantly downregulated in a variety of human cancer types. A previous study performed yeast two-hybrid screening and identified the small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA), known as a negative modulator of cytoplasmic androgen receptor (AR) signaling, which is a novel interacting partner of REIC/Dkk-3. The previous study also indicated that the REIC/Dkk-3 protein interferes with the dimerization of SGTA and then upregulates the AR transport and signaling in human prostate cancer PC3 cells. Since the transport of some steroid receptors to nucleus is conducted similarly by dynein motor-dependent way, the current study aimed to investigate the role of SGTA and REIC/Dkk-3 in the transport of other glucocorticoid receptors (GR). In vitro reporter assays for the cytoplasmic GR transport were performed in human prostate cancer PC3 cells and 293T cells. As for the SGTA protein, a suppressive effect on the GR transport to the nucleus was observed in the cells. As for the REIC/Dkk-3 protein, an inhibitory effect was observed for the GR transport in PC3 cells. Under the depleted condition of SGTA by short-hairpin (sh)RNA, the downregulation of GR transport by REIC/Dkk-3 was significantly enhanced compared with the non-depleted condition in PC3 cells, suggesting a compensatory role of REIC/Dkk-3 in the SGTA mediated inhibition of GR transport. The current study therefore demonstrated that SGTA inhibited the cytoplasmic transport of GR in 293T and PC3 cells, and REIC/Dkk-3 also inhibited the cytoplasmic transport of GR in PC3 cells. These results may be used to gain novel insight into the GR transport and signaling in normal and cancer cells.
Collapse
Affiliation(s)
- Takehiro Iwata
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiko Ochiai
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602
| | - Hideo Ueki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takanori Sasaki
- Collaborative Research Center for Okayama Medical Innovation Center (OMIC), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Peng Haung
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toyohiko Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| |
Collapse
|
61
|
Ma L, Jiang K, Jiang P, He H, Chen K, Shao J, Deng G. Mechanism of Notch1‑saRNA‑1480 reversing androgen sensitivity in human metastatic castration‑resistant prostate cancer. Int J Mol Med 2020; 46:265-279. [PMID: 32626918 PMCID: PMC7255480 DOI: 10.3892/ijmm.2020.4597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to explore the mechanism by which Notch1-small activating (sa)RNA restored androgen sensitivity in human metastatic castration-resistant prostate cancer (CRPC). After transfection of Notch1-saRNA-1480 in PC3 cells, the expression of Notch1 and androgen receptor (AR) was investigated by reverse transcription quantitative PCR (RT-qPCR) and western blotting. Furthermore, the protein expression level of vascular endothelial growth factor (VEGF) was measured. Then, flow cytometry was used to analyze the cell cycle and apoptosis after transfection. Moreover, the migration and invasion ability of PC3 cells were assessed by transwell assays. Then, angio-genesis experiments were conducted to analyze the abilities of PC3 cells to form blood vessels. Furthermore, in vivo experiments detected the antitumor activity of Notch1-saRNA-1480. The mRNA and protein expression levels of Notch1 were significantly increased after transfection, while the expression levels of AR and VEGF were decreased. After transfection, the cell cycle was arrested at the G0/G1 checkpoint. Notch1-saRNA-1480 significantly increased the proportion of apoptotic cells after transfection. In addition, transwell assay results showed that PC3 cell migration and invasion were inhibited. The total vessel length was significantly decreased based on angiogenesis experiments, which indicated that PC3 cell angiogenesis was inhibited. In vivo experiments showed that Notch1-saRNA-1480 could inhibit tumor growth and volume. The protein expression of Notch1, AR, VEGF receptor 2 (VEGFR2) and VEGF in tumor tissues was consistent with in vitro levels. Notch1-saRNA-1480 could significantly inhibit the proliferation of PC3 cells in vitro and the growth of tumors in vivo, which is associated with the inhibition of the AR and VEGF pathways.
Collapse
Affiliation(s)
- Libin Ma
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Kang Jiang
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Peiwu Jiang
- Surgical Department Ⅰ, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Han He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | | | - Jia Shao
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Gang Deng
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
62
|
Sun GC, Jan CR, Liang WZ. Exploring the impact of a naturally occurring sapogenin diosgenin on underlying mechanisms of Ca 2+ movement and cytotoxicity in human prostate cancer cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:395-403. [PMID: 31709706 DOI: 10.1002/tox.22876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Literature has shown that diosgenin, a naturally occurring sapogenin, inducedcytotoxic effects in many cancer models. This study investigated the effect of diosgenin on intracellular Ca2+ concentration ([Ca2+ ]i) and cytotoxicity in PC3 human prostate cancer cells. Diosgenin (250-1000 μM) caused [Ca2+ ]i rises which was reduced by Ca2+ removal. Treatment with thapsigargin eliminated diosgenin-induced [Ca2+ ]i increases. In contrast, incubation with diosgeninabolished thapsigargin-caused [Ca2+ ]i increases. Suppression of phospholipase C with U73122 eliminated diosgenin-caused [Ca2+ ]i increases. Diosgenin evoked Mn2+ influx suggesting that diosgenin induced Ca2+ entry. Diosgenin-induced Ca2+ influx was suppressed by PMA, GF109203X, and nifedipine, econazole, or SKF96365. Diosgenin (250-600 μM) concentration-dependently decreased cell viability. However, diosgenin-induced cytotoxicity was not reversed by chelation of cytosolic Ca2+ with BAPTA/AM. Together, diosgenin evoked [Ca2+ ]i increases via Ca2+ release and Ca2+ influx, and caused Ca2+ -non-associated deathin PC3 cells. These findings reveal a newtherapeutic potential of diosgenin for human prostate cancer.
Collapse
Affiliation(s)
- Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Wei-Zhe Liang
- Department of Pharmacy, Tajen University, Pingtung, Taiwan, Republic of China
| |
Collapse
|
63
|
Richa S, Dey P, Park C, Yang J, Son JY, Park JH, Lee SH, Ahn MY, Kim IS, Moon HR, Kim HS. A New Histone Deacetylase Inhibitor, MHY4381, Induces Apoptosis via Generation of Reactive Oxygen Species in Human Prostate Cancer Cells. Biomol Ther (Seoul) 2020; 28:184-194. [PMID: 31476841 PMCID: PMC7059815 DOI: 10.4062/biomolther.2019.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors represent a novel class of anticancer agents, which can be used to inhibit cell proliferation and induce apoptosis in several types of cancer cells. In this study, we investigated the anticancer activity of MHY4381, a newly synthesized HDAC inhibitor, against human prostate cancer cell lines and compared its efficacy with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. We assessed cell viability, apoptosis, cell cycle regulation, and other biological effects in the prostate cancer cells. We also evaluated a possible mechanism of MHY4381 on the apoptotic cell death pathway. The IC50 value of MHY4381 was lower in DU145 cells (IC50=0.31 μM) than in LNCaP (IC50=0.85 μM) and PC-3 cells (IC50=5.23 μM). In addition, the IC50 values of MHY4381 measured in this assay were significantly lower than those of SAHA against prostate cancer cell lines. MHY4381 increased the levels of acetylated histones H3 and H4 and reduced the expression of HDAC proteins in the prostate cancer cell lines. MHY4381 increased G2/M phase arrest in DU145 cells, and G1 arrest in LNCaP cells. It also activated reactive oxygen species (ROS) generation, which induced apoptosis in the DU145 and LNCaP cells by increasing the ratio of Bax/Bcl-2 and releasing cytochrome c into the cytoplasm. Our results indicated that MHY4381 preferentially results in antitumor effects in DU145 and LNCaP cells via mitochondria-mediated apoptosis and ROS-facilitated cell death pathway, and therefore can be used as a promising prostate cancer therapeutic.
Collapse
Affiliation(s)
- Sachan Richa
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chaeun Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jungho Yang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mee-Young Ahn
- Major in Pharmaceutical Engineering, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
64
|
Li S, Goncalves KA, Lyu B, Yuan L, Hu GF. Chemosensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Commun Biol 2020; 3:26. [PMID: 31942000 PMCID: PMC6962460 DOI: 10.1038/s42003-020-0750-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are an obstacle in cancer therapy and are a major cause of drug resistance, cancer recurrence, and metastasis. Available treatments, targeting proliferating cancer cells, are not effective in eliminating quiescent CSCs. Identification of CSC regulators will help design therapeutic strategies to sensitize drug-resistant CSCs for chemo-eradication. Here, we show that angiogenin and plexin-B2 regulate the stemness of prostate CSCs, and that inhibitors of angiogenin/plexin-B2 sensitize prostate CSCs to chemotherapy. Prostate CSCs capable of self-renewal, differentiation, and tumor initiation with a single cell inoculation were identified and shown to be regulated by angiogenin/plexin-B2 that promotes quiescence and self-renewal through 5S ribosomal RNA processing and generation of the bioactive 3′-end fragments of 5S ribosomal RNA, which suppress protein translation and restrict cell cycling. Monoclonal antibodies of angiogenin and plexin-B2 decrease the stemness of prostate CSCs and sensitize them to chemotherapeutic agents in vitro and in vivo. Shuping Li et al. show that angiogenin and its receptor plexin-B2 regulate the stemness of prostate cancer stem cells. Monoclonal antibodies of angiogenin and plexin-B2 sensitize prostate cancer stem cells to chemotherapy, highlighting the targeting potential of this regulation.
Collapse
Affiliation(s)
- Shuping Li
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Baiqing Lyu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Guo-Fu Hu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
65
|
Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O, Erzurumlu Y. Divergent Modulation of Proteostasis in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:117-151. [PMID: 32274755 DOI: 10.1007/978-3-030-38266-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteostasis regulates key cellular processes such as cell proliferation, differentiation, transcription, and apoptosis. The mechanisms by which proteostasis is regulated are crucial and the deterioration of cellular proteostasis has been significantly associated with tumorigenesis since it specifically targets key oncoproteins and tumor suppressors. Prostate cancer (PCa) is the second most common cause of cancer death in men worldwide. Androgens mediate one of the most central signaling pathways in all stages of PCa via the androgen receptor (AR). In addition to their regulation by hormones, PCa cells are also known to be highly secretory and are particularly prone to ER stress as proper ER function is essential. Alterations in various complex signaling pathways and cellular processes including cell cycle control, transcription, DNA repair, apoptosis, cell adhesion, epithelial-mesenchymal transition (EMT), and angiogenesis are critical factors influencing PCa development through key molecular changes mainly by posttranslational modifications in PCa-related proteins, including AR, NKX3.1, PTEN, p53, cyclin D1, and p27. Several ubiquitin ligases like MDM2, Siah2, RNF6, CHIP, and substrate-binding adaptor SPOP; deubiquitinases such as USP7, USP10, USP26, and USP12 are just some of the modifiers involved in the regulation of these key proteins via ubiquitin-proteasome system (UPS). Some ubiquitin-like modifiers, especially SUMOs, have been also closely associated with PCa. On the other hand, the proteotoxicity resulting from misfolded proteins and failure of ER adaptive capacity induce unfolded protein response (UPR) that is an indispensable signaling mechanism for PCa development. Lastly, ER-associated degradation (ERAD) also plays a crucial role in prostate tumorigenesis. In this section, the relationship between prostate cancer and proteostasis will be discussed in terms of UPS, UPR, SUMOylation, ERAD, and autophagy.
Collapse
Affiliation(s)
| | | | - Oguz Gozen
- Faculty of Medicine, Department of Physiology, Ege University, Izmir, Turkey
| | - Yalcin Erzurumlu
- Faculty of Pharmacy, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
66
|
hASH1 nuclear localization persists in neuroendocrine transdifferentiated prostate cancer cells, even upon reintroduction of androgen. Sci Rep 2019; 9:19076. [PMID: 31836808 PMCID: PMC6911083 DOI: 10.1038/s41598-019-55665-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is thought to arise as prostate adenocarcinoma cells transdifferentiate into neuroendocrine (NE) cells to escape potent anti-androgen therapies however, the exact molecular events accompanying NE transdifferentiation and their plasticity remain poorly defined. Cell fate regulator ASCL1/hASH1's expression was markedly induced in androgen deprived (AD) LNCaP cells and prominent nuclear localisation accompanied acquisition of the NE-like morphology and expression of NE markers (NSE). By contrast, androgen-insensitive PC3 and DU145 cells displayed clear nuclear hASH1 localisation under control conditions that was unchanged by AD, suggesting AR signalling negatively regulated hASH1 expression and localisation. Synthetic androgen (R1881) prevented NE transdifferentiation of AD LNCaP cells and markedly suppressed expression of key regulators of lineage commitment and neurogenesis (REST and ASCL1/hASH1). Post-AD, NE LNCaP cells rapidly lost NE-like morphology following R1881 treatment, yet ASCL1/hASH1 expression was resistant to R1881 treatment and hASH1 nuclear localisation remained evident in apparently dedifferentiated LNCaP cells. Consequently, NE cells may not fully revert to an epithelial state and retain key NE-like features, suggesting a "hybrid" phenotype. This could fuel greater NE transdifferentiation, therapeutic resistance and NEPC evolution upon subsequent androgen deprivation. Such knowledge could facilitate CRPC tumour stratification and identify targets for more effective NEPC management.
Collapse
|
67
|
Pertusati F, Ferla S, Bassetto M, Brancale A, Khandil S, Westwell AD, McGuigan C. A new series of bicalutamide, enzalutamide and enobosarm derivatives carrying pentafluorosulfanyl (SF5) and pentafluoroethyl (C2F5) substituents: Improved antiproliferative agents against prostate cancer. Eur J Med Chem 2019; 180:1-14. [DOI: 10.1016/j.ejmech.2019.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 01/31/2023]
|
68
|
Kao CHJ, Greenwood DR, Jamieson SMF, Coe ME, Murray PM, Ferguson LR, Bishop KS. Anticancer Characteristics of Fomitopsis pinicola Extract in a Xenograft Mouse Model-a Preliminary Study. Nutr Cancer 2019; 72:645-652. [PMID: 31387396 DOI: 10.1080/01635581.2019.1648693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Medicinal mushrooms have been used for the treatment of diseases and general promotion of health for many centuries. Recent pharmacological research into medicinal mushrooms has identified various therapeutic properties, with applications in modern medicine.Aim: To evaluate the anti-cancer activities of Fomitopsis pinicola (F. pinicola) alcoholic extract in an in vivo setting.Methods: The anti-tumour effect of the F. pinicola extract was tested in a xenograft immune-compromised Rag-1 mouse model. This was followed by RT-PCR and metabolomics analyses.Results: There were no observable differences in tumor growth between treated and non-treated groups. The bioactive components were not detected in the mouse plasma or the tumor site.Conclusions: The extract was poorly absorbed; this is likely due to the timing of treatment, dosage levels and modifications made to the extract where the alcohol-based solvent was replaced with water. This, in combination with fractionation studies which identified most anti-cancer compounds to be hydrophobic, largely explained the lack of anti-cancer activities in vivo.
Collapse
Affiliation(s)
- Chi H J Kao
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David R Greenwood
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Margaret E Coe
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Pamela M Murray
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Lynnette R Ferguson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Karen S Bishop
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
69
|
Laera L, Guaragnella N, Giannattasio S, Moro L. 6-Thioguanine and Its Analogs Promote Apoptosis of Castration-Resistant Prostate Cancer Cells in a BRCA2-Dependent Manner. Cancers (Basel) 2019; 11:E945. [PMID: 31284411 PMCID: PMC6678799 DOI: 10.3390/cancers11070945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Mutations in the oncosuppressor gene BReast CAncer susceptibility gene 2 (BRCA2) predispose to aggressive forms of prostate cancer which show poor response to taxane-based therapy, the standard treatment for castration-resistant, aggressive prostate cancer. Herein, we addressed the question whether changes in BRCA2 expression, a potential surrogate marker for BRCA2 activity, may affect the response of castration-resistant prostate cancer cells to 6-thioguanine (6-TG), a thiopurine used in the treatment of haematological malignancies. Methods: Yeast, normal prostate cells and castration-resistant prostate cancer cells were treated with 6-TG or its analogues, in presence or absence of paclitaxel, or with olaparib, a poly-(ADP-ribose) polymerase (PARP) inhibitor currently in clinical trials for treatment of metastatic castration-resistant prostate cancer, and cell proliferation, apoptosis and androgen receptor (AR) levels were measured. Results: 6-TG inhibited cell proliferation in yeast, normal and castration-resistant prostate cancer cells but promoted apoptosis only in cancer cells. Suppression of BRCA2 expression by siRNA or shRNA increased the sensitivity to 6-TG- and olaparib-induced apoptosis but did not affect cancer cell response to taxane. Intriguingly, 6-TG reduced AR expression levels independently on BRCA2 expression. Instead, olaparib decreased AR levels only in BRCA2-knockdown prostate cancer cells. Notably, overexpression of BRCA2 resulted in resistance of castration-resistant prostate cancer cells to 6-TG-, taxane- and olaparib-based treatment but promoted sensitivity to apoptosis induced by 2-amino-6-bromopurine and 2,6-dithiopurine, two 6-TG analogues. Conclusions: Our results provide a pre-clinical rationale for the use of 6-TG in the treatment of BRCA2-deficient castration-resistant prostate cancers, and of certain 6-TG analogues for treatment of BRCA2-proficient prostate cancers.
Collapse
Affiliation(s)
- Luna Laera
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Loredana Moro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
70
|
Anaya-Eugenio GD, Addo EM, Ezzone N, Henkin JM, Ninh TN, Ren Y, Soejarto DD, Kinghorn AD, Carcache de Blanco EJ. Caspase-Dependent Apoptosis in Prostate Cancer Cells and Zebrafish by Corchorusoside C from Streptocaulon juventas. JOURNAL OF NATURAL PRODUCTS 2019; 82:1645-1655. [PMID: 31120251 PMCID: PMC6615048 DOI: 10.1021/acs.jnatprod.9b00140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Corchorusoside C (1), isolated from Streptocaulon juventas collected in Vietnam, was found to be nontoxic in a zebrafish ( Danio rerio) model and to induce cytotoxicity in several cancer cell lines with notable selective activity against prostate DU-145 cancer cells (IC50 0.08 μM). Moreover, corchorusoside C induced DU-145 cell shrinkage and cell detachment. In CCD-112CoN colon normal cells, 1 showed significantly reduced cytotoxic activity (IC50 2.3 μM). A preliminary mechanistic study indicated that 1 inhibits activity and protein expression of NF-κB (p50 and p65), IKK (α and β), and ICAM-1 in DU-145 cells. ROS concentrations increased at 5 h post-treatment, and MTP decreased in a dose-dependent manner. Moreover, decreased protein expression of Bcl-2 and increased expression of PARP-1 was observed. Furthermore, corchorusoside C increased both the activity and protein levels of caspases 3 and 7. Additionally, 1 induced sub-G1 population increase of DU-145 cells and modulated caspases in zebrafish with nondifferential morphological effects. Therefore, corchorusoside C (1) induces apoptosis in DU-145 cells and targets the same pathways both in vitro and in vivo in zebrafish. Thus, the use of zebrafish assays seems worthy of wider application than is currently employed for the evaluation of potential anticancer agents of natural origin.
Collapse
Affiliation(s)
- Gerardo D. Anaya-Eugenio
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Ezzone
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joshua M. Henkin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Tran Ngoc Ninh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Djaja D. Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Esperanza J. Carcache de Blanco
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
71
|
Tarasov VA, Naboka AV, Makhotkin MA, Chikunov IE, Tyutyakina MG, Chebotarev DA, Cherkasova EN, Kogan MI, Chibichyan MB, Matishov DG. The Influence of microRNAs in Regulation of Hormone Dependence in Prostate Cancer Cells. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Shin SB, Woo SU, Yim H. Cotargeting Plk1 and androgen receptor enhances the therapeutic sensitivity of paclitaxel-resistant prostate cancer. Ther Adv Med Oncol 2019; 11:1758835919846375. [PMID: 31156720 PMCID: PMC6515847 DOI: 10.1177/1758835919846375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
Backgrounds: Despite the clinical success of taxanes, they still have limitations, such as chemoresistance. To overcome the limitations of paclitaxel, genetic alterations and targeting effects of altered genes were observed in paclitaxel-resistant cancer. Because paclitaxel-resistant cancer shows high levels of Plk1, a promising target in chemotherapy, the effectiveness of Plk1 inhibitors in paclitaxel-resistant cancer cells has been investigated. Methods: Paclitaxel-resistant cancer cells were developed by exposure of stepwise escalating levels of paclitaxel. Genetic alterations were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunoblotting. Using a cell viability assay, combined targeting effects for Plk1 and androgen receptor (AR) were determined. Clinical data were analyzed to understand the relationship between Plk1 and AR in prostate cancer patients. Results: Treatment with Plk1 inhibitors markedly reduced the expression of MDR1, MRP1, and Plk1 in the paclitaxel-resistant cancer. Among Plk1 inhibitors, genistein, recently found as a direct Plk1 inhibitor, tended to be more effective in the paclitaxel-resistant prostate cancer than the parental cancer cells, which was related to the suppression of the AR, as well as inhibition of Plk1 activity. A combination of Plk1 inhibitors and AR antagonist bicalutamide exhibited a synergistic effect in LNCaPTXR, as well as LNCaP cells, by inhibiting Plk1 and AR. Analysis of clinical data provides evidence for the relevance between Plk1 and AR in prostate cancer patients, showing that Plk1 and AR are strong predictors of poor survival rates. Conclusions: We suggest that cotargeting Plk1 and AR would be effective in advanced chemoresistant prostate cancer cells to overcome the limitations associated with paclitaxel.
Collapse
Affiliation(s)
- Sol-Bi Shin
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Sang-Uk Woo
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| |
Collapse
|
73
|
Mótyán G, Gopisetty MK, Kiss-Faludy RE, Kulmány Á, Zupkó I, Frank É, Kiricsi M. Anti-Cancer Activity of Novel Dihydrotestosterone-Derived Ring A-Condensed Pyrazoles on Androgen Non-Responsive Prostate Cancer Cell Lines. Int J Mol Sci 2019; 20:ijms20092170. [PMID: 31052484 PMCID: PMC6539495 DOI: 10.3390/ijms20092170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Regioselective synthesis of novel ring A-fused arylpyrazoles of dihydrotestosterone (DHT) was carried out in two steps under facile reaction conditions. Aldol condensation of DHT with acetaldehyde afforded a 2-ethylidene derivative regio- and stereo-selectively, which was reacted with different arylhydrazines in the presence of iodine via microwave-assisted oxidative cyclization reactions. The 17-keto analogs of steroidal pyrazoles were also synthesized by simple oxidation in order to enlarge the compound library available for pharmacological studies and to obtain structure–activity relationship. The antiproliferative activities of the structurally related heteroaromatic compounds were tested in vitro on human cervical and breast adenocarcinoma cell lines (HeLa, MCF-7 and MDA-MB-231) and on two androgen-independent malignant prostate carcinoma cell lines (PC-3 and DU 145). Based on primary cytotoxicity screens and IC50 assessment, a structure-function relationship was identified, as derivatives carrying a hydroxyl group on C-17 exhibit stronger activity compared to the 17-one counterparts. Cancer cell selectivity of the derivatives was also determined using non-cancerous MRC-5 cells. Furthermore, the proapoptotic effects of some selected derivatives were verified on androgen therapy refractive p53-deficient PC-3 cells. The present study concludes that novel DHT-derived arylpyrazoles exert cancer cell specific antiproliferative activity and activate apoptosis in PC-3 cells.
Collapse
Affiliation(s)
- Gergő Mótyán
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Mohana Krishna Gopisetty
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| | - Réka Eleonóra Kiss-Faludy
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Ágnes Kulmány
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| |
Collapse
|
74
|
Sekhar KR, Wang J, Freeman ML, Kirschner AN. Radiosensitization by enzalutamide for human prostate cancer is mediated through the DNA damage repair pathway. PLoS One 2019; 14:e0214670. [PMID: 30933998 PMCID: PMC6443157 DOI: 10.1371/journal.pone.0214670] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/18/2019] [Indexed: 11/24/2022] Open
Abstract
Radiation therapy is often combined with androgen deprivation therapy in the treatment of aggressive localized prostate cancer. However, castration-resistant disease may not respond to testosterone deprivation approaches. Enzalutamide is a second-generation anti-androgen with high affinity and activity that is used for the treatment of metastatic disease. Although radiosensitization mechanisms are known to be mediated through androgen receptor activity, this project aims to uncover the detailed DNA damage repair factors influenced by enzalutamide using multiple models of androgen-sensitive (LNCaP) and castration-resistant human prostate cancer (22Rv1 and DU145). Enzalutamide is able to radiosensitize both androgen-dependent and androgen-independent human prostate cancer models in cell culture and xenografts in mice, as well as a treatment-resistant patient-derived xenograft. The enzalutamide-mediated mechanism of radiosensitization includes delay of DNA repair through temporal prolongation of the repair factor complexes and halting the cell cycle, which results in decreased colony survival. Altogether, these findings support the use of enzalutamide concurrently with radiotherapy to enhance the treatment efficacy for prostate cancer.
Collapse
MESH Headings
- Aged
- Animals
- Benzamides
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Damage/drug effects
- DNA Damage/genetics
- DNA Repair/drug effects
- DNA Repair/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/radiation effects
- Humans
- Male
- Mice
- Mice, Nude
- Mice, Transgenic
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/therapeutic use
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/radiotherapy
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/radiotherapy
- Radiation Tolerance/drug effects
- Radiation Tolerance/genetics
- Radiation-Sensitizing Agents/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Konjeti R. Sekhar
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jian Wang
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michael L. Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Austin N. Kirschner
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
75
|
Carota G, Sferrazzo G, Spampinato M, Sorrenti V, Vanella L. Antiproliferative Effects of Ellagic Acid on DU145 Cells. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background:Prostate Cancer (PC) represents a leading cause of tumor-related death among men in the Western world. Above all, DU145 cell line represents the most particular cells model of PC, derived from a central nervous system metastasis. In recent years, functional and healthy diet has gained a pivotal role in society, allowing the possibility to deal with cancer before its emergence or progression, profiting by anti-tumor properties of dietary phytochemicals. Among them, Ellagic Acid (EA) is found in several fruits and vegetables, whose juice demonstrated antioxidant, anti-carcinogenic and anti-fibrotic properties.Methods:DU145 prostate cancer cell line was used to determine the effects of ellagic acid on cell viability. In order to evaluate metastatic feature of DU145, VEGF-A and OPG levels by ELISA assay were assessed. Expression of β-catenin, HO-1, HO-2 and SIRT1, markers of proliferative and defense capacities, were determined by western blotting. To strengthen the study, cell transfection with siRNA β-catenin was performed.Results:In the presence of EA, the viability of DU145 cells was reduced by about 40 and 50%, respectively after the exposure to 50 and 100 μM concentrations. We also observed a reduction of both levels of VEGF-A and OPG, confirming the important role of EA in facing the metastasis development. EA treatment (50 μM) induced a significant reduction of β-catenin and SIRT1 levels and, similarly, there was a decrease of HO protein expression, more pronounced for HO-2, showing EA activity on the proliferative feature of DU145 cells. Knockdown of β-catenin by siRNA, in the presence of EA treatment, inhibited cell proliferation.Conclusion:Ellagic acid exhibits significant antiproliferative effects in ourin vitromodel of prostate cancer’s metastasis, suggesting that, the use of EA as a multitarget natural compound, may represent a possible strategy for cancer chemoprevention.
Collapse
|
76
|
Pichla M, Sroka J, Pienkowska N, Piwowarczyk K, Madeja Z, Bartosz G, Sadowska-Bartosz I. Metastatic prostate cancer cells are highly sensitive to 3-bromopyruvic acid. Life Sci 2019; 227:212-223. [PMID: 30928407 DOI: 10.1016/j.lfs.2019.03.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Abstract
AIMS 3-Bromopyruvate (3-BP), an alkylating agent and a glycolytic inhibitor, is a promising anticancer agent, which can be efficient also against multidrug-resistant cancer cells. The aim of this study was to examine how 3-BP affects the survival and mobility of rat (MAT-LyLu and AT-2) and human (DU-145 and PC-3) metastatic prostate cancer cell lines. MAIN METHODS Cytotoxicity was estimated with Neutral Red. Cell mobility was analyzed by time-lapse microscopic monitoring of trajectories of individual cells at 5-min intervals for 6h. ATP was estimated with luciferin/luciferase and glutathione (GSH) with o-phthalaldehyde. Actin cytoskeleton was visualized with phalloidin conjugated with Atto-488. KEY FINDINGS All metastatic prostate cell lines studied were very sensitive to 3-BP (IC50 of 4-26μM). 3-Bromopyruvate drastically reduced cell movement even at concentrations of 5-10μM after 1h treatment. This compound depleted also cellular ATP and GSH, and disrupted actin cytoskeleton. SIGNIFICANCE The data obtained suggest that 3-BP can potentially be useful for treatment of metastatic prostate cancer and, especially, be efficient in limiting metastasis.
Collapse
Affiliation(s)
- Monika Pichla
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| | - Jolanta Sroka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Cracow, Poland
| | - Natalia Pienkowska
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Cracow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Cracow, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska Street 141/143, 90-236 Łódź, Poland
| | - Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland.
| |
Collapse
|
77
|
Sang Z, Jiang X, Guo L, Yin G. MicroRNA‑9 suppresses human prostate cancer cell viability, invasion and migration via modulation of mitogen‑activated protein kinase kinase kinase 3 expression. Mol Med Rep 2019; 19:4407-4418. [PMID: 30896820 DOI: 10.3892/mmr.2019.10065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) are small non‑coding RNA molecules that regulate gene expression at the post‑transcriptional level. Aberrant expression of miR‑9 has been reported to be involved in the tumorigenesis and progression of various malignancies. However, its role in prostate cancer (PC) has not been completely clarified. In the present study, miR‑9 expression was examined in different PC cell lines, patient tissues and a mouse model. Cell Counting Kit‑8 and BrdU immunofluorescence assays were performed to assess the effect of miR‑9 on the viability of PC cells, while Transwell and wound‑healing assays were utilized to evaluate the migration and invasion of PC cells expressing miR‑9. Furthermore, a dual‑luciferase reporter assay was performed to verify whether mitogen‑activated protein kinase kinase kinase 3 (MEKK3) was a direct target of miR‑9. The results demonstrated significant downregulation of miR‑9 expression in different PC cell lines and 31 human PC tissues, as compared with that in a normal prostate cell line and adjacent normal tissues, respectively. By contrast, upregulation of MEKK3 was confirmed in human PC tissue samples, with its level inversely associated with miR‑9 expression. Overexpression of miR‑9 in six different PC cell lines (DU145, LNCaP, 22Rv1, PC‑3, C4‑2B and VCaP) reduced the cell viability and migration. Furthermore, it was demonstrated that the 3'‑untranslated region of MEKK3 was a target of miR‑9, and that MEKK3 overexpression prevented the inhibitory effects of miR‑9 on the viability, migration and invasion of PC cells. miR‑9 overexpressing tumor cells also exhibited growth delay in comparison with control tumor cells in vivo. Taken together, the current study findings provided novel insights into the underlying molecular mechanisms of PC oncogenesis, which may support the development of new therapeutic approaches for the treatment of PC.
Collapse
Affiliation(s)
- Zunmeng Sang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Longfei Guo
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Gang Yin
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
78
|
Dizeyi N, Trzybulska D, Al-Jebari Y, Huhtaniemi I, Lundberg Giwercman Y. Cell-based evidence regarding the role of FSH in prostate cancer. Urol Oncol 2019; 37:290.e1-290.e8. [PMID: 30611646 DOI: 10.1016/j.urolonc.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Conversion of androgen-responsive prostate cancer (CaP) to castration-resistant CaP is associated with an acceleration of the disease that often requires treatment modalities other than androgen deprivation therapy only. Recently, follicle-stimulating hormone (FSH) has been shown to play a role in CaP growth, and clinical data showed that high serum concentration of FSH in chemically castrated CaP patients was associated with a shorter time of progression to castration-resistant CaP. In this study, we sought to investigate if FSH could have direct effects on CaP cells, possibly through the androgen receptor and androgen receptor regulated genes, such as prostate-specific antigen (PSA). MATERIALS AND METHODS The human CaP cell lines PC-3, LNCaP and C4-2, and nonmalignant PNT1A cells, were utilized to investigate the effects of FSH. qPCR, Western blotting analysis, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymetoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium assays were performed in order to analyze the FSH effects. RESULTS The FSH receptor was present in all cell lines except PNT1A. FSH significantly increased PSA mRNA (P < 0.01) and protein (P < 0.03) levels in C4-2 cells in a dose-dependent manner. In LNCaP cells, FSH also increased PSA protein level, although to a lesser extent than in C4-2 cells, and the expression was reduced by the antiandrogen enzalutamide. In PC-3 cells, FSH was shown to increase their proliferation (P < 0.03) and β-catenin expression. CONCLUSION These findings demonstrate that FSH may have a direct effect in CaP in an androgen-depleted environment. However, further research is needed to understand the significance of direct FSH action in the maintenance of CaP growth at the different phases of transition from androgen dependence to androgen independence.
Collapse
Affiliation(s)
- Nishtman Dizeyi
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Lund University, Malmö, Sweden.
| | - Dorota Trzybulska
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Lund University, Malmö, Sweden
| | - Yahia Al-Jebari
- Department of Translational Medicine,Molecular Reproductive Medicine, Lund University, Malmö, Sweden
| | - Ilpo Huhtaniemi
- Department of Surgery & Cancer, Imperial College, London, UK
| | - Yvonne Lundberg Giwercman
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
79
|
Lu J, Mu X, Yin Q, Hu K. miR-106a contributes to prostate carcinoma progression through PTEN. Oncol Lett 2018; 17:1327-1332. [PMID: 30655902 DOI: 10.3892/ol.2018.9697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Prostate carcinoma is a global health problem and is estimated to be diagnosed in 1.1 million men/year, making this malignancy the second most frequently diagnosed cancer in males worldwide. micro RNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. miRNAs contribute to cancer development and progression, and are expressed differently in normal tissues and cancers. In the present study, the biological function of miR-106a in the human prostate carcinoma and the associated regulatory mechanisms were investigated. miR-106a was significantly upregulated in human prostate cancer tissues when compared with normal tissues (P<0.05), and the overexpression of miR-106a was identified to promote PC-3 cell growth. Additionally, miRNA-106a inhibition significantly suppressed PC-3 cell growth. Furthermore, it was observed that the phosphatase and tensin homolog (PTEN) expression level was negatively associated with miR-106a expression level, and miRNA-106a directly targeted PTEN in the PC-3 cells. PTEN overexpression has a similar effect on PC-3 cell growth as loss of miR-106a. Taken together, the results of the present study indicate that upregulated miR-106a regulates PC-3 cell proliferation through PTEN. These results suggest that appropriate manipulation of miR-106a may provide a novel strategy in the future treatment of human prostate cancer.
Collapse
Affiliation(s)
- Ji Lu
- Department of Urology, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xupeng Mu
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Qinan Yin
- Clinical Center, National Institute of Health, Bethesda, MD 20852, USA.,Department of Gynecology and Obstetrics, China Meitan General Hospital, Beijing 100028, P.R. China
| | - Kebang Hu
- Department of Urology, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
80
|
Domińska K, Okła P, Kowalska K, Habrowska-Górczyńska DE, Urbanek KA, Ochędalski T, Piastowska-Ciesielska AW. Angiotensin 1-7 modulates molecular and cellular processes central to the pathogenesis of prostate cancer. Sci Rep 2018; 8:15772. [PMID: 30361641 PMCID: PMC6202343 DOI: 10.1038/s41598-018-34049-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Angiotensin 1–7 (Ang1–7) is an endogenous bioactive component of the renin-angiotensin system (RAS). In addition to its cardiovascular properties, its anti-proliferative and anti-angiogenic traits are believed to play important roles in carcinogenesis. The present study examines the influence of Ang1–7 on processes associated with development and progression of prostate cancer cells. Our findings indicate that while Ang1–7 (1 nM; 48 h) can effectively reduce cell proliferation in DU-145, it can induce a significant decrease in the expression of MKI67 in LNCaP. In both cell lines we also observed a reduction in colony size in soft agar assay. A various changes in gene expression were noted after exposure to Ang1–7: those of anti- and pro-apoptotic agents and the NF-kB family of transcription factors, as well as mesenchymal cell markers and vascular endothelial growth factor A (VEGFA). In addition, Ang1–7 was found to modulate cell adhesion and matrix metallopeptidase (MMP) activity. Changes were also observed in the levels of angiotensin receptors and sex steroid hormone receptors. Ang1–7 reduced the levels of estrogen receptor alpha gene (ESR1) and increased the expression of estrogen receptor beta gene (ESR2) in all prostate cancer cells; it also up-regulated androgen receptor (AR) expression in androgen-sensitive cells but contradictory effect was observed in androgen- irresponsive cell lines. In summary, the results confirm the existence of complex network between the various elements of the local RAS and the molecular and cellular mechanisms of prostate cancerogenesis. The response of cancer cells to Ang1–7 appears to vary dependently on the dose and time of incubation as well as the aggressiveness and the hormonal status of cells.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland.
| | - Piotr Okła
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland
| | - Karolina Kowalska
- Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, 90-752, Poland
| | | | - Kinga Anna Urbanek
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland.,Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, 90-752, Poland
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland.,Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, 90-752, Poland
| |
Collapse
|
81
|
Tarasov VA, Tyutyakina MG, Makhotkin MA, Shin EF, Naboka AV, Mashkarina AN, Chebotarev DA, Cherkasova EN, Kogan MI, Chibichyan MB, Matishov DG. MicroRNA-Dependent Regulation of IGF1R Gene Expression in Hormone-Sensitive and Hormone-Resistant Prostate Cancer Cells. DOKL BIOCHEM BIOPHYS 2018; 479:101-104. [PMID: 29779108 DOI: 10.1134/s1607672918020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/23/2022]
Abstract
Using multiple parallel sequencing on Illumina platform, we identified eight microRNAs that showed significant opposite changes of gene expression in cells of the hormone-sensitive LNCaP prostate cancer cell line and in cells of the hormone-resistant DU-145 cell line, in comparison to the microRNA expression in the normal prostate tissue cells. We found that the insulin-like growth factor 1 receptor (IGF1R) gene is a target of five microRNAs whose expression is increased in LNCaP cells and reduced in DU-145 cells.
Collapse
Affiliation(s)
- V A Tarasov
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - M G Tyutyakina
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia.
| | - M A Makhotkin
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - E F Shin
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - A V Naboka
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - A N Mashkarina
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - D A Chebotarev
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - E N Cherkasova
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - M I Kogan
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia.,Rostov State Medical University, Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russia
| | - M B Chibichyan
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia.,Rostov State Medical University, Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russia
| | - D G Matishov
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| |
Collapse
|
82
|
Comparison of the effect of the antiandrogen apalutamide (ARN-509) versus bicalutamide on the androgen receptor pathway in prostate cancer cell lines. Anticancer Drugs 2018; 29:323-333. [DOI: 10.1097/cad.0000000000000592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
83
|
Plotkin BJ, Davis JW, Strizzi L, Lee P, Christoffersen-Cebi J, Kacmar J, Rivero OJ, Elsayed N, Zanghi N, Ito B, Sigar IM. A method for the long-term cultivation of mammalian cells in the absence of oxygen: Characterization of cell replication, hypoxia-inducible factor expression and reactive oxygen species production. Tissue Cell 2017; 50:59-68. [PMID: 29429519 DOI: 10.1016/j.tice.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/29/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
The center of tumors, stem cell niches and mucosal surfaces all represent areas of the body that are reported to be anoxic. However, long-term study of anoxic cell physiology is hindered by the lack of a sustainable method permitting cell cultivation in the complete absence of oxygen. A novel methodology was developed that enabled anoxic cell cultivation (17d maximum time tested) and cell passage. In the absence of oxygen, cell morphology is significantly altered. All cells tested exhibited morphologic changes, i.e., a combination of tethered (monolayer-like) and runagate (suspension-like) morphologies. Both morphologies replicated (Vero and HeLa cells tested) and could be passaged anaerobically. In the absence of exogenous oxygen, anoxic cells produced reactive oxygen species (ROS). Anaerobic runagate HeLa and Vero cells increased ROS production from day 3 to day 10 by 2- and 3-fold, respectively. In contrast, anoxic tethered HeLa and Vero cells either showed no significant change in ROS production between days 3 and 10 or exhibited a 3-fold decrease in ROS, respectively. Detection of ROS was inversely related to detection of hypoxia-inducible factor-1α (HIF1) mRNA and HIF-1 protein expression which cycled over a 10-day period. This methodology has broad applications for the study of tumor and stem cell physiology as well as gastrointestinal cell-microbiome interactions. In addition, sustainable anaerobic cell culture may lead to the identification of novel pathways and targets for chemotherapeutic drug development.
Collapse
Affiliation(s)
- Balbina J Plotkin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA.
| | - James W Davis
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Luigi Strizzi
- Department of Pathology, Midwestern University, Downers Grove, IL 60515, USA
| | - Peter Lee
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | | | - Joan Kacmar
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Orlando J Rivero
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Norhan Elsayed
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Nicholas Zanghi
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Brent Ito
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Ira M Sigar
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| |
Collapse
|
84
|
Zhang Y, Zhang Y, Chen M, Liu C, Xiang C. DUSP1 is involved in the progression of small cell carcinoma of the prostate. Saudi J Biol Sci 2017; 25:858-862. [PMID: 30108432 PMCID: PMC6088105 DOI: 10.1016/j.sjbs.2017.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 02/07/2023] Open
Abstract
Small cell carcinoma of the prostate (SCCP) is a rare and the most aggressive variant of prostate cancer. There is no effective cure or treatment for SCCP. Therefore, there is an urgent need for new therapy to improve the prognosis of patients with SCCP. DUSP1 is a dual specific phosphatase with an increasingly recognized in tumor biology. Altered expression of DUSP1 induced changes in the expression of genes involved in various biological pathways, including cell-cell signaling and angiogenesis. To understand more about the role of DUSP1 in SCCP, we evaluated the biological function and associated regulatory mechanism of DUSP1. In this study, DUSP1 was significantly down-regulated in human SCCP compared with the non-carcinoma tissues (P < 0.05). Overexpression of DUSP1 was found to suppress MAPK signaling and cell proliferation in PC-3 cells. Additionally, silencing of DUSP1 enhanced MAPK signaling and PC-3 cell proliferation. Moreover, it was observed that DUSP1 blocked the phosphorylation of p38 MAPK induced by anisomycin. Taken together, this investigation suggests that DUSP1 is involved in the progression of SCCP and may provide a new therapeutic target for SCCP treatment.
Collapse
Affiliation(s)
- Yajing Zhang
- The First Hospital of Shijiazhuang, Shijiangzhuang 050011, PR China
| | - Yan Zhang
- The First Hospital of Shijiazhuang, Shijiangzhuang 050011, PR China
| | - Meng Chen
- Department of Rheumatology, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Ci Liu
- The First Hospital of Shijiazhuang, Shijiangzhuang 050011, PR China
| | - Cheng Xiang
- The First Hospital of Shijiazhuang, Shijiangzhuang 050011, PR China
| |
Collapse
|
85
|
Domińska K, Kowalski A, Ochędalski T, Rębas E. Effects of testosterone and 17β‑estradiol on angiotensin‑induced changes in tyrosine kinase activity in the androgen‑independent human prostate cancer cell line, DU145. Int J Mol Med 2017; 40:1573-1581. [PMID: 28949385 DOI: 10.3892/ijmm.2017.3149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/24/2017] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (AngII), the main peptide of the renin‑angiotensin system (RAS), is involved in the proliferation of different types of cells, normal and pathological as well. The protein tyrosine kinases (PTKs) play an important role in the growth, differentiation and apoptosis of cells. AngII action depends on the hormonal milieu of the cell, and on sex steroid influence. Angiotensin 1‑7 (Ang1‑7), metabolite of AngII, shows opposite action to AngII in cells. The present study aimed to examine the influence of 17β‑estradiol and testosterone on AngII and Ang1‑7 action on PTK activity in androgen‑independent humane prostate cancer cell line DU145. Cell cultures of human prostate cancer DU145 cells were used as a source of PTKs. Cultures were exposed to different concentrations of AngII (5x10‑11 to 5x10‑9 M). The incubation with hormones lasted 15 min to limit the genomic effects of steroids. In the phosphorylation reaction, we used γ32P‑ATP as a donor of phosphate and a synthetic peptide, Poly(Glu, Tyr) (4:1), as a substrate. The specific activities of PTKs were defined as pmol of 32P incorporated into 1 mg of exogenous Poly(Glu, Tyr) per minute (pmol/mg/min). Our findings suggest that testosterone and 17β‑estradiol may change the effects of angiotensins in a rapid non‑genomic way, probably via membrane‑located receptors. The most significant change was caused by testosterone, whose effect was most significant on changes caused by Ang1‑7. AngII‑induced changes in phosphorylation appeared to be insensitive to the presence of testosterone, but were modified by 17β‑estradiol.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, 92‑215 Lodz, Poland
| | - Antoni Kowalski
- Department of Molecular Neurochemistry, Medical University of Lodz, 92‑215 Lodz, Poland
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, 92‑215 Lodz, Poland
| | - Elżbieta Rębas
- Department of Molecular Neurochemistry, Medical University of Lodz, 92‑215 Lodz, Poland
| |
Collapse
|
86
|
Ye R, Pi M, Cox JV, Nishimoto SK, Quarles LD. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:90. [PMID: 28659174 PMCID: PMC5490090 DOI: 10.1186/s13046-017-0561-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022]
Abstract
Background GPRC6A is implicated in the pathogenesis of prostate cancer, but its role remains uncertain because of a purported tolerant gene variant created by substitution of a K..Y polymorphism in the 3rd intracellular loop (IL) that evolved in the majority of humans and replaces the ancestral RKLP present in 40% of humans of African descent and all other species. Methods We determined whether the K..Y polymorphism is present in human-derived prostate cancer cell lines by sequencing the region of the 3rd IL and assessed the cellular localization of a “humanized” mouse GPRC6A containing the K..Y sequence by immunofluorescence. We assessed functions of GPRC6A in PC-3 cells expressing endogenous GPRC6A and in GPRC6A-deficient PC-3 cells created using CRISPR/Cas9 technology. The effect of GPRC6A on basal and ligand stimulated cell proliferation and migration was evaluated in vitro in wild-type and PC-3-deficient cell lines. The effect of editing GPRC6A on prostate cancer growth and progression in vivo was assessed in a Xenograft mouse model implanted with wild-type and PC-3 deficient cells and treated with the GPRC6A ligand osteocalcin. Results We found that all of the human prostate cancer cell lines tested endogenously express the “K..Y” polymorphism in the 3rd IL. Comparison of mouse wild-type GPRC6A with a “humanized” mouse GPRC6A construct created by replacing the “RKLP” with the “K..Y” sequence, found that both receptors were predominantly expressed on the cell surface. The transfected “humanized” GPRC6A receptor, however, preferentially activated mTOR compared to ERK signaling in HEK-293 cells. In contrast, in PC-3 cells expressing the endogenous GPRC6A with the “K..Y” polymorphism, the ligand osteocalcin stimulated ERK, AKT and mTOR phosphorylation, promoted cell proliferation and migration, and upregulated genes regulating testosterone biosynthesis. Targeting GPRC6A in PC-3 cells by CRISPR/Cas9 significantly blocked these responses in vitro. In addition, GPRC6A deficient PC-3 xenografts exhibited significantly less growth and were resistant to osteocalcin-induced prostate cancer progression compared to control PC-3 cells expressing GPRC6A. Conclusions Human GPRC6A is a functional osteocalcin and testosterone sensing receptor that promotes prostate cancer progression. GPRC6A may contribute to racial disparities in prostate cancer, and is a potential therapeutic target to develop antagonists to treat prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0561-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruisong Ye
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Min Pi
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA.
| | - John V Cox
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Satoru K Nishimoto
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA.
| |
Collapse
|
87
|
Bassetto M, Ferla S, Giancotti G, Pertusati F, Westwell AD, Brancale A, McGuigan C. Rational design and synthesis of novel phenylsulfonyl-benzamides as anti-prostate cancer agents. MEDCHEMCOMM 2017; 8:1414-1420. [PMID: 30108852 PMCID: PMC6072516 DOI: 10.1039/c7md00164a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/03/2017] [Indexed: 11/24/2022]
Abstract
A novel antiproliferative molecular scaffold was designed by rational modification of known antiandrogens, achieving a significant improvement in anti-cancer activity.
Prostate cancer is a major cause of male death worldwide and the identification of new efficient treatments is constantly needed. Different non-steroidal androgen receptor antagonists are approved also in the case of castration-resistant cancer forms. Using a rational approach and molecular modelling studies to modify the structure of antiandrogen drug bicalutamide, a new series of phenylsulfonyl-benzamide derivatives was designed and synthesised. Their antiproliferative activities were evaluated in four different human prostate cancer cell lines and several new compounds showed significantly improved IC50 values in the low μM range. The cytotoxicity profile was also evaluated for the novel structures in the HEK293 cell line.
Collapse
Affiliation(s)
- Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences , Redwood Building, King Edward VII Avenue , CF10 3NB , Cardiff , Wales , UK .
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences , Redwood Building, King Edward VII Avenue , CF10 3NB , Cardiff , Wales , UK .
| | - Gilda Giancotti
- School of Pharmacy and Pharmaceutical Sciences , Redwood Building, King Edward VII Avenue , CF10 3NB , Cardiff , Wales , UK .
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences , Redwood Building, King Edward VII Avenue , CF10 3NB , Cardiff , Wales , UK .
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences , Redwood Building, King Edward VII Avenue , CF10 3NB , Cardiff , Wales , UK .
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences , Redwood Building, King Edward VII Avenue , CF10 3NB , Cardiff , Wales , UK .
| | - Christopher McGuigan
- School of Pharmacy and Pharmaceutical Sciences , Redwood Building, King Edward VII Avenue , CF10 3NB , Cardiff , Wales , UK .
| |
Collapse
|
88
|
Licciardello MP, Ringler A, Markt P, Klepsch F, Lardeau CH, Sdelci S, Schirghuber E, Müller AC, Caldera M, Wagner A, Herzog R, Penz T, Schuster M, Boidol B, Dürnberger G, Folkvaljon Y, Stattin P, Ivanov V, Colinge J, Bock C, Kratochwill K, Menche J, Bennett KL, Kubicek S. A combinatorial screen of the CLOUD uncovers a synergy targeting the androgen receptor. Nat Chem Biol 2017; 13:771-778. [DOI: 10.1038/nchembio.2382] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
|
89
|
Chan ML, Yu CC, Hsu JL, Leu WJ, Chan SH, Hsu LC, Liu SP, Ivantcova PM, Dogan Ö, Bräse S, Kudryavtsev KV, Guh JH. Enantiomerically pure β-dipeptide derivative induces anticancer activity against human hormone-refractory prostate cancer through both PI3K/Akt-dependent and -independent pathways. Oncotarget 2017; 8:96668-96683. [PMID: 29228561 PMCID: PMC5722513 DOI: 10.18632/oncotarget.18040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/08/2017] [Indexed: 11/25/2022] Open
Abstract
The use of peptides that target cancer cells and induce anticancer activities through various mechanisms is developing as a potential anticancer strategy. KUD983, an enantiomerically pure β-dipeptide derivative, displays potent activity against hormone-refractory prostate cancer (HRPC) PC-3 and DU145 cells with submicromolar IC50. KUD983 induced G1 arrest of the cell cycle and subsequent apoptosis associated with down-regulation of several related proteins including cyclin D1, cyclin E and Cdk4, and the de-phosphorylation of RB. The levels of nuclear and total c-Myc protein, which could increase the expression of both cyclin D1 and cyclin E, were profoundly inhibited by KUD983. Furthermore, it inhibited PI3K/Akt and mTOR/p70S6K/4E-BP1 pathways, the key signaling in multiple cellular functions. The transient transfection of constitutively active myristylated Akt (myr-Akt) cDNA significantly rescued KUD983-induced caspase activation but did not blunt the inhibition of mTOR/p70S6K/4E-BP1 signaling cascade suggesting the presence of both Akt-dependent and -independent pathways. Moreover, KUD983-induced effect was enhanced with the down-regulation of anti-apoptotic Bcl-2 members (e.g., Bcl-2, and Mcl-1) and IAP family members (e.g., survivin). Notably, KUD983 induced autophagic cell death using confocal microscopic examination, tracking the level of conversion of LC3-I to LC3-II and flow cytometric detection of acidic vesicular organelles-positive cells. In conclusion, the data suggest that KUD983 is an anticancer β-dipeptide against HRPCs through the inhibition of cell proliferation and induction of apoptotic and autophagic cell death. The suppression of signaling pathways regulated by c-Myc, PI3K/Akt and mTOR/p70S6K/4E-BP1 and the collaboration with down-regulation of Mcl-1 and survivin may explain KUD983-induced anti-HRPC mechanism.
Collapse
Affiliation(s)
- Mei-Ling Chan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chun Yu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - She-Hung Chan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Polina M Ivantcova
- Department of Medicinal Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Özdemir Dogan
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Konstantin V Kudryavtsev
- Department of Medicinal Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow region, Russian Federation
| | - Jih-Hwa Guh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
90
|
Domińska K, Kowalska K, Matysiak ZE, Płuciennik E, Ochędalski T, Piastowska-Ciesielska AW. Regulation of mRNA gene expression of members of the NF-κB transcription factor gene family by angiotensin II and relaxin 2 in normal and cancer prostate cell lines. Mol Med Rep 2017; 15:4352-4359. [PMID: 28487955 DOI: 10.3892/mmr.2017.6514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
An increasing number of researchers are focusing on the influence of local peptide hormones such as angiotensin II (Ang II) and relaxin 2 (RLN2) in the regulation of inflammation and carcinogenesis. The interaction between the renin‑angiotensin system (RAS) and relaxin family peptide system (RFPS) is known to influence the proliferation, adhesion and migration of normal and cancer prostate cell lines. The aim of the present study was to evaluate changes in the expression of nuclear factor‑κB subunit 1 (NFKB1), nuclear factor‑κB subunit 2 (NFKB2), REL proto‑oncogene nuclear factor‑κB p65 subunit (REL), RELA proto‑oncogene nuclear factor‑κB subunit (RELA) and RELB proto‑oncogene nuclear factor‑κB subunit (RELB) mRNA caused by Ang II and RLN2. The members of NF‑kB family are involved in many processes associated with cancer development and metastasis. Reverse transcription‑quantitative polymerase chain reaction analysis identified that both peptide hormones have an influence on the relative expression of nuclear factor‑κB. Following treatment with either peptide, NFKB1 expression was downregulated in all prostate cancer cell lines (LNCaP, DU‑145 and PC3), but not in normal epithelial cells (PNT1A). Conversely, RELB mRNA was enhanced only in non‑cancerous prostate cells. RELA expression was strongly stimulated in the most aggressive cell line, whereas REL mRNA was unchanged. In many cases, the effect was strictly dependent on the cell line and/or the type of peptide: Ang II increased expression of both RELA and REL genes in the androgen‑dependent cell line while RLN2 enhanced NFKB2 and RELA mRNA in androgen‑independent cells (DU‑145). Further research is needed to understand the regulation of NF‑κB family members by key renin‑angiotensin system and RFPS peptides in prostate cancer cells; however, prostate carcinogenesis appears to be influenced by the balance between the cross‑regulation of nuclear factor‑κB (NF‑κB) and androgen receptor pathways by Ang II and relaxin 2.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz 90‑752, Poland
| | - Karolina Kowalska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz 90‑752, Poland
| | | | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90‑752, Poland
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz 90‑752, Poland
| | | |
Collapse
|
91
|
Silva-Ortiz AV, Bratoeff E, Ramírez-Apan T, Heuze Y, Soriano J, Moreno I, Bravo M, Bautista L, Cabeza M. Synthesis of new derivatives of 21-imidazolyl-16-dehydropregnenolone as inhibitors of 5α-reductase 2 and with cytotoxic activity in cancer cells. Bioorg Med Chem 2017; 25:1600-1607. [DOI: 10.1016/j.bmc.2017.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
|
92
|
Lin Z, Bishop KS, Sutherland H, Marlow G, Murray P, Denny WA, Ferguson LR. A quinazoline-based HDAC inhibitor affects gene expression pathways involved in cholesterol biosynthesis and mevalonate in prostate cancer cells. MOLECULAR BIOSYSTEMS 2016; 12:839-49. [PMID: 26759180 DOI: 10.1039/c5mb00554j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic inflammation can lead to the development of cancers and resolution of inflammation is an ongoing challenge. Inflammation can result from dysregulation of the epigenome and a number of compounds that modify the epigenome are in clinical use. In this study the anti-inflammatory and anti-cancer effects of a quinazoline epigenetic-modulator compound were determined in prostate cancer cell lines using a non-hypothesis driven transcriptomics strategy utilising the Affymetrix PrimeView® Human Gene Expression microarray. GATHER and IPA software were used to analyse the data and to provide information on significantly modified biological processes, pathways and networks. A number of genes were differentially expressed in both PC3 and DU145 prostate cancer cell lines. The top canonical pathways that frequently arose across both cell lines at a number of time points included cholesterol biosynthesis and metabolism, and the mevalonate pathway. Targeting of sterol and mevalonate pathways may be a powerful anticancer approach.
Collapse
Affiliation(s)
- Z Lin
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand.
| | - K S Bishop
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand.
| | - H Sutherland
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand.
| | - G Marlow
- Discipline of Nutrition and Dietetics, University of Auckland, New Zealand
| | - P Murray
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand.
| | - W A Denny
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand.
| | - L R Ferguson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand. and Discipline of Nutrition and Dietetics, University of Auckland, New Zealand
| |
Collapse
|
93
|
Ochiai K, Morimatsu M, Kato Y, Ishiguro-Oonuma T, Udagawa C, Rungsuriyawiboon O, Azakami D, Michishita M, Ariyoshi Y, Ueki H, Nasu Y, Kumon H, Watanabe M, Omi T. Tumor suppressor REIC/DKK-3 and co-chaperone SGTA: Their interaction and roles in the androgen sensitivity. Oncotarget 2016; 7:3283-96. [PMID: 26658102 PMCID: PMC4823106 DOI: 10.18632/oncotarget.6488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/21/2015] [Indexed: 12/16/2022] Open
Abstract
REIC/DKK-3 is a tumor suppressor, however, its intracellular physiological functions and interacting molecules have not been fully clarified. Using yeast two-hybrid screening, we found that small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA), known as a negative modulator of cytoplasmic androgen receptor (AR) signaling, is a novel interacting partner of REIC/DKK-3. Mammalian two-hybrid and pull-down assay results indicated that the SGTA-REIC/DKK-3 interaction involved the N-terminal regions of both REIC/DKK-3 and SGTA and that REIC/DKK-3 interfered with the dimerization of SGTA, which is a component of the AR complex and a suppressor of dynein motor-dependent AR transport and signaling. A reporter assay in human prostate cancer cells that displayed suppressed AR signaling by SGTA showed recovery of AR signaling by REIC/DKK-3 expression. Considering these results and our previous data that REIC/DKK-3 interacts with the dynein light chain TCTEX-1, we propose that the REIC/DKK-3 protein interferes with SGTA dimerization, promotes dynein-dependent AR transport and then upregulates AR signaling.
Collapse
Affiliation(s)
- Kazuhiko Ochiai
- Department of Veterinary Nursing and Technology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuiko Kato
- Department of Veterinary Nursing and Technology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Toshina Ishiguro-Oonuma
- Department of Biological Resources, Integrated Center for Science, Ehime University, Ehime 791-0295, Japan
| | - Chihiro Udagawa
- Department of Veterinary Nursing and Technology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Oumaporn Rungsuriyawiboon
- Department of Veterinary Technology Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Daigo Azakami
- Department of Veterinary Nursing and Technology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Yuichi Ariyoshi
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Hideo Ueki
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yasutomo Nasu
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Hiromi Kumon
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masami Watanabe
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Toshinori Omi
- Department of Veterinary Nursing and Technology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| |
Collapse
|
94
|
Greene SB, Dago AE, Leitz LJ, Wang Y, Lee J, Werner SL, Gendreau S, Patel P, Jia S, Zhang L, Tucker EK, Malchiodi M, Graf RP, Dittamore R, Marrinucci D, Landers M. Chromosomal Instability Estimation Based on Next Generation Sequencing and Single Cell Genome Wide Copy Number Variation Analysis. PLoS One 2016; 11:e0165089. [PMID: 27851748 PMCID: PMC5112954 DOI: 10.1371/journal.pone.0165089] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/06/2016] [Indexed: 01/06/2023] Open
Abstract
Genomic instability is a hallmark of cancer often associated with poor patient outcome and resistance to targeted therapy. Assessment of genomic instability in bulk tumor or biopsy can be complicated due to sample availability, surrounding tissue contamination, or tumor heterogeneity. The Epic Sciences circulating tumor cell (CTC) platform utilizes a non-enrichment based approach for the detection and characterization of rare tumor cells in clinical blood samples. Genomic profiling of individual CTCs could provide a portrait of cancer heterogeneity, identify clonal and sub-clonal drivers, and monitor disease progression. To that end, we developed a single cell Copy Number Variation (CNV) Assay to evaluate genomic instability and CNVs in patient CTCs. For proof of concept, prostate cancer cell lines, LNCaP, PC3 and VCaP, were spiked into healthy donor blood to create mock patient-like samples for downstream single cell genomic analysis. In addition, samples from seven metastatic castration resistant prostate cancer (mCRPC) patients were included to evaluate clinical feasibility. CTCs were enumerated and characterized using the Epic Sciences CTC Platform. Identified single CTCs were recovered, whole genome amplified, and sequenced using an Illumina NextSeq 500. CTCs were then analyzed for genome-wide copy number variations, followed by genomic instability analyses. Large-scale state transitions (LSTs) were measured as surrogates of genomic instability. Genomic instability scores were determined reproducibly for LNCaP, PC3, and VCaP, and were higher than white blood cell (WBC) controls from healthy donors. A wide range of LST scores were observed within and among the seven mCRPC patient samples. On the gene level, loss of the PTEN tumor suppressor was observed in PC3 and 5/7 (71%) patients. Amplification of the androgen receptor (AR) gene was observed in VCaP cells and 5/7 (71%) mCRPC patients. Using an in silico down-sampling approach, we determined that DNA copy number and genomic instability can be detected with as few as 350K sequencing reads. The data shown here demonstrate the feasibility of detecting genomic instabilities at the single cell level using the Epic Sciences CTC Platform. Understanding CTC heterogeneity has great potential for patient stratification prior to treatment with targeted therapies and for monitoring disease evolution during treatment.
Collapse
Affiliation(s)
| | - Angel E. Dago
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Laura J. Leitz
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Yipeng Wang
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Jerry Lee
- Epic Sciences, Inc., San Diego, CA, United States of America
| | | | - Steven Gendreau
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Premal Patel
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Shidong Jia
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Liangxuan Zhang
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Eric K. Tucker
- Epic Sciences, Inc., San Diego, CA, United States of America
| | | | - Ryon P. Graf
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Ryan Dittamore
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Dena Marrinucci
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Mark Landers
- Epic Sciences, Inc., San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
95
|
Alimirah F, Peng X, Gupta A, Yuan L, Welsh J, Cleary M, Mehta RG. Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells. Exp Cell Res 2016; 349:15-22. [PMID: 27693451 DOI: 10.1016/j.yexcr.2016.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022]
Abstract
The vitamin D receptor (VDR), and its ligand 1α,25-dihydroxyvitamin D3 (1,25D3) prevent breast cancer development and progression, yet the molecular mechanisms governing this are unclear. MicroRNAs (miRNAs) on the other hand, promote or inhibit breast cancer growth. To understand how VDR regulates miRNAs, we compared miRNA expression of wild-type (WT) and VDR knockout (VDRKO) breast cancer cells by a Mouse Breast Cancer miRNA PCR array. Compared to VDR WT cells, expressions of miR-214, miR-199a-3p and miR-199a-5p of the miR-199a/miR-214 cluster were 42, 15, and 10 fold higher in VDRKO cells respectively. Overexpression of VDR in breast cancer cells reduced the miR-199a/miR-214 cluster expression by 30%. VDR status also negatively correlated with Dnm3os expression, a non-coding RNA transcript of the dynamin-3 gene encoding the miR-199a/miR-214 cluster, suggesting that VDR represses this cluster through Dnm3os. Conversely, overexpression of miR-214 in MCF-7 and T47D cells antagonized VDR mediated signaling. Furthermore, there was a positive correlation between VDR status and the expression of Suppressor of fused gene (SuFu), a hedgehog pathway inhibitor. miR-214 on the other hand suppressed SuFu protein expression. These findings suggest a crosstalk between VDR and miR-214 in regulating hedgehog signaling in breast cancer cells, providing new therapies for breast cancer.
Collapse
Affiliation(s)
- Fatouma Alimirah
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA
| | - Xinjian Peng
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA
| | - Akash Gupta
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA
| | - Liang Yuan
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA
| | - JoEllen Welsh
- University at Albany Cancer Research Center, Rensselaer, NY 12144, USA
| | - Michele Cleary
- Merck Research Laboratories, Merck & Co., Inc., West Point, PA 19486, USA
| | - Rajendra G Mehta
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA.
| |
Collapse
|
96
|
Guedes LB, Morais CL, Almutairi F, Haffner MC, Zheng Q, Isaacs JT, Antonarakis ES, Lu C, Tsai H, Luo J, De Marzo AM, Lotan TL. Analytic Validation of RNA In Situ Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer. Clin Cancer Res 2016; 22:4651-63. [PMID: 27166397 PMCID: PMC5026571 DOI: 10.1158/1078-0432.ccr-16-0205] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/30/2016] [Indexed: 12/28/2022]
Abstract
PURPOSE RNA expression of androgen receptor splice variants may be a biomarker of resistance to novel androgen deprivation therapies in castrate-resistant prostate cancer (CRPC). We analytically validated an RNA in situ hybridization (RISH) assay for total AR and AR-V7 for use in formalin-fixed paraffin-embedded (FFPE) prostate tumors. EXPERIMENTAL DESIGN We used prostate cell lines and xenografts to validate chromogenic RISH to detect RNA containing AR exon 1 (AR-E1, surrogate for total AR RNA species) and cryptic exon 3 (AR-CE3, surrogate for AR-V7 expression). RISH signals were quantified in FFPE primary tumors and CRPC specimens, comparing to known AR and AR-V7 status by IHC and RT-PCR. RESULTS The quantified RISH results correlated significantly with total AR and AR-V7 levels by RT-PCR in cell lines, xenografts, and autopsy metastases. Both AR-E1 and AR-CE3 RISH signals were localized in nuclear punctae in addition to the expected cytoplasmic speckles. Compared with admixed benign glands, AR-E1 expression was significantly higher in primary tumor cells with a median fold increase of 3.0 and 1.4 in two independent cohorts (P < 0.0001 and P = 0.04, respectively). While AR-CE3 expression was detectable in primary prostatic tumors, levels were substantially higher in a subset of CRPC metastases and cell lines, and were correlated with AR-E1 expression. CONCLUSIONS RISH for AR-E1 and AR-CE3 is an analytically valid method to examine total AR and AR-V7 RNA levels in FFPE tissues. Future clinical validation studies are required to determine whether AR RISH is a prognostic or predictive biomarker in specific clinical contexts. Clin Cancer Res; 22(18); 4651-63. ©2016 AACR.
Collapse
Affiliation(s)
- Liana B Guedes
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlos L Morais
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fawaz Almutairi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael C Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John T Isaacs
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emmanuel S Antonarakis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Changxue Lu
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harrison Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Luo
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
97
|
Komaragiri SK, Bostanthirige DH, Morton DJ, Patel D, Joshi J, Upadhyay S, Chaudhary J. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells. Biochem Biophys Res Commun 2016; 478:60-66. [PMID: 27462022 PMCID: PMC4991035 DOI: 10.1016/j.bbrc.2016.07.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 01/23/2023]
Abstract
Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function.
Collapse
Affiliation(s)
- Shravan Kumar Komaragiri
- Department of Biology and Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, United States
| | - Dhanushka H Bostanthirige
- Department of Biology and Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, United States
| | - Derrick J Morton
- Department of Biology and Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, United States
| | - Divya Patel
- Department of Biology and Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, United States
| | - Jugal Joshi
- Department of Biology and Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, United States
| | - Sunil Upadhyay
- Department of Biology and Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, United States
| | - Jaideep Chaudhary
- Department of Biology and Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, United States.
| |
Collapse
|
98
|
Lombardi APG, Pisolato R, Vicente CM, Lazari MFM, Lucas TFG, Porto CS. Estrogen receptor beta (ERβ) mediates expression of β-catenin and proliferation in prostate cancer cell line PC-3. Mol Cell Endocrinol 2016; 430:12-24. [PMID: 27107935 DOI: 10.1016/j.mce.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/31/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to characterize the mechanism underlying estrogen effects on the androgen-independent prostate cancer cell line PC-3. 17β-estradiol and the ERβ-selective agonist DPN, but not the ERα-selective agonist PPT, increased the incorporation of [methyl-(3)H]thymidine and the expression of Cyclin D2, suggesting that ERβ mediates the proliferative effect of estrogen on PC-3 cells. In addition, upregulation of Cyclin D2 and incorporation of [methyl-(3)H]thymidine induced by 17β-estradiol and DPN were blocked by the ERβ-selective antagonist PHTPP in PC-3 cells. Upregulation of Cyclin D2 and incorporation of [methyl-(3)H]thymidine induced by DPN were also blocked by PKF118-310, a compound that disrupts β-catenin-TCF (T-cell-specific transcription factor) complex, suggesting the involvement of β-catenin in the estradiol effects in PC-3 cells. A diffuse immunostaining for non-phosphorylated β-catenin was detected in the cytoplasm of PC-3 cells. Low levels of non-phosphorylated β-catenin immunostaining were also detected near the plasma membrane and in nuclei. Treatment of PC-3 cells with 17β-estradiol or DPN markedly increased non-phosphorylated β-catenin expression. These effects were blocked by pretreatment with the ERβ-selective antagonist PHTPP, PI3K inhibitor Wortmannin or AKT inhibitor MK-2206, indicating that ERβ-PI3K/AKT mediates non-phosphorylated β-catenin expression. Cycloheximide blocked the DPN-induced upregulation of non-phosphorylated β-catenin, suggesting de novo synthesis of this protein. In conclusion, these results suggest that estrogen may play a role in androgen-independent prostate cancer cell proliferation through a novel pathway, involving ERβ-mediated activation of β-catenin.
Collapse
Affiliation(s)
- Ana Paola G Lombardi
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Raisa Pisolato
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Carolina M Vicente
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Maria Fatima M Lazari
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Thaís F G Lucas
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Catarina S Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
99
|
Holmes S, Singh M, Su C, Cunningham RL. Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line. Endocrinology 2016; 157:2824-35. [PMID: 27167771 PMCID: PMC4929547 DOI: 10.1210/en.2015-1738] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder, is associated with oxidative stress and neuroinflammation. These pathological markers can contribute to the loss of dopamine neurons in the midbrain. Interestingly, men have a 2-fold increased incidence for Parkinson's disease than women. Although the mechanisms underlying this sex difference remain elusive, we propose that the primary male sex hormone, testosterone, is involved. Our previous studies show that testosterone, through a putative membrane androgen receptor, can increase oxidative stress-induced neurotoxicity in dopamine neurons. Based on these results, this study examines the role of nuclear factor κ B (NF-κB), cyclooxygenase-2 (COX2), and apoptosis in the deleterious effects of androgens in an oxidative stress environment. We hypothesize, under oxidative stress environment, testosterone via a putative membrane androgen receptor will exacerbate oxidative stress-induced NF-κB/COX2 signaling in N27 dopaminergic neurons, leading to apoptosis. Our data show that testosterone increased the expression of COX2 and apoptosis in dopamine neurons. Inhibiting the NF-κB and COX2 pathway with CAPE and ibuprofen, respectively, blocked testosterone's negative effects on cell viability, indicating that NF-κB/COX2 cascade plays a role in the negative interaction between testosterone and oxidative stress on neuroinflammation. These data further support the role of testosterone mediating the loss of dopamine neurons under oxidative stress conditions, which may be a key mechanism contributing to the increased incidence of Parkinson's disease in men compared with women.
Collapse
Affiliation(s)
- Shaletha Holmes
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Meharvan Singh
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Chang Su
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
100
|
Gupta S, Weston A, Bearrs J, Thode T, Neiss A, Soldi R, Sharma S. Reversible lysine-specific demethylase 1 antagonist HCI-2509 inhibits growth and decreases c-MYC in castration- and docetaxel-resistant prostate cancer cells. Prostate Cancer Prostatic Dis 2016; 19:349-357. [PMID: 27349498 PMCID: PMC5133270 DOI: 10.1038/pcan.2016.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023]
Abstract
Background: Lysine-specific demethylase 1 (LSD1 or KDM1A) overexpression correlates with poor survival and castration resistance in prostate cancer. LSD1 is a coregulator of ligand-independent androgen receptor signaling promoting c-MYC expression. We examined the antitumor efficacy of LSD1 inhibition with HCI-2509 in advanced stages of prostate cancer. Methods: Cell survival, colony formation, histone methylation, c-MYC level, c-MYC expression, cell cycle changes and in vivo efficacy were studied in castration-resistant prostate cancer cells upon treatment with HCI-2509. In vitro combination studies, using HCI-2509 and docetaxel, were performed to assess the synergy. Cell survival, colony formation, histone methylation and c-myc levels were studied in docetaxel-resistant prostate cancer cells treated with HCI-2509. Results: HCI-2509 is cytotoxic and inhibits colony formation in castration-resistant prostate cancer cells. HCI-2509 treatment causes a dose-dependent increase in H3K9me2 (histone H3lysine 9) levels, a decrease in c-MYC protein, inhibition of c-MYC expression and accumulation in the G0/G1 phase of the cell cycle in these cells. PC3 xenografts in mice have a significant reduction in tumor burden upon treatment with HCI-2509 with no associated myelotoxicity or weight loss. More synergy is noted at sub-IC50 (half-maximal inhibitory concentration) doses of docetaxel and HCI-2509 in PC3 cells than in DU145 cells. HCI-2509 has growth-inhibitory efficacy and decreases the c-myc level in docetaxel-resistant prostate cancer cells. Conclusions: LSD1 inhibition with HCI-2509 decreases the c-MYC level in poorly differentiated prostate cancer cell lines and has a therapeutic potential in castration- and docetaxel-resistant prostate cancer.
Collapse
Affiliation(s)
- S Gupta
- GU Medical Oncology, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - A Weston
- GU Medical Oncology, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - J Bearrs
- GU Medical Oncology, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - T Thode
- GU Medical Oncology, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - A Neiss
- GU Medical Oncology, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - R Soldi
- Beta Cat Pharmaceuticals, Houston, TX, USA
| | - S Sharma
- GU Medical Oncology, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|