51
|
Zeman MK, Lin JR, Freire R, Cimprich KA. DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis. ACTA ACUST UNITED AC 2014; 206:183-97. [PMID: 25023518 PMCID: PMC4107794 DOI: 10.1083/jcb.201311063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deubiquitination of Rad18 drives its localization to sites of DNA damage and formation of the Rad18–SHPRH complexes necessary for error-free lesion bypass. Deoxyribonucleic acid (DNA) lesions encountered during replication are often bypassed using DNA damage tolerance (DDT) pathways to avoid prolonged fork stalling and allow for completion of DNA replication. Rad18 is a central E3 ubiquitin ligase in DDT, which exists in a monoubiquitinated (Rad18•Ub) and nonubiquitinated form in human cells. We find that Rad18 is deubiquitinated when cells are treated with methyl methanesulfonate or hydrogen peroxide. The ubiquitinated form of Rad18 does not interact with SNF2 histone linker plant homeodomain RING helicase (SHPRH) or helicase-like transcription factor, two downstream E3 ligases needed to carry out error-free bypass of DNA lesions. Instead, it interacts preferentially with the zinc finger domain of another, nonubiquitinated Rad18 and may inhibit Rad18 function in trans. Ubiquitination also prevents Rad18 from localizing to sites of DNA damage, inducing proliferating cell nuclear antigen monoubiquitination, and suppressing mutagenesis. These data reveal a new role for monoubiquitination in controlling Rad18 function and suggest that damage-specific deubiquitination promotes a switch from Rad18•Ub–Rad18 complexes to the Rad18–SHPRH complexes necessary for error-free lesion bypass in cells.
Collapse
Affiliation(s)
- Michelle K Zeman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jia-Ren Lin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
52
|
Nicolae CM, Aho ER, Vlahos AHS, Choe KN, De S, Karras GI, Moldovan GL. The ADP-ribosyltransferase PARP10/ARTD10 interacts with proliferating cell nuclear antigen (PCNA) and is required for DNA damage tolerance. J Biol Chem 2014; 289:13627-37. [PMID: 24695737 DOI: 10.1074/jbc.m114.556340] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All cells rely on genomic stability mechanisms to protect against DNA alterations. PCNA is a master regulator of DNA replication and S-phase-coupled repair. PCNA post-translational modifications by ubiquitination and SUMOylation dictate how cells stabilize and re-start replication forks stalled at sites of damaged DNA. PCNA mono-ubiquitination recruits low fidelity DNA polymerases to promote error-prone replication across DNA lesions. Here, we identify the mono-ADP-ribosyltransferase PARP10/ARTD10 as a novel PCNA binding partner. PARP10 knockdown results in genomic instability and DNA damage hypersensitivity. Importantly, we show that PARP10 binding to PCNA is required for translesion DNA synthesis. Our work identifies a novel PCNA-linked mechanism for genome protection, centered on post-translational modification by mono-ADP-ribosylation.
Collapse
Affiliation(s)
- Claudia M Nicolae
- From the Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | | | | | | | | | | | | |
Collapse
|
53
|
Becker JR, Nguyen HD, Wang X, Bielinsky AK. Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle 2014; 13:1737-48. [PMID: 24674891 DOI: 10.4161/cc.28652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mcm10 is a multifunctional replication factor with reported roles in origin activation, polymerase loading, and replication fork progression. The literature supporting these variable roles is controversial, and it has been debated whether Mcm10 has an active role in elongation. Here, we provide evidence that the mcm10-1 allele confers alterations in DNA synthesis that lead to defective-replisome-induced mutagenesis (DRIM). Specifically, we observed that mcm10-1 cells exhibited elevated levels of PCNA ubiquitination and activation of the translesion polymerase, pol-ζ. Whereas translesion synthesis had no measurable impact on viability, mcm10-1 mutants also engaged in error-free postreplicative repair (PRR), and this pathway promoted survival at semi-permissive conditions. Replication gaps in mcm10-1 were likely caused by elongation defects, as dbf4-1 mutants, which are compromised for origin activation did not display any hallmarks of replication stress. Furthermore, we demonstrate that deficiencies in priming, induced by a pol1-1 mutation, also resulted in DRIM, but not in error-free PRR. Similar to mcm10-1 mutants, DRIM did not rescue the replication defect in pol1-1 cells. Thus, it appears that DRIM is not proficient to fill replication gaps in pol1-1 and mcm10-1 mutants. Moreover, the ability to correctly prime nascent DNA may be a crucial prerequisite to initiate error-free PRR.
Collapse
Affiliation(s)
- Jordan R Becker
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Xiaohan Wang
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| |
Collapse
|
54
|
Gonzalez-Huici V, Szakal B, Urulangodi M, Psakhye I, Castellucci F, Menolfi D, Rajakumara E, Fumasoni M, Bermejo R, Jentsch S, Branzei D. DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. EMBO J 2014; 33:327-40. [PMID: 24473148 PMCID: PMC3983681 DOI: 10.1002/embj.201387425] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication-associated lesions into the error-free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability.
Collapse
|
55
|
Fallet E, Jolivet P, Soudet J, Lisby M, Gilson E, Teixeira MT. Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Res 2014; 42:3648-65. [PMID: 24393774 PMCID: PMC3973311 DOI: 10.1093/nar/gkt1328] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the absence of telomerase, telomeres progressively shorten with every round of DNA replication, leading to replicative senescence. In telomerase-deficient Saccharomyces cerevisiae, the shortest telomere triggers the onset of senescence by activating the DNA damage checkpoint and recruiting homologous recombination (HR) factors. Yet, the molecular structures that trigger this checkpoint and the mechanisms of repair have remained elusive. By tracking individual telomeres, we show that telomeres are subjected to different pathways depending on their length. We first demonstrate a progressive accumulation of subtelomeric single-stranded DNA (ssDNA) through 5'-3' resection as telomeres shorten. Thus, exposure of subtelomeric ssDNA could be the signal for cell cycle arrest in senescence. Strikingly, early after loss of telomerase, HR counteracts subtelomeric ssDNA accumulation rather than elongates telomeres. We then asked whether replication repair pathways contribute to this mechanism. We uncovered that Rad5, a DNA helicase/Ubiquitin ligase of the error-free branch of the DNA damage tolerance (DDT) pathway, associates with native telomeres and cooperates with HR in senescent cells. We propose that DDT acts in a length-independent manner, whereas an HR-based repair using the sister chromatid as a template buffers precocious 5'-3' resection at the shortest telomeres.
Collapse
Affiliation(s)
- Emilie Fallet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, FRE3354, 75005 Paris, France, Laboratoire de Biologie Moléculaire de la Cellule, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Université de Lyon 1, UMR5239, 69364 Lyon Cedex 07, France, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice F-06107, France and Department of Medical Genetics, CHU Nice, 06202 Nice cedex 3, France
| | | | | | | | | | | |
Collapse
|
56
|
Jain D, Siede W. Rad5 template switch pathway of DNA damage tolerance determines synergism between cisplatin and NSC109268 in Saccharomyces cerevisiae. PLoS One 2013; 8:e77666. [PMID: 24130896 PMCID: PMC3795065 DOI: 10.1371/journal.pone.0077666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 09/12/2013] [Indexed: 12/02/2022] Open
Abstract
The success of cisplatin (CP) based therapy is often hindered by acquisition of CP resistance. We isolated NSC109268 as a compound altering cellular sensitivity to DNA damaging agents. Previous investigation revealed an enhancement of CP sensitivity by NSC109268 in wild-type Saccharomyces cerevisiae and CP-sensitive and -resistant cancer cell lines that correlated with a slower S phase traversal. Here, we extended these studies to determine the target pathway(s) of NSC109268 in mediating CP sensitization, using yeast as a model. We reasoned that mutants defective in the relevant target of NSC109268 should be hypersensitive to CP and the sensitization effect by NSC109268 should be absent or strongly reduced. A survey of various yeast deletion mutants converged on the Rad5 pathway of DNA damage tolerance by template switching as the likely target pathway of NSC109268 in mediating cellular sensitization to CP. Additionally, cell cycle delays following CP treatment were not synergistically influenced by NSC109268 in the CP hypersensitive rad5Δ mutant. The involvement of the known inhibitory activities of NSC109268 on 20S proteasome and phosphatases 2Cα and 2A was tested. In the CP hypersensitive ptc2Δptc3Δpph3Δ yeast strain, deficient for 2C and 2A-type phosphatases, cellular sensitization to CP by NSC109268 was greatly reduced. It is therefore suggested that NSC109268 affects CP sensitivity by inhibiting the activity of unknown protein(s) whose dephosphorylation is required for the template switch pathway.
Collapse
Affiliation(s)
- Dilip Jain
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Wolfram Siede
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
57
|
Glineburg MR, Chavez A, Agrawal V, Brill SJ, Johnson FB. Resolution by unassisted Top3 points to template switch recombination intermediates during DNA replication. J Biol Chem 2013; 288:33193-204. [PMID: 24100144 DOI: 10.1074/jbc.m113.496133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Sgs1/Top3/Rmi1 (STR) complex plays vital roles in DNA replication and repair. One crucial activity of the complex is dissolution of toxic X-shaped recombination intermediates that accumulate during replication of damaged DNA. However, despite several years of study the nature of these X-shaped molecules remains debated. Here we use genetic approaches and two-dimensional gel electrophoresis of genomic DNA to show that Top3, unassisted by Sgs1 and Rmi1, has modest capacities to provide resistance to MMS and to resolve recombination-dependent X-shaped molecules. The X-shaped molecules have structural properties consistent with hemicatenane-related template switch recombination intermediates (Rec-Xs) but not Holliday junction (HJ) intermediates. Consistent with these findings, we demonstrate that purified Top3 can resolve a synthetic Rec-X but not a synthetic double HJ in vitro. We also find that unassisted Top3 does not affect crossing over during double strand break repair, which is known to involve double HJ intermediates, confirming that unassisted Top3 activities are restricted to substrates that are distinct from HJs. These data help illuminate the nature of the X-shaped molecules that accumulate during replication of damaged DNA templates, and also clarify the roles played by Top3 and the STR complex as a whole during the resolution of replication-associated recombination intermediates.
Collapse
|
58
|
Nouspikel T. Genetic instability in human embryonic stem cells: prospects and caveats. Future Oncol 2013; 9:867-77. [DOI: 10.2217/fon.13.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESCs) display a leaky G1/S checkpoint and inefficient nucleotide excision repair activity. Maintenance of genomic stability in these cells mostly relies on the elimination of damaged cells by high rates of apoptosis. However, a subpopulation survives and proliferates actively, bypassing DNA damage by translesion synthesis, a known mutagenic process. Indeed, high levels of damage-induced mutations were observed in hESCs, similar to those in repair-deficient cells. The surviving cells also become more resistant to further damage, leading to a progressive enrichment of cultures in mutant cells. In long-term cultures, hESCs display features characteristic of neoplastic progression, including chromosomal anomalies often similar to those observed in embryo carcinoma. The implication of these facts for stem cell-based therapy and cancer research are discussed.
Collapse
Affiliation(s)
- Thierry Nouspikel
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
59
|
Nikolaishvili-Feinberg N, Cordeiro-Stone M. Assays of bypass replication of genotoxic lesions in cell-free extracts. Methods Mol Biol 2013; 920:503-28. [PMID: 22941625 DOI: 10.1007/978-1-61779-998-3_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The in vitro replication assay described here measures bidirectional replication of a circular double- stranded DNA template upon initiation at the SV40 origin. It models a single eukaryotic replication unit (replicon) and recapitulates the biochemical steps involved in the catalysis of both leading and lagging strand synthesis during semiconservative DNA replication. Except for the SV40 large T antigen, all other proteins necessary for initiation and assembly of functional replication forks are provided by the cell-free extract. This assay can be used to demonstrate bypass replication of genotoxic lesions. It supports replication across a specific damaged site on the template DNA (i.e., translesion synthesis) by specialized DNA polymerases. This chapter illustrates the efficient translesion synthesis of UV-induced thymine dimers by DNA polymerase eta.
Collapse
Affiliation(s)
- Nana Nikolaishvili-Feinberg
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
60
|
Costes A, Lambert SAE. Homologous recombination as a replication fork escort: fork-protection and recovery. Biomolecules 2012; 3:39-71. [PMID: 24970156 PMCID: PMC4030885 DOI: 10.3390/biom3010039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/03/2023] Open
Abstract
Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.
Collapse
Affiliation(s)
- Audrey Costes
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| | - Sarah A E Lambert
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| |
Collapse
|
61
|
Karras GI, Fumasoni M, Sienski G, Vanoli F, Branzei D, Jentsch S. Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol Cell 2012; 49:536-46. [PMID: 23260657 DOI: 10.1016/j.molcel.2012.11.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/20/2012] [Accepted: 11/13/2012] [Indexed: 02/08/2023]
Abstract
Damaged DNA is an obstacle during DNA replication and a cause of genome instability and cancer. To bypass this problem, eukaryotes activate DNA damage tolerance (DDT) pathways that involve ubiquitylation of the DNA polymerase clamp proliferating cell nuclear antigen (PCNA). Monoubiquitylation of PCNA mediates an error-prone pathway by recruiting translesion polymerases, whereas polyubiquitylation activates an error-free pathway that utilizes undamaged sister chromatids as templates. The error-free pathway involves recombination-related mechanisms; however, the factors that act along with polyubiquitylated PCNA remain largely unknown. Here we report that the PCNA-related 9-1-1 complex, which is typically linked to checkpoint signaling, participates together with Exo1 nuclease in error-free DDT. Notably, 9-1-1 promotes template switching in a manner that is distinct from its canonical checkpoint functions and uncoupled from the replication fork. Our findings thus reveal unexpected cooperation in the error-free pathway between the two related clamps and indicate that 9-1-1 plays a broader role in the DNA damage response than previously assumed.
Collapse
Affiliation(s)
- Georgios Ioannis Karras
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
62
|
Ciccia A, Nimonkar AV, Hu Y, Hajdu I, Achar YJ, Izhar L, Petit SA, Adamson B, Yoon JC, Kowalczykowski SC, Livingston DM, Haracska L, Elledge SJ. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol Cell 2012; 47:396-409. [PMID: 22704558 DOI: 10.1016/j.molcel.2012.05.024] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/12/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
Completion of DNA replication after replication stress depends on PCNA, which undergoes monoubiquitination to stimulate direct bypass of DNA lesions by specialized DNA polymerases or is polyubiquitinated to promote recombination-dependent DNA synthesis across DNA lesions by template switching mechanisms. Here we report that the ZRANB3 translocase, a SNF2 family member related to the SIOD disorder SMARCAL1 protein, is recruited by polyubiquitinated PCNA to promote fork restart following replication arrest. ZRANB3 depletion in mammalian cells results in an increased frequency of sister chromatid exchange and DNA damage sensitivity after treatment with agents that cause replication stress. Using in vitro biochemical assays, we show that recombinant ZRANB3 remodels DNA structures mimicking stalled replication forks and disassembles recombination intermediates. We therefore propose that ZRANB3 maintains genomic stability at stalled or collapsed replication forks by facilitating fork restart and limiting inappropriate recombination that could occur during template switching events.
Collapse
Affiliation(s)
- Alberto Ciccia
- Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sale JE. Competition, collaboration and coordination--determining how cells bypass DNA damage. J Cell Sci 2012; 125:1633-43. [PMID: 22499669 DOI: 10.1242/jcs.094748] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells must overcome replication blocks that might otherwise lead to genomic instability or cell death. Classical genetic experiments have identified a series of mechanisms that cells use to replicate damaged DNA: translesion synthesis, template switching and homologous recombination. In translesion synthesis, DNA lesions are replicated directly by specialised DNA polymerases, a potentially error-prone approach. Template switching and homologous recombination use an alternative undamaged template to allow the replicative polymerases to bypass DNA lesions and, hence, are generally error free. Classically, these pathways have been viewed as alternatives, competing to ensure replication of damaged DNA templates is completed. However, this view of a series of static pathways has been blurred by recent work using a combination of genetic approaches and methodology for examining the physical intermediates of bypass reactions. These studies have revealed a much more dynamic interaction between the pathways than was initially appreciated. In this Commentary, I argue that it might be more helpful to start thinking of lesion-bypass mechanisms in terms of a series of dynamically assembled 'modules', often comprising factors from different classical pathways, whose deployment is crucially dependent on the context in which the bypass event takes place.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|